
Controlling Supplier Selection in an Automated Purchasing System

Pedro Szekely, Bob Neches, David P. Benjamin, Jinbo Chen, and Craig Milo Rogers

USC/Information Institute
Marina del Rey, CA 90292

(szekely, neches, benjamin, jinbo, rogers)@isi.edu
(310) 822-1511

Abstract
We present a system called DEALMAKER that allows
users to specify policies that control selection among
preferred suppliers in an automated purchasing system. The
system gives users control over the automation by
providing an expressive language and a convenient, easy-to-
use user interface to specify the policies. The interesting
and challenging aspect of the problem arises from the
context in which the system operates. The end users are
contract managers and buyers who are not trained in
computers or programming. They enter their new supply
contracts and define policy roles to control selection of the
best contracts for buying requested parts. They act as their
own knowledge engineers, even though the system is
expected to have hundreds of roles for hundreds of
contracts. The users interact with the system infrequently,
perhaps only a few times a month when they begin or
modify contracts, or change policies. Along with a
moderate turnover rate of users, this makes it crucial that
they can easily maintain correct rules with minimal training.
In this paper, we describe a rule system and an interactive
rule authoring tool designed to address the problems raised
by this context. We believe these issues arise in most
application domains where rule systems are put in the hands
of the end users.

Introduction

The DEALMAKER sourcing module is designed to enable
non-programmers to specify business policies that control
automated supplier selection for off-the-shelf parts (those
identifiable with part numbers). ~:

User Organization

The Defense Logistics Agency (DLA) supplies US military
forces and many federal organizations with the goods they
need to carry out their operations in peace-time and during
conflicts. It is responsible for over 3 million different kinds
of consumable items and procures over $15 billion each
year in materiel. If it were commercial, it would rank in
the top 75 of Fortune 500 companies. The customers of
DLA submit requisitions for goods in electronic form.
DLA arranges for the goods to be delivered from one of
DLA’s depots or directly from a commercial supplier.
DLA bills its customers and pays the suppliers.

DLA is organized into Inventory Control Points (ICPs),
which are broken down into Commodity Business Units
(CBUs). A CBU manages a particular class of items, and
has the flexibility to negotiate and manage contracts
according to the needs of the particular industry segment.
The people who carry out the business activities in a CBU
are contract managers and buyers. Contract managers
negotiate contracts with suppliers, and define the terms and
restrictions for the contract (e.g., prices, delivery terms,
shipping regions). Contract managers also define policies
for managing the contracts (e.g., which class of DLA
customers should use which contract). Buyers manage the
daily operations of contracts, enter new contracts and
revisions into the system, monitor the performance of
vendors, and provide customer support.

A crucial aspect of the DLA business is the need to
support a wide range of special requirements. These
requirements arise from the nature of many of the items
that they supply (e.g., hazardous materials, narcotic
medicines, restricted technologies), special packing and
shipping requirements, a complex set of priorities to
support war-time and peace-time operations, and special
needs of particular customers.

DLA’s systems for electronic commerce do not provide
the flexibility needed to address the wide range of special
requirements and do not provide the agility to keep pace
with the commercial developments in electronic
commerce. For example, the special rules and policies for
selecting among competing sources of supply are
embedded in Cobol programs. Bringing up a new contract
requiring special processing can take several months while
their Information Processing department upgrades the
relevant Cobol programs.

Challenging System Requirements
While the sourcing module is intended for continuous,
automated use, changes to its database of supplier contracts
and policies are entered manually. Some of the contract
may be entered as rules because of the infeasibility of
anticipating all of the complexity of the domain and
representing it in conventional database tables. The
contract-specific rules represent critical obligations and
policies that must be implemented before the contract can
be used for purchases. The need to enter contract data and

i01

From: AAAI Technical Report WS-99-01. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

rules quickly suggests that programmer involvement needs
to be eliminated. This leaves the end users, contract
managers and buyers, to enter these rules. System
administrators in each organization need to be able to
engineer new rule types as well -- this is future work.
Several design concerns arise from this:

¯ end users are not familiar with programming concepts;

¯ there are a large number of rules and contracts; and

¯ end users manage rules infrequently because contracts
and policies evolve over long periods of time.

Contract managers and buyers are not expected to have
training as a programmer. We have verified that this user
population has difficulty with complex logical expressions,
such as nested "ors" and "nots". Such conditions are
common on production rules, so the design must assure the
users’ ability to manage rules in this system. Contract
managers and buyers should not have to understand
elements of the system out of their control such as the
hundreds of rules on other contracts.

Contract managers and buyers each infrequently interact
with the system to enter or modify supply contracts. They
need a simple model for understanding function of rules as
well as an intuitive interface.

The goal of the DEALMAKER system is to maximize
direct control by contract managers and buyers over the
policies and special requirements for managing contracts.
The major challenge in the design is preventing the time
spent learning to enter rules from being inappropriately
large in proportion to the time spent entering rules.
DEALMAKER takes the approach of providing a tiered
framework that:

¯ maximizes the expressive capabilities and interactive
support offered contract managers and buyers to enter
their own rules without overtaxing their limited skills;

¯ provides for extension by non-programmer system
administrators at the next level; and

¯ minimizes requirements for intervention by skilled
programmers.

The following sections describe our design to meet this
challenge, discuss the approach and contrast it with
traditional AI systems, and state the current status of
testing. One of the striking observations is how much can
be accomplished with a simple paradigm at the end user
and system administrator levels.

DEALMAKER: Designed to Meet the

Challenge

From the requisition, the DEALMAKER sourcing module
gets the part number, desired delivery date, priority code,
customer, ship-to address, and a small set of attributes,
such as "partial shipments not allowed" and "do not
backorder." It selects a supplier and provides all the data
needed for an EDI Purchase Order and billing. The
sourcing module has a database of supply contracts and

policies and has real-time access to some suppliers’ price
and availability data. The sourcing module rejects
requisitions it cannot match to a supplier due to lack of
availability or contractual obligations.

To meet the challenging requirement of enabling non-
programmer users to manage policies, we designed
DEALMAKER with the following:

¯ a flexible contract representation;

¯ an easy-to-use interactive interface for contracts and
their policy rules for use by contract managers and
buyers;

¯ a template-driven interactive interface for rules
covering organizational defaults and constraints for use
by system administrators;

¯ a processing model simple enough for these users to
understand their rules.

Planned, but not implemented, is the ability for system
administrators to define new rule templates for use by
themselves and end users.

Representing Contract Data and Policies
A contract is represented as a tree in XML that organizes
attribute name-and-value pairs. At the root are values that
are invariant for all parts supplied by the contract, such as
the vendor name and address. Some nodes in the tree
delineate groups of attribute values that serve as defaults
when any of those attributes are not encountered at more
detailed lower levels. For example, most, but not all, items
are small and light enough to ship by express delivery.
That will be the default in the parent group while just
heavy and large parts specify otherwise at the item detail
level.

Some nodes in the tree identify selector attributes. Their
values at runtime select which branch below is to be used
to look up additional attribute values. For example, when
DLA is buying to replenish stock in their warehouses, the
packaging and labeling requirements are for support of
long-term storage with portions being distributed at
different times. Purchases for direct delivery from the
vendor to the customer and purchases for restock,
therefore, have many different attribute values below a
node controlled by the "method-of-support" variable. A
Web browser-based contract editor has been developed
enabling contract managers and buyers to enter and modify
contracts using this structure.

A major goal met by this representation design is to
minimize the redundant entry of contract data. The
attribute values on one branch below a selector node are
used to initialize those attributes on sibling branches. Only
differences need to be entered. This is effective only when
the display templates have been appropriately constructed.

New contract attributes can be defined in the XML and
made available in the interface and to the rules without
programming. However, considerable expertise is required
to modify the contract DTD (XML template), the display
templates, and the XML file that maps attribute names

102

Region

~o,oo ~iiil~~~~~~i!i!i!iiiiiiiiiii!i!ii~ i!ili!i i! ii,i~ .i=i~ i~ii~

Figure 1: Editing a rule paraphrase with Adaptive Forms.

used in rule conditions down through the selector nodes to
the desired value.

Flexibility in specifying when a supplier is to be selected
for various kinds of requisitions gives the contract

103

managers leverage in negotiating better prices "from
suppliers. For example, promising an annual minimum
purchase dollar amount allows the supplier to be sure of
the ability to amortize overhead and, therefore, reduce unit
prices. Similarly, a promise of all orders for the parts to
maintain Caterpillar tractors in the Northeast may be an
incentive for lower prices. It would be impossible to
anticipate all these kinds of agreements, but it is possible to
provide a rule mechanism allowing their implementation.
The rule conditions match against attributes of the
requisition and control which contracts may be selected.
The rule action may prevent a contract from being used,
indicate preference for a contract, or indicate exclusivity
for a contract. These rules need to be entered and
maintained by the contract managers and buyers in order to
speed implementation of new contracts and to avoid costly
and delaying involvement of programmers.

DEALMAKER has an interactive contract editor with
highly tuned wizard-style panels designed for each specific
kind of rule condition to make it as easy to use as possible.
Most contracting policies are very easy to specify. This
interface is implemented using XML, XSL, and DHTML
and is embedded in the contract editor.

DLA is organized by commodity. Each DLA ICP
manages a major category of parts, such as heavy
equipment or construction supplies, and CBUs specialize
further to commodity type, such as pharmaceuticals or
hydraulic fittings. This organization implies specialized
local defaults and constraints at the ICP and CBU levels,
such as when to use the standard unit price and when to
compute the price as DLA’s cost recovery factor applied to
the cost. While there are few ICPs, there are enough CBUs
to require non-programmer system administrators be able
to enter and maintain their local defaults and constraints
with little training.

DEALMAKER uses Adaptive Forms (Szekely and
Frank 1998), a grammar-based user interface that allows
users to enter rules using structured English phrases. It
shows users a form to fill in to specify an English
paraphrase of a rule as seen in Figure 1. The system
dynamically computes the fields in the form to include the
fields that are compatible with the sentence fragment that
the user has entered so far. This interface is implemented
in Java and uses designs from form-based interfaces and
NLMenus (Tennant, et al. 1983). NLMenus is a technique
developed at TI in the early ’80s which uses transition
network grammars to dynamically generate a series of
menus in such a way that users can enter only
grammatically correct commands and queries.

The sourcing module uses the user-defined contracts,
policies, defaults, and constraints in selecting a supplier
for, or rejecting, each requisition.

The Phased Processing Model

DEALMAKER requires a simple processing model to
allow non-programmers to specify rules. These users,
contract managers, buyers, and system administrators, need
to understand the functioning of their rules. We achieved

this goal by partitioning the processing and the data in
domain-specific ways. The processing is split into four
phases, with phase one generating segments of data, phases
two and three operating on these distinct segments of the
data in succession, and phase four combining the results.
The phases are introduced here and then more completely
described.

1. Generate proposals. Create a proposal for each source
of supply.

2. Elaborate proposals. Annotate each proposal with the
attributes needed to compose a purchase order and bill
the customer.

3. Filter proposals. Verify that each proposal meets the
obligations and policies for use of its contract for the
requisition. An annotation is added when a proposal
needs special attention during ranking, such as exclusive
rights for the sale.

4. Rank proposals. Sort proposals according to rule-
selected criteria, such as fastest when the need is urgent
or cheapest when the priority is low.

All processing is under the control of rules, except the
generation of proposals. Elaboration and filtering rules
focus on individual proposals. All rules whose condition is
satisfied add an annotation to the proposal. The
annotations for elaboration rules record computed
attributes. The annotations for filtering rules record the
effect of the filter, one of "must-use", "kill", or "null" (no
effect). The annotations for the ranking rules record the
criteria to use later in the ranking phase. The system
applies the rules in the order determined by the data-flow
dependencies among rules. This assures that any rule that
tests a computed attribute is attempted after the rule that
computes the attribute.

Generate proposals. Using the part number from the
requisition as an index, the system queries its contracts
database and the suppliers’ online catalogs. The system
constructs a proposal object representing each contract that
supplies the item (and each alternative use of the contract,
such as assuming a larger quantity to attain a better unit
price). The initial attributes on the proposal come from the
requisition, the standard data about the part, and the
matched contract. The proposals are then considered
individually in the elaboration and filtering phases.

Elaborate proposals. Elaboration rules implement
organizational defaults and constraints. They compute and
validate all attributes needed to compose the EDI Purchase
Order transaction, an ANSI X.12 850 (ANSI X.12
Standard), and perform billing. These attributes include
the cost to DLA, the marked-up price to DLA’s customer,
and the expected delivery date. These rules process the
requisition attributes such as "ship exact quantity." They
implement policies and constraints such as allowing up to
$25 over standard prices and checking customers’
authorization to buy hazardous materials or
pharmaceuticals. The maintenance of organizational
default and constraint rules is intended for a system

104

administrator and involves the customization of about 30
rules. These rules include some complex behavior.

One example is the computation of the quantity that
must be ordered. This computation is complex because the
units used in the requisition may differ from the units in
which a vendor supplies the item, e.g., "ounce" in the
requisition and "dozen" in the contract. Standard part data
includes a unit of issue and the contract can record a
conversion factor. In addition, the supplier might package
items in quantities that do not match the requisition, such
as a box of ten dozen. In order to align the units and
deliver at least the quantity requested, rules make
conversions for the purchase order, and they track any
increase in cost to be sure it does not exceed the limit.

Another example is checking whether a quantity is close
enough to the next price tier that it would be cheaper to
order more. Our design makes this particular situation
easy to handle. It creates an alternative proposal for each
price tier in the contract. After the rules make any
conversion needed to match units, another rule adjusts the
quantity for the proposal’s assigned price tier, killing those
that cannot be simply increased to be within range.
Because this changes the price, the rule checking the limit
on excess will run after this rule. Ultimately, ranking will
select the best of the surviving proposals.

The complexity of the elaboration phase means that
system administrators need some training to manage the
customization of defaults and constraints for their
organization. Fortunately, these do not change often and
they start with the rules for their parent organization.
System designers construct the original set. An open issue
is how the CBU rules are maintained if the original rules or
ICP-customized rules they started with are modified.
Fortunately, the rules specific to contracts do not overlap
the functionality of these rules and are processed during
the next phase.

Filter proposals. The filtering phase applies rules
associated with a contract to verify that a proposal meets
all that contract’s policies. These rules annotate the
proposal to kill it or grant exclusive rights. The ranking
criteria are expressive enough to avoid the complication of
granting preference.

Contract managers and buyers enter filtering rules,
giving them the ability to express the obligations of their
contracts and policies to control the source selection
process. Three filtering rule templates have been defined.
¯ Exclude. These rules specify the conditions under which

a requisition should be excluded from a contract or from
specific items in a contract. For example, "Exclude all
low priority, Army requisitions from contract X, but
allow all requisitions from Fort Hood." Exclude rules
place a "kill" annotation on the proposal.

¯ Serves-only. These rules specify that a contract only
accepts requisitions with certain characteristics. For
example, "Contract X serves only low priority Army
requisitions." Serves-only rules place a "kill"

annotation on the proposal when the user-specified
conditions are not met.

¯ Must-use. These rules specify that certain requisitions
must use a specific contract or set of contracts. For
example, "All low priority Army requisitions (for items
supplied by contract X) must use contract X." Must-use
rules place a "must-use" annotation on the proposal,
which then receives special treatment during ranking in
phase four.

DEALMAKER provides an easy-to-use interface
allowing contract managers and buyers to specify filtering
rules for their contracts.

Rank proposals. This phase starts when all proposals
have either been through elaboration and filtering, or been
killed. If all proposals have been killed, the requisition is
rejected, otherwise, the live proposals are ordered best to
worst. The same ranking criteria must be selected on all
live proposals -- this is assured if the selection rules only
check requisition attributes, such as priority code and
desired delivery date. Proposal specifics, such as cost and
days before shipping, are used during ranking. The
ranking criteria may either sort the proposals by a
continuous attribute, such as cost, or partition them
according to a logical expression, such as "supplier can
deliver within 30 days of the desired delivery date". Each
criterion may specify next-level criteria for proposals
equivalently ranked when it is done. A logical criterion
specifies whether true or false identifies better proposals
and can have different next-level criteria for true and for
false. For example, the first criteria will usually partition
any proposal annotated with "must-use" (hopefully by
itself), and specify the criteria for the others when no
"must-use" proposal is found..

Ultimately, either just one proposal is ranked highest, or
the criteria run out leaving a set of equivalently ranked
proposals. If used in an interactive sourcing application,
several of the most highly ranked sources of supply can be
presented to the user together with information that allows
the user to make a selection, such as vendor, price, and
days before shipping. For DLA’s automated purchasing,
equivalent proposals require a scheme to spread orders out
fairly over time; we have not addressed this. The
automated system is required to be fairly quick at selecting
a source for each proposal and so our design was done
with several optimizations in mind.

Optimization without Complication

The automated source selection module is required to keep
up with the arrival rate of requisitions. DLA receives
enough requisitions some days that they need to be
processed at a peak rate of nearly 2000 per hour, or two
seconds each at the bottleneck. Another requirement we
adopted is preserving rule authors’ simple processing
model where all potentially relevant attributes appear on
each proposal and all rules are attempted on every
proposal. These requirements taken together indicate the
necessity for a technical solution to speed up processing.

105

Traditional approaches, such as Rete nets, were rejected
because of the large number rules and attributes, the
sparseness of attributes on rule conditions, and the large
range of values for some attributes. Retrieving or
recreating the net at system initialization would be
prohibitively time consuming. Three simple techniques
make sense for this domain which, in combination, seem to
have provided adequate speed (though this has not been
measured).

First, rules are applied to one proposal at a time. This
prevents rules from suffering complexities having to do
with inter-proposal comparisons - all such comparison is
left for the ranking phase where the rule-selected ranking
criteria is algorithmically applied to the proposals. This
also enables any proposal to be removed from
consideration as soon as it receives a kill annotation.

Second, the attributes for a newly generated proposal are
not actually copied to the proposal. Rather, all proposals
share one copy of the requisition and standard part
attributes. The contract attributes are accessed in the XML
and then cached on the proposal when they are first
referenced by a rule. This reduces the total amount of
digging through the contract XML compared to
prefetching all contract attributes that rules might
reference. In addition, this on-demand lookup allows
values for selection node variables to be determined by
earlier rules. Note that because a proposal is for one
supplier and only one proposal is considered at a time,
there is no ambiguity with attribute names for values in the
contract. Attributes added to the proposal by elaboration
rules are kept only in the cache. Many of the values
needed for the Purchase Order EDI message and billing
outputs will be readily available in the cache.

Third, after the tens of ICP/CBU rules kept in memory
are attempted, only those rules encountered while
accessing the relevant data for the proposal are tried. Here
we give an example of a rule that might be found in each
of a contract header XML, a contract part XML, or
common data about a standardized part. A contract header
rule may grant that supplier exclusive rights to sell artillery
spare parts to Camp. A contract part rule can kill urgent
requisitions for that part -- a buyer would add such a rule
as a result of poor past performance by that supplier in
rapidly delivering this particular part. A standardized part
rule can be used to prevent a nuclear detonator from being
sold as assistance to a foreign country.

By tracking which rules are encountered while accessing
a proposal’s relevant data, exactly the rules with a chance
of firing will be loaded and attempted. This way, the time
to load rules is incurred incrementally and most rules may
never be loaded in a given run. Once rules are loaded,
they are cached in memory on the assumption that a
number of these rules are likely to be used again during the
run.

This section has described the techniques used in the
DEALMAKER system. The goal is to enable the entry of
newly signed supply contracts by end users and to enable
the implementation of new types of contractual

relationships with suppliers by system administrators. We
have addressed the representation of contracts as structured
data in XML and unstructured policies as rules. We have
presented our simple model of processing describing the
phases and the rule engine. Optimizations transparent to
this model were stated. The following section discusses
how our designs compare with other AI technologies in the
context of the goals and requirements of this source
selection system.

Discussion

There are two subsystems to be evaluated for novelty and
contribution. There is the automated source selector that
finds the best supplier for each requisition and has to
perform with reasonable speed and with a sizable database
of supply contracts. And, there is the rule-authoring tool -
the interfaces that support the entry of policies, defaults,
and constraints that supplement the structured contract
data. A simple model of understanding rule functionality,
critical to the success of the system, drove the designs of
the two subsystems. Getting enough expressiveness and
speed for source selection had to be balanced against the
skill required for users to manage their rules. We discuss
the technology adaptations we devised to meet this
challenge.

DEALMAKER: Automated Sourcing Module

Here, we evaluate our design for meeting the goals and
requirements of the automated source selection problem,
including scaling up to the real-world needs of DLA. We
look at DEALMAKER as an AI application that combines
adaptations of textbook AI techniques with the glue to
make them flow together.

Solving the Real-world Problem. DEALMAKER was
designed for production use by DLA, but has not been
measured in that capacity yet. Care was taken to meet
performance speed requirements using the optimizations
described above. The XML contracts and rules are stored
as long strings in an Oracle relational database with
indexing on the part numbers. Timely availability and
pricing data are obtained using a network connection to
live data through PartNet (http://www.partnet.com),
aggregator of suppliers’ catalogs. Sample elaboration
rules, ranking criteria, and contracts with filtering rules
have been entered to model the specific needs of the
Defense Construction Supply Center, an ICP in Columbus,
Ohio.

In our demonstration, the system appears to perform
correctly and speedily when given test requisitions
patterned after real ones. In addition, DEALMAKER has
been demonstrated working as a plug-in module in a new
system designed to receive DLA’s electronic requisitions
and connect with DLA’s financial and EDI systems.

Adapting and Combining AI Techniques. Source
selection can be viewed as a search for the best supplier

106

from the universe defined in the database and the online
catalogs. For this search, we selected the "Generate and
Test" technique and added indexing by part number to
guide the generation phase. "Generate" creates a proposal
to represent each node in the search space. It includes
elaboration, where each proposal is annotated with
problem-specific data such as cost and availability. We
divided "Test" into three separate phases: filtering
performed during elaboration, filtering, and ranking.
Filtering applies rules to each proposal in isolation. This
avoids complex condition matching across multiple
proposals.

Another AI technique is applied to make ranking fast,
namely "Hill Climbing", where an evaluation function
applied to a state is used to move to a state closer to the
solution. This might also be seen as "Best-first" or
"Beam" search, where a search horizon moves toward the
winning solution. When elaboration and filtering are
complete, each live proposal has been annotated with
delivery, cost, and other information important for
evaluating the proposal’s quality for the requisition.
Ranking applies the sequence of "evaluation functions"
provided in the criteria to move closer to knowing which
proposal is best with each step. AI has clearly contributed
to the design of DEALMAKER. In return, DEALMAKER
serves as a validation of a combination of adapted AI
techniques in this problem domain. We feel a greater
contribution is found in our designs supporting non-
programmers as they manage rules to extend the
functionality of the system.

DEALMAKER: Rule Authoring Tool
The design goal is to enable contractual relationships that
reduce the government’s cost for parts. Support for
current kinds of contracts and flexibility to define new
kinds of contractual relationships between DLA and its
suppliers are both crucial for the success of our system.
Rules are used to represent contractual obligations and
policies that are not easily represented as database fields.
It must be easy for users to define rules to implement a
variety of contracts and policies, such as preferred vendor.
Ultimately, it must also be reasonably quick and easy to
engineer new rule templates that are easy to use. In A!
terms, users need a tool to move through the space of rules
and rule templates to improve and extend the functionality
of the automated sourcing module.

Our approach recognizes three tiers of knowledge-
entering users: contract managers and buyers, also called
end users; system administrators at each organizational
level; and programmers. Contract managers and buyers
enter contract-specific rules using a hand crafted, wizard-
style interface. System administrators, with a bit more
training, specify rules codifying defaults and constraints
peculiar to their organization using the forms-based
interface generated from rule template grammars. Global
rules that implement security constraints and common
functionality are to be entered and maintained by a highly

trained DLA system administrator with the assistance of a
programmer. These rules may use templates and the
grammar-driven editor, or may be coded for efficiency.
Acceptance by the users will depend upon confidence that
they are correctly controlling the automated sourcing
process, ease of use, and understandability after going a
long time since they last worked a contract.

We look at how our design was influenced by each of
these concerns.

End users are not familiar with programming concepts.
Users of DEALMAKER do not need to think about
iteration or looping constructs. Their rules are applied to a
single proposal to prepare it for ranking. The interface for
contract managers and buyers provides templates that
allow them to easily express the conditions that occur most
often in practice rather than supporting full Boolean
expressions.

Rules that require a broader view than just the contracts
for a single commodity class or require deeper
understanding of the sourcing process are reserved for
system administrators. They manage these using the
grammar-driven rule editor. We are hopeful that some
system administrators will be able to work with complex
Boolean expressions. However, while we have a grammar
for arbitrary expressions of proposal attributes, we expect
most administrators to rely on the specialized rule
templates.

We have plans for a rule template editor for non-
programmers to define new rule types for system
administrators. Another capability we envision is an
interface to create new wizard panels based on rule
templates. This interface would allow system
administrators to identify the rule conditions that need to
be filled in by the wizard. To create rules based on that
template, contract managers and buyers could run the
wizard and provide the values needed to complete the rule
conditions.
There are a large number of rules and contracts.
Contracts and their rules are stored as individual entities in
a database to permit the system to scale up to DLA’s real
world requirements. To prevent rules from being a speed
bottleneck, we took advantage of the domain-specific
ability to partition the problem into proposals. Rules for
other contracts will never apply to a proposal, so we index
the rules in the database accordingly. Other rule indexes
include the customer and shipping region. These indices
prevent unneeded rules from slowing down a run of the
sourcing module. The approximately 30 common rules
that do not test an indexed attribute are kept in memory.
This scheme works because rules do not interact across
proposals and can, therefore, be retrieved individually. In
practice, only a few specialized rules apply to each
proposal. This design is for efficiency only - the contract
managers and buyers may correctly have the mental model
that all rules are tested for every proposal. The rules our
system ignores would fail the condition by which they are
indexed.

107

End users manage rules infrequently because contracts
and policies evolve over long periods of time. The
typical lifetime of a contract is five years. Revisions to the
contract are expected every year, and occasional revisions
may happen at arbitrary times. ICP-wide policies are
expected to change seldom. Contract-specific policies may
need to be established or changed quickly to respond to the
demands of military operations. Contract managers and
buyers do not manage a huge number of contracts each.
Much of their time is spent negotiating new contracts and
tracking and tuning the performance of existing ones. This
makes rule managing a small and infrequent task. Even if
users were able to recall their data and their training, it
would unacceptable for the interface to be difficult to learn
and use. It would be equally unacceptable if users had to
remember a large number of potentially interacting rules or
had to gain knowledge of the contracts and policies
managed by others. Users may be called upon to modify
contracts and policies that they did not establish because of
the need to react quickly and because of vacations and
moderate user turnover.

The user interface supports this requirement by grouping
rules with contracts, so when users open a contract they
can see all the rules that affect processing of requisitions
against that contract. Because rules for different contracts
do not interact, users can quickly understand the policies
that govern a contract, and have confidence that any
modifications they make will not have adverse effects on
other contracts. Likewise, eliminating rules that span
multiple proposals, we eliminated the need to understand
rules created by other users.

To keep training to a minimum, contract managers and
buyers are not expected to understand or know the details
of the ICP-wide rules. Also, we do not require these users
to even think about rule ordering issues and effects derived
from rule chaining. Instead, we developed a simple virtual
model of operation based on the proposals and the phases.
Representatives of DLA seem to understand how the rules
they enter through the wizard panels in the contract editor
will work.

Conclusion
The interesting aspect of the work is that by taking a

multi-tiered approach that carefully constrains the
production system architecture exposed to users, contract
managers, buyers, and system administrators, we have
insulated them from many of the well-known difficulties
involved in building large production systems.
Nevertheless, the architecture provides the flexibility and
expressivity that gives contract managers and buyers with
direct responsibility the ability to maintain their own
contract data and rules. A system administrator in each
ICP and underlying CBU has the ability to maintain the
defaults and constraints special to that organization. Only
as a last resort will intervention by a programmer be
necessary. The system minimizes the effort and delay in
deploying new contracts, even new types of contracts, and

thereby maximizes competition or otherwise minimizes the
cost to the government for the billions of dollars spent each
year in acquiring parts.

Current Status and Open Issues

We have built a prototype of the system described in this
paper. We used a layered implementation strategy so that
the DLA-independent features of the system are
implemented in a reusable package that can be transferred
to different applications. This reusable package includes
the object representations for requisitions and contracts,
the rule representation, and the rule application engine.
We have gone through several iterations on the user
interface based on demonstrations of the system to DLA
personnel.

Our experience with the prototype, although limited, is
encouraging. We have demonstrated the system with three
contracts and about 30 rules. The system features most of
the ICP-wide rules and several user policy rules. Extended
validation still remains to be performed, but we have
verified that the system produces valid EDI transactions
for transmission to vendors.

The functional requirement to identify and select
between substitute parts has not been addressed. We hope
that the rule authoring tool could be used to let uses control
the search for substitute parts, even if there are many
special cases. We did not develop an authoring tool for
rule actions. Incorporating an interpreted expression
language would decrease the need for the programmer and
the associated delay in fielding new functionality.

Acknowledgements

This research was supported by the Defense Advanced
Research Projects Agency under Contract No. DABT63-
96-0066. Views and conclusions contained in this report
are those of the authors and should not be interpreted as
representing the official policies, either expressed or
implied, of DARPA, the U.S. Government, or any person
or agency connected with them.

References

Frank, M. and Szekely, P. 1998. Adaptive Forms: An
interaction paradigm for entering structured data. In
Proceedings of the International Conference on Intelligent
User Interfaces, 153-160, San Francisco, California.

Tennant, H. R.; Ross, K. M.; and Thompson, C.W. 1983.
Usable natural language interfaces through menu-based
natural language understanding. In Proceedings of the
ACM Conference on Human Factors in Computing
Systems, 154D160, Boston, Massachusetts.

108

