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Abstract

Todays business workflows, e.g. in administration, have
a strong need for support by information technology,
because they heavily rely on the efficient and fluent in-
teraction of human actors and artificial systems. At
the same time, workflow tasks supported or automati-
cally executed by computers get more and more com-
plex. Intelligent agents try to cope with both of these
settings by providing a Software Engineering abstrac-
tion, which incorporates complex functionality for task
planning and execution with elaborate interaction ca-
pabilities. This paper presents a method for identify-
ing and specifying such agents and their behavior by
careful analysis of formal workflow models. It follows
a small example out of an industrial-size case study,
which is currently conducted at Europe’s biggest hos-
pital, Charité Berlin.

There are at least two aspects of todays business
workflows, which have to be considered for support by
information technology. The first aspect is the partially
or fully automated execution of workflow tasks. These
tasks get more and more complex and enforce the use of
sophisticated methods, including planning, scheduling
and constraint satisfaction. There are various successful
contributions from Artificial Intelligence on these topics
(rf. e.g. to (Allen et al. 1990; Zweben and Fox 1994;
Yokoo et al. 1998)). The second aspect is the control
of the task execution process itself. Since most real-
world tasks and their execution are distributed spatially
and among individuals, the coordination and interac-
tion between the task execution entities is central to
the management of business processes. Workflow Man-
agement has made successful contributions to this field
since the beginning of 1990 (rf. e.g. to (Lawrence 1996;
Jablonski 1995)).

The notion of an Intelligent Agent (rf. e.g. to (Huhns
and Singh 1998; Jennings and Wooldridge 1998)) is a
recent concept, which tries to incorporate the merits of
classical Al methods with strong communication and
interaction capabilities. Hence, it seems to be predes-
tined for application to workflow management, espe-
cially under the assumptions proposed by HEWITT’s
Open Systems (Hewitt 1988). Unfortunately, it is not
simple to identify possible agents in a given business
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context and to specify their behavior. Should agents
represent certain individuals, roles or even organiza-
tional units in the business domain or should they
rather implement representations of tasks, processes
and resources? In my opinion, these questions cannot
be answered generally but only in the context of the
given application domain. Nevertheless, I will present
a method, which describes the identification and the
specification of agents and their properties by a care-
ful analysis of formal workflow models. This method
can be applied to a wide range of applications, which
involve distributed process control.

The term “agent” can be interpreted as being a new
abstraction in Software Engineering, just like objects.
Even pioneers of object-oriented technology are aware
of the usefulness of intelligent, goal-directed entities.
A. CoCKBURN states in (Cockburn 1997), “I hope that
one day we shall have more formal tracking of goals
and backup goals.”, and I. GRAHAM can be quoted,
“Clearly the goal or contract is in the mind of some
agent rather than being something possessed by the
task itself.” Nevertheless, there has been a lot of confu-
sion about this term, especially outside the Distributed
Artificial Intelligence community. An interesting sur-
vey on possible agent definitions is given in (Franklin
and Graesser 1996). Throughout this paper, I will use
the term “agent” to denote an artificial representative,
which autonomously acts in behalf of a human or orga-
nizational actor in the application domain.

For presentation, I will follow a small example out
of an industrial-size case study. This case study is ex-
plained in the first section. In the following section a
brief description of the used workflow model is given.
The next section presents the method for identification
and specification of agents and their skills. Concluding
remarks follow in the last section.

The Case Study

Intelligent Agents have traditionally been applied to
the control and optimization of industrial transport and
production processes. Examples for such research can
be found in (Burmeister et al. 1996) or (Liu and Sycara
1998). In contrary to that, research on workflow man-
agement and agents in business contexts is more in-



volved with human processes, typically in the domain
of administration and services. Some results of apply-
ing agents to such domains are reported in the fields of
meeting scheduling (Sen and Durfee 1995), telecommu-
nications (Jennings et al. 1996) and health care man-
agement (Huang, Jennings and Fox 1995).

Several researchers from Humboldt University Berlin
and GMD FIRST are currently carrying out an
industrial-size case study at the cardiological clinic of
Charité Berlin, Europe’s biggest hospital. The cardio-
logical clinic consists of five wards with a capacity of
altogether over 80 patients, four outpatients’ facili-
ties, in which different types of medical consulting are
done in parallel, and eight diagnostic units, some of
which with several subunits. The diagnostic units per-
form over 100 diagnostic examinations each day. These
examinations are requested by the wards, the outpa-
tients’ department and other clinics of Charité.

The present problem is the coordination between the
requesting and serving units. Spatial and organiza-
tional distribution of the named units results in dis-
tributed knowledge, distributed control and hence sub-
optimal patient throughput and resource usage. Since
most of the patients’ care pathways are similar, this
problem seems to be tractable by workflow management
and optimization techniques, but traditional monolithic
workflow management engines scale purely in measure
of workflow instantiations and they usually ignore the
problem of restricted information distribution. There-
for, a more local and flexible architecture is needed to
control and optimize the requesting and serving work-
flow in diagnosis. We decided to design and realize a
truly distributed multi agent system, which will (hope-
fully) run on 25 to 30 computers allover the whole car-
diological clinic. This system is called ChariTime. It
shall be permanently active to allow the dynamic allo-
cation of actors and resources to diagnostic tasks, while
coping with failures and emergency cases.

Modeling Workflows

The first step towards the design and realization of
a system like ChariTime is a detailed analysis of the
present situation. Dependent on the complexity of the
analyzed domain, informal or formal models may be
used to describe the observable workflows. The advan-
tage of informal workflow models is the quick gain of
results. In contrary to that, formal workflow models
spend some additional time, but help to prevent miss-
ing or even incorrect analysis results. In both cases, the
analysis must cover static aspects, dynamic aspects and
the specification of the control objective.

Static Aspects

The target of the static model is the definition of all en-
tities, which participate in the observed workflow, to-
gether with their signature. Entities, which have to
be described this way, include tasks, jobs (composed of
tasks), actors, resources, processes, process units and
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process systems. The latter two describe organizational
groups of the other entities and help to structure the
static model.

Within the ChariTime project all these entities have
been formalized by algebraic specification, which means
the signature and semantics. As an example I will
present the static definition of a process p for a given
task t. For briefness, the signature is left out.

Definition 1 (Process) A process p is a 7-tuple
p = (id, requ, cOnNSgyce, CONSfail, COMPlyy oo, compleyyy, Prait)

The semantics of the given constants and functions is
as follows. id is a unique identifier of the process within
the domain. requ provides the set of actors and re-
sources, which are required to enact t. p may succeed
or may fail w. r. t. the given task t, the involved actors
and resources. In both cases, p has a certain impact
on the involved actors and resources. conSgycc Speci-
fies the consequences of the process on actors and re-
sources in case of a successful enactment, consg the
consequence in case of a failed enactment. In a similar
way comply,.. provides a cumulative distribution func-
tion over completion time in case of a successful en-
actment. comply,; is defined accordingly for the failure
case. Pji denotes the failure probability of the process.

|

Since the static definition of actors and resources in-
cludes role identifiers, the function requ might not base
on the unique identifiers of actors or resources, but on
their role identifiers, which would result in a relaxation
of actor and resource requirements.

Dynamic Aspects

The target of the dynamic model is the description of
the states of all involved entities and their interrela-
tions over time. Petri Nets suite very well to this tar-
get, because they are tailored to the formal description
of concurrent, distributed processes. Petri Nets can be
used to describe and verify dynamic aspects of work-
flows as for example shown in (Aalst 1997) or (Graw
and Gruhn 1995). Colored Petri Nets have been suc-
cessfully applied to the modeling and evaluation of pro-
duction systems (Kis, Neuendorf and Xirouchakis 1997;
Zimmermann 1997). Since I have used algebraic speci-
fication techniques to describe the static aspects, I use
algebraic Petri Nets (Reisig 1998), which are related to
colored Petri Nets. I use a customized class, which has
been extended with notions of time and stochastics.

Using this kind of Petri Nets, the dynamic state of
a job can be described as well as the constraints given
by the environmental system. Figure 1 illustrates a net
representing a job, which consists of five tasks. Pro-
cesses are denoted by transitions, task specifications
and states by places. As one can easily see, the exe-
cution sequence of task 2 and 4 can concurrently run
to the execution of task 3. Task 5 synchronizes the job
execution and finishes it.
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Figure 1: Sample Job Net with 5 Tasks

Figure 2 shows a simple system net, which specifies
the dynamic interrelations between two process units
for transformation of jobs and two process units for
transportation of jobs and actors/resources. Transfor-
mation (¢r1, tr2) as well as transportation processes
(e.g. tpl, 2) require certain resources and sometimes the
involvement of actors. Any information on time and
stochastic behavior is left out on this level of detail.
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Figure 2: Sample System Net

Specification of the Control Objective

The general control objective in process control or op-
timization is the useful assignment of jobs (resp. their
tasks) to actors and resources in time. The first part,
the assignment to actors and resources, can easily be
illustrated by defining a mapping, which dynaemically
binds process transitions in jobs nets to process tran-
sitions in the system net. This idea bases on Object
Systems (Valk 1995), but in my case the binding is not
static. For example, dynamically binding ps in figure
1 to the transformation process trl in figure 2 spec-
ifies the concrete use of certain resources and the in-
volvement of certain actors (this is defined by the requ
function of #r1). Hence, the objective of the control
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system is finding a dynamic binding between job nets
and system nets.

The additional assignment to points in time can be
illustrated by formalized observations of the concurrent
run of the bound nets. Concurrent runs (Reisig 1998)
are protocols of possible observable runs, which are
again denoted by acyclic Petri Nets. Timing this pro-
tocols means to assign a certain starting time point to
each bound process transition and finishing time points
to the places in the post-set of the process transitions.
Figure 3 illustrates the observable firing of the transport
process transition ¢pl, 2, which represents the transport
of job j from storage J; to storage Jo using the trans-
port resource r. This notation is equivalent to GANNT
plans, as the dashed box shows (the y-axis represents
the actor/resource dimension, the x-axis the time di-
mension). Due to these timed concurrent runs opti-
mization criteria, like minimum makespan, weighted
makespan etc. can be specified canonically.
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Figure 3: Observable Firing of a Transport Process
Transition

An example

The following example is a simplified excerpt from the
workflow models, which have been identified within the
analysis phase of ChariTime. Figure 4 shows the typ-
ical in-patient flow in cardiology. After admission in
the ward, the patient gets a first stationary examina-
tion. Requests for diagnostic examinations occur in the
framework of this stationary examination. After trans-
portation to the proper diagnostic units, the examina-
tions can take place. In the best case, the patient gets
all necessary examinations one right after the other.
This prevents superfluous transports. Other cases are
that the patient has some requested examinations left
but nevertheless returns to the ward or that all exami-
pations have been finished. Therapy is not modeled in
this context, since it is not in the focus of the project.

Figure 4 illustrates a very coarse view on patients’
flow. Every process transition in this flow can be de-
tailed by further workflow submodels. Actors and re-
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Figure 4: In-patient Flow

sources appear in these refinements. Figure 5 demon-
strates the refinement of the stationary examination
process. Central in this refinement are the active ac-
tors involved in the described processes. On the right
the refined patient flow can be recognized, on the left
the document flow has been added.

The first process in stationary examination is the tak-
ing down of the care history. This has to be done by a
doctor. After this, the doctor determines certain diag-
nostic examinations, makes corresponding notes in the
patient’s record and determines additional prediagnos-
tics. Concurrently to the prediagnostics a nurse picks
out the patient record, which carries notes of ordered
examinations. For every note she prepares a certain re-
quest form with the patient’s name, address, weight and
so on. After that, the prepared forms are handed over
to the doctor, who completes the forms with medical
information and signs them. They are transported to
the diagnostic units, such that examinations can take
place.
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Identifying and Specifying Agents

After formally describing the observable workflows and
thus analyzing the present situation, one has to specify
the functionality, which shall be covered by the envis-
aged system. This is commonly known as requirements
analysis. Focusing on the development of Multi Agent
Systems, the functionality is encoded in agents skills.
Since agents are representatives of human or organiza-
tional actors in this context, agent skills can be directly
derived from actor skills. Actor skills denote the role
competency of an actor to execute a given task within a
business process. That means theoretically the compe-
tency of an actor to dynamically bind a process transi-
tion in the job net to a process transition in the system
net.

Identifying Agents and Skills

Actor skills can be identified from the formal workflow
model as follows:

e Consider a process transition p in the system net.
Every actor, that can be found on the incoming arcs
of p, is involved in the process P represented by p.
Hence, he/she needs a certain skill to participate in
the process. Such, for every actor, participating in
P, an actor skill is identified, e. g. “Prepare Request
Form”.



e For further refinement of the actor skills, one takes a
look at other specifying facts, like: Is the actor active
of passive? In case of several involved actors, which
interactions are implied by the common process P?
Is the actor a client or a server in P?7 Which resources
are used in P? This leads to a more specific identi-
fication of actor skills, like “Prepare Request Form
with Patient Record”.

The simple enumeration of actor skills can be struc-
tured by assigning actor skills to their actors and de-
noting this assignment by actor diagrams, which are
known from the Unified Modeling Language. Figure 6
shows such a structured set of actor skills, which can be
derived from the workflow given by figure 5. The rela-
tion lines between the actor “Patient” and the skills are
dashed, because the patient is rather passively involved.
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Figure 6: Actor Diagram for Stationary Examination

The envisaged functionality can now easily be spec-
ified by marking those actor skills, which shall be sup-
ported or automated by the system. In figure 6 this is
done by rectangles. This method is highly incremen-
tal, since one may decide to realize the most important
actor skills first, while the support of other actor skills
may follow later. Those actor skills, which shall be
supported, are then usefully grouped together and thus
define agents and their functionality.

A good starting model for grouping supported ac-
tor skills to agents is the actor itself. That could mean,
that the concrete actor is represented by a unique agent
in the system, e. g. a personal agent for nurse Angela.
Though, in most domains, actors with the same roles
have similar skills. Hence, roles may define actor skill
collections and thus agents better, e. g. a general nurse
agent. Another influence factor in identifying agents
is the quantity and quality of the supported skills. If
there are many easy skills to support a grouping in a
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higher order agent, which represents a whole organi-
zational actor, may be useful, e. g. a ward agent. If
there is a very complex skill, which for example enforces
the use of a sophisticated planning or scheduling algo-
rithm, it may be in good keeping of a single specialized
agent, e. g. a planner agent. The grouping of skills to
agents should result in a good compromise between fine-
grained “stupid” agents and a monolithic “big headed”
agent.

Specifying Agents and Skills

Once agents and their skills have been identified,
they can be specified concurrently and incremental.
While objects commonly encapsulate data and meth-
ods, agents encapsulate skills, knowledge and con-
trol. These three components have to be defined to
specify an agent.

The specification of skills consists mainly of the de-
scription of their atomic activities and the ordering re-
lation between them. The complexity of activities cor-
responds to that of common methods. Though activ-
ities are domain dependent, they are similar in most
domains. Typical activities are the sending of a cer-
tain message, the waiting for a message, the query of
some data or the output of data on peripheral devices.
Activities should not be complex, because complex be-
havior is realized by skills. To identify activities the
observation of the problem domain can once again help.
All elementary activities in the framework of a process
should be analyzed. That includes the use of legacy
systems and real-world communication protocols.

Activities, which could be identified for the skill
“Prepare Request Form with Patient Record” could be
querying the patient record, getting the right forms,
putting patient information on the forms, adapting the
state of the patient record and passing the prepared
forms to the doctor. The description of the activities
is intentionally vague, because specification does not
prescribe the use of certain technologies.

The specification of knowledge is similar to the iden-
tification of domain classes in object-oriented methods.
Hence, there are many heuristics for finding domain
classes, which belong to the skill, that has to be speci-
fied. A good strategy is the analysis of used resources,
like technical equipment, forms or media. The specifi-
cation of knowledge should not include detailed infor-
mation about the representation of the knowledge, since
this is part of the design phase. In the presented exam-
ple, knowledge can be identified by the domain classes
patient.record, form A, form B and so on.

The statement on the quantity and quality of the
agents skills mentioned earlier holds for agent control or
architecture, too. Though specification determines the
what of the given objective and not the how, the nature
of the agents skills directly influences the choice of an
appropriate control architecture. Simple skills with the
need for timely execution may imply the use of a re-
active agent architecture. On the other hand, complex
skills, which involve planning or scheduling activities,



may enforce the use of a fully deliberative agent archi-
tecture. Hybrid architectures, like the BDI-architecture
((Rao and Georgeff 1995)), may be promising for unify-
ing both demands. A first decision for a certain agent
architecture can only be done, when all skills of the
agent are known and specified. Hence, there is no way
to determine the right control architecture for our toy
example, since it is not complete.

Conclusion

In this paper I have presented a method for identifying
and specifying intelligent agents and their functional-
ity from formal models of the present workflow. Fol-
lowing this method, the static and dynamic aspects of
the workflow and the specification of the control objec-
tive are described by a unique notation based on alge-
braic types and algebraic Petri Nets. From this descrip-
tion actor skills can be derived. Actor skills, that shall
be supported by the envisaged system, are grouped to
agents following the example of real actors, roles, or-
ganizational units or functionality. Agents are further
specified by determination of the atomic activities of
their skills, the knowledge, which is needed to perform
the skills, and the agent control architecture.

The use of the presented method has been illustrated
by a small example out of a real-world case study in
medical administration. This case study is currently
taken out at the cardiological clinic of Charité Berlin.
The analysis and specification phase is nearly finished
and the design phase has just begun. The results pre-
sented in this paper have been successfully used to find
a lead-in to the realization of a distributed Multi Agent
System, which is supposed to control request-and-serve
relations in diagnostic examination. Further reports on
this case study will follow.
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