
Agents for Sales Automation

Sermet Yucel

Certusoft
5117 Duggan Plaza
Edina, MN 55439

sermety@certusoft.com

Abstract
Sales Automation systems face the complex task of
integrating knowledge based systems with the traditional
transactional systems running over a number of
occasionally connected parties and software systems. The
sharing and collaboration between occasionally connected
parties and systems participating in the selling/buying of
complex products have been difficult to realize within the
common system architectures. We identify the fundamental
challenges facing common Client/Server, Web, and
Distributed Object architectures, and their shortcomings in
supporting such collaboration and sharing. We show that
agent based architectures can realize the wide area
collaboration and workflow, as required by Sales
Automation systems, over the Internet.

Sales Automation

Eighty percent of those surveyed in the 1998 Sales and
Field Force Automation Reader Survey responded to the
question of “Why Implement” a Sales Automation (SA)
system with “To Increase Sales” (Goldenberg 1999).
Respondents identified the E-Commerce and the Sales
Configuration/Proposal Generation as top two imperatives
over the next three years. The survey showed that
providing mobile/portable hardware to sales force is the
top priority. The connectivity, mobility and autonomy of
the sales person, and the product knowledge are the most
critical to increasing sales. The criterion for technology
selection is its impact on the bottom line.

The emphasis on configuration is the evidence for that the
product knowledge and the ability to use knowledge
without being an expert is critical to a successful sale
process. The proposal is one of the tools with which the
customer participates in the sales process. A good proposal
is a portable knowledge base about the products, services,
specifications, features, and benefits that are of interest to
the customer. The proposal also captures and presents the
current state of the overall sale process. The knowledge
and the ability to share it are the critical enablers for
sellers, buyers, and their agents.

Copyright © 1999, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

The Internet has enabled the consumers to select and
purchase off-the-shelf products as well as configurable
products such as desktop computers. Armed with the on-
line product knowledge, ability to configure, and ability to
enter and track orders on-line, consumers are increasingly
willing to buy without the help of a human “Sales Force”.
The sale of complex products on the Internet, however,
proved more challenging. Specifying a complex product
without the assistance of an industrial strength
configurator may not be practical. Final decision on the
configuration and sale of a complex product may take an
extended period of time and involve a number of
disconnected parties.

SA systems for complex products must manage and utilize
large amounts of dynamic product knowledge and provide
workflow support for processes spanning multiple
heterogeneous hardware and software platforms. The SA
of complex products is a special case of Wide Area
Workflow Management (WAWM) (Riempp 1998).
Empirical studies discovered that manual storage and
movement of data between different systems can account
for 80 percent of the time needed to complete an office
process (Riempp 1998). WAWM targets this process
overhead to minimize the overall processing time. The
portable and electronic representation of the knowledge
and the capability to share the knowledge within and/or
between organizations can not only minimize the process
overhead but it also is the foundation for creating global
partnerships and collaborations.

Trucks, Construction and Manufacturing Equipment,
HVAC Systems, Fire Pumps, Turbines, and Compressors
are typical examples of complex products. The number of
component types involved in configuring these products
may be in the hundreds. Laws may mandate a minimal
performance and specification on these products.
Customers may impose performance and cost criteria. The
Marketing Department may promote certain
configurations by giving price discounts. The eventual
specification of the product that meets engineering,
marketing, legal and customer requirements may involve
tens of thousands of rules to be checked interactively
during the product configuration. A fast interactive

From: AAAI Technical Report WS-99-02. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

configuration and pricing engine is most critical to the
success of the SA systems for the complex products (Yu,
and Skovgaard 1998, Haag 1998).

The process of selling and purchasing a complex product
may extend over many months due to changing customer
requirements, sales and purchasing strategies, and product
knowledge. It may involve geographically separate team
members and vendors. This picture is in sharp contrast to
the purchasing of simple products on the Internet where a
single person can complete the process on a single
vendor’s web site within minutes.

A sales person working for an independent dealership may
initiate the complex sales process. The sales person may
request a nonstandard component from the manufacturer
to meet the customer requirements. The manufacturer may
accept or decline the request. The customer may decide to
order if the manufacturer agrees to a certain delivery date.
The manufacturer may decide to limit the warranty in
turn. The sales manager may withdraw the discount
associated with the standard configuration. The financing
department may increase the interest rate. The customer
may route the specifications to another vendor to get a
quote for a customization before the final decision to
order. Another sales person may take over the account and
eventually enter the order. And so on.

What type of architecture is needed to enable multiple
sales persons, customer contacts, and vendors to
participate in selling and buying of a complex product?
How do the participants collaborate? Who controls and
coordinates the flow of data and processes that may cross
many boundaries in geography, hardware, software
infrastructure, and processes? In the this paper we review
a possible three-tier client server architecture, a Web
based architecture, and an agent based architecture as
answers to these questions. Our goal is to identify the
requirements and functionality of an agent-based approach
and to compare an agent based architecture to these more
common architectures. We identify roles of relevant AI
techniques and reasons why an agent-based architecture is
preferable.

Client/Server Approach
The Client/Server has been the dominant architecture for
applications that serve a large number of permanently
connected and concurrent users. The Client/Server
architectures divide the application and its infrastructure
into layers. The three-tier version consists of a data layer,
a business or application layer, and a presentation layer
(Keller and Teufel 1998).

From a mobility and autonomy perspective, the
fundamental issue faced by the Client/Server architecture
is that a sales person may not have a connection to the
server all the time when he/she works with the system.

Extending the Client/Server architecture to include mobile
users means simply replicating a subset of all three layers
and the necessary infrastructure to the disconnected
computer. The master and replica databases, and the
application and presentation layers may get out of synch
as soon the mobile user disconnects. A robust and fault
tolerant synchronization mechanism for all three layers
and their infrastructure is necessary to keep these systems
up and running. In principle, a three-tier architecture and
a replication/synchronization mechanism can meet the
demands of a mobile sales force selling complex products.
The ability to access the same data and the functionality
can potentially provide a seamless workflow and a high
level of functionality like complex configuration.

As recently stated by the CEO of Oracle (Purdue 1999),
the replication and synchronization of the data layer is too
complicated. The implementation-level coupling between
the application layer, the presentation layer, the data layer,
and the infrastructure demands not only the ability to
synchronize each layer but also the ability to synchronize
the synchronization of each layer. In general, these
systems may not recover completely from failures. For
example, a rollback of the master database may require
rebuilding of all the mobile databases and may result in
loss of data. A new user must install all the necessary and
possibly proprietary software including communication
software, databases, components, and applications. These
systems are scalable within enterprises but not to the
masses served by the Internet. The functionality,
workflow, and collaboration are limited to the licensed
users of the software within a single enterprise and, if any,
to the users of external systems that are interfaced.

The fundamental barrier to coordination and collaboration
of diverse and disconnected users is the implementation
level homogeneity and synchronization necessary for the
operation and maintenance of these systems. The cost and
the complexity of entry into these systems are prohibitive
for large numbers of outside users who might occasionally
need access. Most of the SA vendors provide mobile user
support. Many provide integrated application and data
synchronization tools. But momentum is building in favor
of WEB based architectures. After spending $7 million,
Oracle killed its internal Client/Server based SA initiative
and declared that Web-based SA is the future (Purdue
1999).

WEB Approach
A Web-based approach delivers the benefits of the
client/server at much larger scale. The Internet has
standardized the client and the communication protocol.
Enterprises may still have the same client/server data layer
and the same business and application logic. However, the
data and the applications do not need to be replicated to
the user’s computer. They are accessed on demand while
the user is on-line. The complexity and the cost of entry to

the Internet are minimal. Unlike the Client/Server
approach, in the Internet world the server makes no
assumption about the client beyond the Internet standards.
A server can easily talk to any client that could be any
browser. The data and the functionality access on the
Internet is a clear alternative to the Client/Server based
SA.

The unit of communication between the Web server and
the browser is an HTML document. The functionality of
the document is limited by the contents of the document.
From the client’s perspective the HTML document is the
application. The scripting and dynamic HTML add
interactivity. However, creating an HTML document that
can configure and price a complex product within a
reasonable time is beyond the current capabilities of the
HTML documents and the scripting languages.

The HTTP is designed for document and form processing,
not for direct support of a distributed computing
environment. A client application running in a browser
can locate and execute methods on a server using a
method invocation mechanism layered on top of HTTP.
The network latency is the minimal performance overhead
for a remote method invocation layered on top of HTTP.
The latency of the HTTP, ~0.5 seconds, puts severe limits
on the usability of the Internet as a distributed or a
standard Client/Server computing environment. The next
generation Internet protocol HTTP-NG will improve this
situation but the latency will remain (Frystyk, et. al. 1998)
as a fundamental bottleneck. With the anticipated
proliferation of wireless communications that has 1-10
seconds latency, it will be impractical to make remote
method calls. The imperative for the next generation
systems is to minimize the calls to the server. In other
words, computations, such as product configuration,
involving more than a few method calls per second must
be performed on the client.

Code-on-demand (Lange, and Oshima 1999) is another
approach to overcome the limitations of the HTTP and
HTML. Java Applets are the practical examples. The idea
is to download the code to where and when you need it.
The applet may run autonomously or it may still
communicate with a server. Applets do not have the look,
feel, and ease of use of the HTML. Unless they are really
simple, download times may be intolerable.

Web does not offer a solution to a Sales Person on the road
if he/she does not have a connection to the Internet.
Sharing processes and collaborating globally are difficult
within the client/server architectures, including the
Internet, because business processing is confined to the
application server and its connected clients. Business
processes and their execution environments (and hosts)
are inseparable. If inter- or intra-organizational business
servers and/or their clients are not interoperable, standard
client/server or the current Web model cannot provide the

Global or Wide Area Workflow. The Internet is neither
directly concerned with nor provider of such
interoperability.

Mobile Agents
The phenomenal success of the Internet can be attributed
to its design principles: ease of use and deployment,
support for heterogeneity, scalability to millions of sites,
cost effectiveness, simple and global connectivity as the
overall goal (Carpenter 1996). We assume that a
computing model for masses should build upon these
proven principles. It should be upward compatible with
the Internet. The browser concept and the look and feel of
HTML are essential for ease of use and deployment.

We propose a Portable Knowledge Base (PKB) and a
Visual Knowledge Base Browser (VKBB) as the
successors to the HTML and the HTML browsers. In
addition to the capabilities of the HTML documents, users
can add, edit, query, route, and customize look and feel of
a PKB. When users complete their work with PKBs, they
can e-mail them to friends, or to colleagues, or they can
submit the PKB to a server for processing. Users can post
it in a read-only format on a Web site. One might refer to
such a knowledge base as an Active Document (Stefik
1995) that embeds data, business rules, configuration
rules, goals, and whatever else necessary to make it self-
contained and visually interactive.

PKBs and VKBBs need to merge AI techniques, such as
those in product configurators, with object-oriented
techniques and languages, such as those in a Customer
Relationship Management System. The product
configurators are typically rule and constraint based and
they include an inference engine. The configurators are
closer to AI than to the object-oriented programming. This
difference is the reason why configurators typically come
with their own data modeling and maintenance tools. The
internal representations of configuration objects are
significantly different than common business objects like
customer, order, or company. A rule that excludes a
component combination is represented and used
differently than a business rule that states that an “order
cannot be entered if sales person and customer are in
different states”. A PKB for SA must represent the
configuration and business entities (rules and objects) in a
uniform way. The configuration objects, rules and
constraints are typically considered data while the usual
business rules are implemented as compiled or scripted
code. PKB design should eliminate the distinction between
rules as data and rules as compiled or scripted code as well
as the distinction between the configuration and business
objects. In summary, a PKB must merge the AI and
object-oriented paradigms. The overall goal is to merge
the business logic layer, data layer, presentation logic, and
configuration logic and data into a single PKB.

Current approaches to mobile agents emphasize the ability
to move from one computer to another. The goal is to give
the impression that the agent is moving while executing.
Java has been the choice of implementation language
because it can serialize its objects into portable byte code
(Lange, and Oshima 1999). What we are proposing here is
the portability of the knowledge bases not their executable
forms. Mobile agents typically require a distributed but
homogenous host environment. The collaboration between
the agents belonging to different agent systems is no likely
to be easier than integrating different client server
systems. For large-scale interoperability, an agent should
execute, for example, in a Java environment first. Then its
knowledge should be transferred to another agent
environment, for example, in C/C++. The Portable
knowledge base concept we are proposing here is very
similar to HTML documents. An HTML document can be
displayed without any assumption about its origin and
implementation details of the target browser (We assume
that both the HTML document and browser conform to
same version of HTML). Documents can originate from a
Web server written in C/C++ but can be displayed with a
browser written in Java or Cobol by any third party
vendor. What must be portable are the data, goals,
processes, and history of the agent not its particular
incarnation on a specific infrastructure.

Java offers many advantages for PKB and VKBB
implementations. Java’s unique capability to create and
load classes dynamically is extremely advantageous for
implementing knowledge bases that can be interactively
updated while being used by end users. The ability to add
methods and classes transparently to the end users are
critical to realizing collaboration beyond simple
information sharing. A PKB in a standard text based
representation can be dynamically converted to internal
Java byte code representation of the VKBB for execution.
With the ability to create and add executable code to a
running application, Java blurs the distinction between the
development and usage of a system.

With the release of JDK 1.2, the Java user interface
components can implement rich features expected by
users. The VKBB should separate the implementation of
presentation layer from its presentation logic. The VKBB
must dynamically render the visual interface of the KKB
from declarative statements in similar way a browser
displays HTML documents using tags. The separation and
standardization of the presentation layer implementation
reduces the size of the distributed code, eliminates calls to
the server for complex navigation and calculations, and
improves performance.

Although our focus was on the portability and self-
sufficiency, other characteristics of agents are not
excluded. The planning, scheduling, problem solving and
agent-to-agent communications can be added without
compromising. To realize the full potential of the Internet,

“collaboration at home and work” (Berners-Lee 1997), we
must define mobile agents as portable knowledge bases,
and we must replace the proprietary agent hosts with a
generic knowledge base browser.

Conclusions
The collaboration and the coordination of a number of
disconnected users and heterogeneous systems mandate
the ability to share and communicate at the knowledge
level. Client/Server architectures, mobile agent
architectures that depend on proprietary execution
environments, and distributed computing architectures
(for example DCOM, and CORBA) require a permanent
network connection to a server, and/or implementation
level homogeneity at a global scale. Such homogeneity is
neither practical nor desirable. A PKB embodies the data,
processes, goals, plans, actions, and interaction details
with human agents as well as software agents. The sharing
and collaboration between disconnected users are
supported by the physical portability and the self
sufficiency of the PKBs that can travel across the Internet
on its own, by actions of the current user, as a result of
downloading by users, or by the mail. A KBB must
dynamically render the visual interface from declarative
statements stored within the PKB. Users can interact with
the PKB using any implementation of the VKBB. When
the PKB completes its mission, it can download or
broadcast its knowledge to all the interested parties.

With XML, RDF, and RDFSchema, the World Wide Web
Consortium has been already addressing the need for
facilitation of knowledge sharing and exchange,
interoperability of independently developed Web servers
and clients, and metadata representation and transport
(World Wide Web Consortium 1998a, 1999, 1999b).
XML, RDF, and RDFSchema are designed to enable the
machines to understand and exchange each other’s data.
VKBB transforms the machine understandable data (and
business processes) to a visual format designed for human
agents. The documents, PKBs, should be permanent and
portable to support autonomy, and routing by a mobile
user to a server or to another human agent.

Software interoperability by knowledge sharing,
(Genesereth and Singh 1993), a general knowledge
interchange format (Genesereth and Fikes 1992), and the
representational portability (Gruber 1993) have already
been proposed. The Knowledge Query and Manipulation
Language (Labrou and Finin 1997) has been widely
accepted as a standard for agent-to-agent communications.
Technically, many pieces are in place for the PKB
concept. Then, why are Agent or Knowledge Oriented
software architectures not as commercially widespread as,
for example, the object oriented architectures? The most
likely reason is that the current standards do not
adequately address the needs of the most important agent
type: human agents. The VKBB may be considered as the

agent that bridges the gap between computer agents and
human agents.

A sales process may involve a number of sales persons,
sales engineers, sales managers, companies, contacts,
products, quotes, orders, and departments. The PKB must
hold the knowledge about all of these entities as well as
the knowledge that are of interest to them. Its role is
analogous to a file folder that contains all the paper work
to be completed for the deal, the procedures to be
followed, to do lists, and the product data sheets. The
collaboration and workflow may be achieved by handing
the folder to the next person who is responsible for the
next step. The first person may simply walk down the
floor to deliver the folder. The second person may air mail
it. The PKB, on its own, may initiate a transfer by e-mail
or by using Internet. Obviously, a real PKB
implementation must overcome numerous other
challenges that are beyond the scope of this paper. Our
conclusion is that, regardless of the additional issues,
physical and representational portability of knowledge,
sharing at the knowledge level, self-contained knowledge
bases, and knowledge base browsers are prerequisites to
global collaboration and workflow.

References

Berners-Lee, T. 1997. Realising the Full Potential of the
Web. http://www.w3.org/1998/02/Potential.html

Carpenter, B. 1996. Architectural Principles of the
Internet, Internet Architecture Board, June 1996,
RFC1958.

Frystyk, H., Spreitzer, M., Janssen, B., and Gettys, J.
1998. HTTP-NG Overview, Problem Statement,
Requirements, and Solutions Outline. Internet Draft,
draft-frystyk-httpng-overview-00.txt, November 1998.
This work is in progress.

Genesereth, M. R., and Fikes, R. E. 1992. Knowledge
Interchange Format, Version 3.0 Reference Manual.
Knowledge Systems Laboratory, KSL-92-86, June 1992.
Computer Science Department, Stanford University.

Genesereth, M. R., and Singh, N. 1993. A Knowledge
Sharing Approach to Software Interoperation. Logic
Group, Computer Science Department, Stanford
University.

Goldenberg, B.; 1999. 1998 Sales & Field Force
Automation Reader Survey. Sales & Field Force
Automation, January 1999: 56-74.

Gruber, T. R. 1993. A Translation Approach to Portable
Ontology Specifications. Knowledge Acquisition.
5(2):199-220.

Haag, A. 1998. Sales Configuration in Business Processes.
IEEE Intelligent Systems 13(4): 78-85.

Keller, G., and Teufel, T. 1998. SAP R/3 Process Oriented
Implementation. Reading, Mass.: Addison-Wesley.

Labrou, Y., and Finin, T. 1997. A Proposal for a new
KQML Specification. TR CS-97-03, February 1997,
Computer Science and Electrical Engineering
Department, University of Maryland Baltimore County.

Lange, D. B., and Oshima, M. 1999. Programming And
Deploying Java Mobile Agents With Aglets. Reading,
Mass.: Addison-Wesley.

Purdue, M.; 1999. Lary Ellison’s New World Order. Sales
& Field Force Automation, March 1999: 14-15.

Stefik, M. 1995. Introduction to Knowledge Systems. San
Fransisco, California: Morgan Kaufmann Publishers, Inc.

Riempp, G. 1998. Wide Area Workflow Management,
Creating Partnership for the 21st Century. London:
Springer-Verlag.

Yu, B., and Skovgaard, H. J. 1998. A Configuration Tool
to Increase Product Competitiveness. IEEE Intelligent
Systems 13(4): 34-41.

World Wide Web Consortium 1999. Resource Description
Framework Model and Syntax Specification.
http://www.w3.org/TR/REC-rdf-syntax

World Wide Web Consortium 1998a. Extensible Markup
Language (XML) 1.0. http://www.w3.org/TR/REC-xml

World Wide Web Consortium 1998b. Resource
Description Framework Schema Specification.
http://www.w3.org/TR/WD-rdf-schema. This work is in
progress.

