From: AAAI Technical Report WS-99-03. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Planning for Security Management

Rosy BARRUFFI and Michela MILANO and Rebecca MONTANARI

DEIS

University of Bologna, ITALY
{rbarruffi,mmilano,rmontanari}@deis.unibo.it

Abstract

Security Management is a key issue in distributed com-
puter systems. Resources and data need to be pro-
tected against unauthorized access, manipulation and
malicious intrusions that render a system unreliable
or unusable. The complexity of the task calls for the
design of intelligent support systems that aid system
administrators in the detection and/or prevention of
intrusions. For this purpose, Intrusion Detection Sys-
tems (IDS) have been deeply investigated. IDSs are
aimed at identifying intrusions and triggering conse-
quent repair and/or reconfiguration actions. In gen-
eral, these recovery procedures are statically defined
by a system administrator. An alternative approach re-
lies on a planner that dynamically computes the action
chain (plan) for reconfiguring/repairing an attacked
system. Using planning techniques greatly increases
IDS flexibility, since statically defined countermeasures
are not always the most appropriate and can be exces-
sive (or even wrong) in some situations. In this pa-
per, we discuss the design and implementation of a
constraint-based planner that acts as a reacting mod-
ule in an IDS.

Introduction

Security Management is beginning to assume enormous
importance in today’s computing environment. Or-
ganisations are increasingly embracing the potential of
the Internet as a powerful, low-cost medium for busi-
ness transactions that include product marketing, ad-
-vertising, electronic trade and customer support. Even
though the exploitation of network services grants unar-
guable advantages, it also greatly increases the risk of
security breaches. As a consequence, it is very impor-
tant that security mechanisms are designed in order to
protect data from disclosure or unauthorized manipu-
lation, and to prevent denial of services.

In distributed computer systems, the complexity of
security management calls for the design of automated
systems for the detection and/or prevention of intru-
sions. However, completely automating security man-
agement appears, at present, unrealistic. We can, how-
ever, develop intelligent support systems that assist
network administrators in managing security. For this
purpose, in the last years, Intrusion Detection Systems

AiDIN99 Working Notes

63

(IDS) (Lunt 1993b) have been deeply investigated. IDS
are in charge of identifying intrusions and triggering
consequent repair and/or reconfiguration actions that
lead the system from a faulty state to the correct one.
IDS repair and reconfiguration mechanisms usually rely
on complex procedures (to be written by the system ad-
ministrator) that take into account each situation that
is likely to happen.

This approach represents an efficient solution, but

might not be feasible for complex and dynamical envi-
ronments where actions interact and can be combined
in many different (sometimes unpredictable) ways, thus
leading to long development time and resulting in po-
tential software bugs. In addition, statically defined
procedures might not be always the most appropriate
countermeasures and can be excessive (or even wrong)
in some situations. This happens, for instance, when
IDS false alarms are triggered or when system security
policies dynamically change, leading to adopt different
countermeasures for the same attack situation. Thus,
flexibility becomes an essential requirement for security
management.
. We argue that this feature can be achieved by the
adoption of planning techniques for dynamically com-
puting repair/reconfiguration plans. Plans are se-
quences of elementary actions built according to the in-
trusion occurred, the current system state and security
policies enforced. We propose the design of an IDS re-
active component relying on a constraint based planner
able to produce recovery /reconfiguration plans given a
potential intrusion. During the plan construction, the
planner is able to interact with the system in order to
retrieve relevant information on the current resource
and process state.

Intrusion Detection Systems and
Planning

IDSs

Intrusion detection technology is aimed at identifying
intrusions against computer systems. An intrusion can
be defined as any set of actions that attempt to com-
promise the integrity, confidentiality, or availability of
a resource. Auditing is used to determine whether and

Orlando, Florida, July 1999

how a security violation has occurred; it consists of the
examination of the history of system activities that is
recorded to a file, called audit trail, in chronologically
sorted order. However, audit trail analysis is highly
complex due to the huge amount of data they con-
tain, typically in a raw and difficult format to under-
stand. Support to automation is, thus, required. The
so-called Intrusion Detection Systems are tools aimed
at automating both the audit data acquisition and au-
dit trail analysis.

Two main types of Intrusion Detection techniques
have been developed:

¢ anomaly detection (Teng, Chen, & Lu 1990; Lunt
1993b) aimed at modeling correct and acceptable user
behaviour and resource utilization: intrusions are,
then, detected when user or system behaviour dif-
fers from the correct one. It is not required a priori
knowledge of possible security flaw from which the
system may suffer.

e misuse detection (Kumar & Spafford 1995; Garvey
& Lunt 1991; Lunt 1993a) aimed at modeling intru-
sions as patterns: intrusions are detected via pattern
matching with the model. Only known system vul-
nerabilities and attack scenarios are identified.

No single approach can be considered satisfactory for
all types of intrusions. Each approach is appropriate
for detecting a specific subset of violations.

A general architecture for IDSs, called the Common
Intrusion Detection Framework (CIDF) is defined in
(Kahn et al. 1998). CIDF comprises an event-generator
unit (E-box), an analysis engine (A-box), a storage
mechanism (D-box) and a response module (R-box)
(see Figure 1). The E-box monitors the environment in
order to provide information on the system state to the
other IDS components. The A-box analyzes the mon-
itored events provided by the E-box and audit trails
in order to detect suspicious or malicious activity. In
particular, the A-box adopts one of the intrusion detec-
tion techniques previously described. The D-box stores
security information in order to make it available to sys-
tem administrators at a later time. The R-box reacts to
detected intrusions either by preventing (pro-active be-
haviour) or recovering (reactive behaviour) from them.
The pro-active or reactive behaviour depends in gen-
eral on the type and the accuracy of the information
provided by the A-box.

The set of reactive actions is generally statically de-
fined (and should be encoded in the IDS by the system
administrator) on the basis of the intrusion detected by
the A-box. This might not be a flexible solution as it
does not allow to automatically deal with changing and
unpredictable situations. Moreover,it requires from sys-
tem administrators a deep prior knowledge of potential
intrusion scenarios.

We, thus, propose an alternative approach which of-
fers a more flexible solution to countermeasure defini-
tion by dynamically building repair plans. Our R-Box

AiDIN99 Working Notes

Output: reactions to
events

64

Response (R) box
: A Output: storage of
events i
Analysis (A) box Storage (D) box
y'y i y ¥
Event (E) box
Output; low-
level events

Figure 1: CIDF components

relies on a planner able to compute appropriate recon-
figuration/recovery plans on the basis of both the sys-
tem state and the final state (goal) to achieve.

Planning Techniques

A Planner is an Intelligent agent which dynamically
synthesises the sequence of actions (plan) necessary to
achieve a desired state (goal) starting from a given ini-
tial state of the system. The basic actions used by the
planner are defined by means of preconditions, which
represent the conditions that need to be satisfied in the
current state in order to execute that action, and post-
conditions, which represent the effects the action causes
on the world, so as to change its current state. Note
that modern planners work with action schemata with
variables (Weld 1994) defining classes of actions more
than with single, completely instantiated actions.

We consider a regressive non linear Partial Order
Planner (POP) (Weld 1994) able to create partial plans
corresponding to the achievement of different subgoals
and at the same time to cope with the resolution of
threats due to the interference among subgoals. POPs
in general perform least commitment planning, that
means that decisions are made only if and when con-
straints force to do it. In particular, only the essen-
tial ordering decisions are recorded so that plans are
represented. as a partially ordered sequence of actions
avoiding to prematurely commit to a complete totally
ordered plan. An eflicient way of allowing partial order
planners to postpone decisions consists in introducing
constraints and actively maintaining their consistency
during the refinement of the plan, as proposed in (Joslin
& Pollack 1995).

The POP algorithm receives three inputs (Weld

Orlando, Florida, July 1999

1994): (i) the description of the world initial state; (i%)
the required goal; (ii7) the set of actions that can be
performed on the system. POPs build the plan search-
ing (backward, starting from the required goal) over
partially specified sequences of actions (partial plans).
All the conjuncts of the final goal are initially put into
an Agenda representing the set of “open” condition that
the planner needs to satisfy. The POP algorithm con-
siders all the atomic formulas expressing the initial state
as the post conditions of a dummy action of the plan
called Start. At each step of the planning process, the
planner either performs open condition achievement or
threat resolution. In the first case, the planner selects
an open condition @ from the Agenda and tries to sat-
isfy it by searching for an action whose effects contain
a conjunct unifying with Q. This action can be either
a newly instantiated action or an action already in the
plan. In particular, if Start is selected, it means that
that condition is already satisfied in the initial state.
On the other hand, when a new action is introduced
into the plan its preconditions are added to Agenda.

Threat resolution is triggered when different actions
introduced for different subgoals interfere with each
other. A threat occur when post conditions of an
action belonging to a partial order chain negate pre
conditions of a second action in another chain. In
order to solve threats the planner imposes appropri-
ate ordering constraints among clashing actions. Con-
straint propagation techniques can be used in order
to increase the efficiency of the planner by reducing
the search space to be explored. Planners making ac-
tive use of constraints are referred to as constraint-
based planners, see for example (Joslin & Pollack 1995;
Yang 1992; Yang & Chan 1994; Kambhampati 1996;
Lever & Richards 1994; Tate, Drabble, & Dalton 1994).
The idea is to actively maintain the consistency of con-
straints during the plan construction, as previously pro-
posed in (Joslin & Pollack 1995; Kambhampati 1996;
Yang 1992). Many previous work to the use of con-
straints in planning are known ((Joslin & Pollack 1995;
Yang 1992; Yang & Chan 1994; Kambhampati 1996;
Lever & Richards 1994; Tate, Drabble, & Dalton
1994)).

We have extended a traditional constraint-based
POP in two ways: on one hand, we have used con-
straint satisfaction techniques in order to apply least
commitment on the action variables binding activity,
and not only for delaying ordering decisions.

On the other hand, while traditional planners assume
that the world initial state is completely known at the
beginning of the computation, in distributed systems,
this assumption is unrealistic because of the enormous
amount of data to be stored and continuously updated.
Relevant works have been proposed for extending tra-
ditional planners in order to cope with incomplete and
dynamic knowledge (Draper, Hanks, & Weld 1994;
Golden 1997; Olawsky & Gini 1990; Golden & Weld
1996). Most of them gather information by means of

AiDIN99 Working Notes

65

declarative sensing actions inserted into the plan. In
our system, we adopt an alternative approach where
the knowledge acquisition activity is demanded to the
constraint solver, thus being transparent to the planner.

The R-Box

In our approach, the IDS reactive module (R-box) is
a goal-driven reacting component. While responding
to the alarms reported by the A-box, our R-box dy-
namically pursues goals on the basis of the changes oc-
curred in the computing environment. In particular,
it receives as input a diagnosis of the detected attack
coming from the A-box in form of a 5-tuple(ISS 1998):
{event, event_type, Tintrus, source, dest} where
event represents the specific intrusion, event_type the
intrusion category, Tinsrus the time in which intrusion
has occurred, source, dest the source and destination
of the intrusion. As concern the term event_type, we
cope with five different categories (Smaha 1998): (i)
attempted break-ins, they aim to break-in a system by
exploiting its vulnerability, e.g., attempts to gain ac-
cess privileges; (i) penetration of the security control
system, i.e., successful attacks, consisting in obtain-
ing unauthorized access to files, programs or computer
system control; (ii¢) leakage, i.e., information acquisi-
tion from unauthorized recipients; (iv) malicious use,
i.e., resource loss or manipulation; (v) denial of service,
aimed at rendering a service unavailable.

The R-box relies on two components: a Goal Man-
ager (GM) and a Planner. Given the event, the GM
selects the appropriate recovery/reconfiguration goals
according to system policies. Then, the Planner builds
a recovery plan for achieving the goal by interacting
with the underlying system for retrieving information
during the computation.

The Goal Manager

The Goal Manager (GM) is in charge of generating the
declarative definition of the final conjunction of goals

to be satisfied in order to go back to a safe state of the

system. GM internal structure (see Figure 2) consists of
two components: (i) an Event Refinement Module (ER)
and Policy-based Goal Refinement Module (PGR).
The ER refines the intrusion classification specified
by event_type on the basis of the end-effects pro-
duced by intrusions on system resources and processes.
End-effects can be classified as: (¢) unauthorized re-
source access; (41) unauthorized resource manipulation
or loss; (471) unauthorized operations on processes in-
cluding deletion, insertion, or exhaustion of critical re-
sources (e.g., CPU, memory). Thus the output of ER is
given in the form event_effect(Effect, X). For ex-
ample, event_effect (not_process_safe, sendmail)
indicates unauthorized operations on the mail deliver-
ing service sendmail. The corresponding intermediate
goal is, thus, process_safe(sendmail). The ER out-
put is refined by the PGR module on the basis of the
system policies. Policies are guidelines expressing the

Orlando, Florida, July 1999

{event, event_type, Tnrrrus, source, dest}

v

Unauthorized

Intrusion classified resource access

on the basis of
their End Effects Unauthorized resource
manipulation or loss

Unauthorized operations on
processes/services ER Module

Intermediate GOAL

Security policies L
P _safe(p: dmail) :- PGR Module

process_res_ok (sendmail, 80%,16k),
process_user_ok(sendmail, root). —

_xes_ok (dmail ,CPU,MEN) : -

cpu_max_usage (80%),
mem_max_usage (16k) . ﬂ

GOALS

Figure 2: Goal Manager Structure

correct and expected behaviour of the system. In the
architecture proposed, they are expressed as rules. An
example is depicted in figure 2 where a rule in the Secu-
rity policies block is reported stating that the resource
utilisation of process sendmail in order to be not stalled
is 80% for CPU and 16Kb for memory. In addition, the
owner of the process sendmail should be root. An
usual resolution process is started that produces the
set of final goals. Each rule is eventually refined by
considering each literal in the body and looking for an-
other rule whose head matches with the literal. Those
literals not matching with any rule are considered part
of the final goal as residues. In figure 2, for exam-
ple, the literal process.res_ok(sendmail,80%,16k)
matches the head of the second rule. Thus, it is replaced
in the final goal by the literals cpumax_usage (80%) and
mem.max_usage (16k).

The Constraint Based Planning Agent

As already mentioned, the planner used to achieve the
final goal coming from the R-Box GM component, is
an extension of a constraint based POP which has been
fully implemented in the Constraint Logic Program-
ming language ECL'PS¢ (ECRC 1992). Constraint
Logic Programming (Jaffar & Maher 1994) is a class
of programming languages combining the advantages
of Logic Programming and the efficiency of constraint
solving. In figure 3 the planner architecture is depicted
along with an example of action schemata devoted to
killing a given process identified by a unique Pid. The
preconditions which need to be true for executing the
action Kill are that the identifier of Process is Pid,

AiDIN99 Working Notes " 66

Action Domain

POP Kill (process:Process,integer:Pid)
Preconditions
Agenda identify(Proceas, Pid),
<——| exists(Pid)
Postconditions
not exists(Pid),
atatus(Process,off),
V file:f not using(Process,f).

Interactive
Constraint
Solver

IS
world state
representation

Figure 3: The planner

and that it exists in the system. The effects of ac-
tion Kill are clearly that the process identifier does no
longer exist, the status of the process is off and it does
not use any file.

Note that more complex scripts can be designed as
basic building blocks for building plans. Obviously, the
more complex are basic actions, the shorter are result-
ing plans and thus more efficiently computed. There-
fore, we need to find a tradeoff between complexity of
basic actions (which should be written once for all by a
system administrator) and the efficiency of the planner.

Let us see how the planning search algorithm works.
As already mentioned above, we consider that the plan-
ner does not have a complete knowledge of the ini-
tial state thus an information gathering mechanism is
needed. We have exploited constraint satisfaction tech-
niques both for delaying action variables commitments
and for dealing with knowledge acquisition. The plan- -
ning problem is mapped into a Constraint Satisfaction
Problem (CSP): a CSP is defined on a set of variables
ranging on finite domains of values, and a set of con-
straints. The planning problem can be viewed as a CSP
whose variables are those appearing in pre and post
condition of action schemata introduced into the plan
(Yang & Chan 1994). The constraints are represented
by the usual nocodesignation (#) and codesignation (=)
constraints imposed among the problem variables dur-
ing the planning process. Variable domains are repre-
sented by sets of objects in the domain description and
they are pruned thanks to constraint propagation in or-
der to remove values which are not consistent with con-
straints. Constraint propagation allows the planning
algorithm to avoid wrong instantiation and consequent

Orlando, Florida, July 1999

computationally heavy backtracking steps.

Standard constraint based approaches need all the in-
formation on variable domains at the beginning of the
computation. We have properly extended the CSP
framework in order to treat constraints on variables
ranging on partially or completely unknown domains.
The propagation of those constraints, called Interac-
tive Constraints (IC), may result in a knowledge ac-
quisition process during the plan construction. For
a formal definition of the Interactive CSP framework
see (Barruffi et ol. 1998; Barruffi & Milano 1998;
R.Cucchiara et al. 1999).

In order to exploit this mechanism we consider ac-
tion preconditions and final goals (i.e., open condi-
tions) as Interactive Constraints. When open con-
ditions are selected from Agenda, our planner first
tests them in the initial state relying on a constraint
solver. Therefore they are propagated as ICs: if they
work on variables ranging on known domains, tra-
ditional propagation is performed, otherwise knowl-
edge acquisition is performed in order to acquire do-
main values. It is worth noting that, only infor-
mation consistent with constraints is retrieved, so as
to simplify the task of pruning inconsistent alterna-
tives. These constraints are awaked, during the plan-
ning process, when some variables get instantiated or
their domain pruned, until the correspondent vari-
ables are instantiated. For instance, consider the ac-
tion Kill presented in figure 3, the constraints are
identify(Process,Pid) and exists(Pid). Process
and Pid are domain variables containing possible val-
ues, i.e., process names and identifiers respectively.
When variable domains are unknown constraint prop-
agation retrieve values, i.e., process identifiers con-
sistent with constraints identify(Process,Pid) and
exists(Pid). These process identifiers represent the
domain of Pid. This domain can be eventually pruned
thanks to another constraint, say owner(root, Pid)
which removes from Pid domain all identifiers whose
owner is not root. When a variable domain becomes
empty, the involved constraints fail meaning that they
can not been satisfied in the initial state. The planner
needs to perform a typical action search step in order
to satisfy them.

An important point should be discussed concern-
ing knowledge acquisition. In general, as suggested in
(R.Cucchiara et al. 1999), when performing knowledge
acquisition, we can acquire one consistent value or all
consistent values with the interactive constraint. The
corresponding search algorithm in the two cases have
been called interactive forward checking propagation al-
gorithm and interactive minimal forward checking tech-
nique. The former method results in an acquisition of
all consistent values, while the latter consists in retriev-
ing only one consistent value at each propagation step.
The two methods performances depend on the domain
of application. Usually “total forward checking” is a
more suitable propagation technique in those applica-
tions where gathering a big deal of information once

AiDIN99 Working Notes

for all is less expensive than querying the system many
times. The opposite reasoning values for minimal for-
ward checking. In our case, in general, the first tech-
nique has been experimentally identified as the most
effective.

The interaction with the real world allows the plan-
ner to deal with false alarms deriving from wrong A-box
esteems. In the case of false alarms, it may happen that
statically defined actions are triggered that, for exam-
ple, block legitimate traffic or close valid connections.
The IDS itself becomes a source of denial of service. In
our architecture, given an alarm and the corresponding
goal, the planner tests the current system state. As a
consequence, false alarms would not trigger any unde-
sirable countermeasure.

An Example of Attempted-break-in

In this section, we sketch an example (see figure 4) of re-
configuration/recovery plan in the case of an attempted
break-in intrusion, calledsmip-wiz attack. The intruder
exploits a backdoor of the e-mail server program send-
mail (sm in figure 4) deriving from an incorrect service
configuration, gains access through the sendmail port
and executes arbitrary commands on the system that
may damage both resources and system processes.
Given the A-box output, the ER module produces
intermediate goals corresponding to the “attempted
break-ins” event_type. These goals are refined by the
PGR module according to the security policies, until
the set of final goals is produced. We focus on goals G1,
G2 and G3 in figure 4 aimed at: (i) re-establishing the
availability of the system processes specified in the se-
curity policies; (1) killing all extra unauthorized system
processes; (ii¢) correctly configuring the e-mail service
(so as to prevent further attacks of the same type).
Thanks to interactive constraints, once G1 is se-
lected from the Agenda, the planner checks if each pro-
cess included into the set of authorized system pro-
cesses (list in figure 4) is running. Otherwise, ac-

" tion Activate(process:P) is selected for restarting

67

P (x1 in figure 4). For G2, the planner retrieves
all running processes (i.e., the domain of variable Y)
and prunes from the domain all values not belong-
ing to list; for those left, it searches for an action
targeted at killing them (Kill(process:P,int:Pid)).
When G3 is selected, the planner chooses the ac-
tion (Ch_conf(process:P,string:Rule)) for prop-
erly configuring the e_mail service by inserting the
anti_smtp-wiz rules in the sendmail configuration file.
We assume that configuration files can be changed only
when the corresponding processes are off. Thus, the
planner places before Ch_conf a Kill action. Due to
G1 sendmail is restarted.

Related work

Security and, more generally, system management are
attractive testbeds for AI technology. As far as security

Orlando, Florida, July 1999

Intermediate goals: ER Output
A-box output a) event_effect (not_all process_safe, _)
{smtp-wiz, attempted break-in, Tormus, ...r ..} [P b) event_effect (not_process_safe, sm)
c} event_effect(not_all resource_safe, _)
d) event_sffect (not_resource_safe,/users/test.txt)
Security policies: ‘

all_process_safe(list::[P), Py, .., Py]):-
V (Xelist):status{X:system process,on),
V (Ye#list):status{Y:system process,off}.
process_safe(sm}:-
ps_conf_ok(sm,anti_wiz),
process res_ok(sm,80%,16Kb} .

Final Goals: PRG Output
G}V (Xelist) :atatus({X:aystem_process,on)
G2)V(Yelist) :status(Y:aystem_process,off)
83) ps_conf_ok (sm,anti_wiz)
G4} process_res_ok(sm, 80%,16Kb)

1

exists(sm_Pid)

P{Ch_conf(ss,anti_viz) | Pa_oonf_ok(am,anti_wiz}
e
l -]

P A
st
- >

atatus (x1,0ff)

exists(yl_pid)

Figure 4: Plan example

is concerned, we are aware of few approaches based on
planning techniques. An interesting project entitled Ez-
plaining and Recovering from Computer Break-ins car-
ried out at the SRI AI Center has lead to the design
of an integrated prototype system DERBI (Tyson et
al. 1998) for diagnosing and recovering from intrusions.
The prototype is based on a Procedural Reasoning Sys-
tem (PRS) (Myers 1996) that has been developed for
using an expert’s procedural knowledge for accomplish-
ing goals and tasks. The PRS architecture contains
three main modules: (Z) a database containing current
facts and beliefs (i7) a set of goals to be achieved and
(t2)a set of plans describing how actions may be per-
formed to achieve certain goals or react to certain sit-
uations. PRS represents a reactive, goal driven engine.
Currently, only DERBI diagnosis functionalities have
been developed. They will be extended with recovery
capabilities so as to assist system administrators.

Further interesting work in the field of IDSs is (Gar-
vey & Lunt 1991) where planning techniques are used
for different purposes w.r.t. ours: in order to detect in-
trusions, an aenticipator is used for predicting the next
step in the scenario that is expected to occur and a
planner determines the steps which would occur in the
audit trail.

More general applications in the field of distributed
system management have been developed so far. Soft-
bots(Etzioni et al. 1993) are planning-based AI agents
using software tools and services through the World
Wide Web. Softbots help the user to interact with
real-world software environments such as operating sys-
tems or databases. In particular, Rodney is an Internet

AiDIN99 Working Notes

softbot representing a customizable intelligent assistant
for Internet access. It generates and executes plans to
achieve given goals, and learns from its experience. The
planner used by Rodney adopts two approaches in order
to deal with incomplete knowledge: it interleaves plan-
ning and execution of sensing actions when possible,
otherwise it plans for all contingencies (Golden 1997).
Occam(Kwock & Weld 1996) is a Softbot representing
an information gathering engine for the Internet. It is
based on a heuristic planner that builds suitable action
sequences to obtain the information required.

Conclusion and Future Work

Automated security management is a challenging task
in distributed systems. We have proposed a planning
approach for an IDS reacting component. The planner
is implemented in the Constraint Logic Programming
language ECL*PS® (ECRC 1992). The proposed solu-
tion represents a flexible alternative to the static defi-
nition of intrusion countermeasures, it allows the man-
agement of new situations and unexpected events, it
relies on the current system state by performing a sort
of monitoring activity (through dynamic knowledge ac-
quisition) while planning is in progress, is easily extensi-
ble by defining new declarative actions, and copes with
the problem of intrusion false alarms. We are currently
testing the system on real distributed environments in
order to tune the threshold between complexity of basic
planner actions and the real time response requirements
of the applications.

As it is now, the planner does not allow to fully cope
with dynamic knowledge: the retrieved knowledge is
always referred to the initial state since the plan has
not been yet executed. Precisely, once any informa-
tion is retrieved the planner relies on it as a snapshot
of a portion of world state assuming that it would not
change until plan execution. However, we are currently
implementing an ICS_based mechanism to verify action
preconditions before any action execution and effects
after their execution. If something goes wrong a repair
activity is triggered in order to recovery from incon-
sistent states of the system, relying on backup actions
when needed. Re-planning is then needed in order to
achieve the original goal.

We are also investigating how the planner can tackle
dynamic information at real time thus avoiding replan-
ning activity.

Finally we are considering to exploit the planner also for
dealing with concurrent tasks. Suppose that an attack
triggers a plan processing and that during the compu-
tation of the plan, another attack is detected. It could
be that some actions needed to recover from the for-
mer attack are also useful to deal with the latter. We
are investigating the possibility of monitoring the sys-
tem during the planning process and, when needed, add
further goals to the Agenda, so that the planner can
tackle both goals at the same time and likely produce
an unique final plan.

68 Orlando, Florida, July 1999

We are aware that the definition of a completely au-
tomatic and autonomous IDS is still a long way off, but
we think that planning represents a little step toward
this task.

Acknowledgments

Authors’ work is partially supported by Hewlett
Packard Laboratories of Bristol-UK (Internet Business
Management Department). We would like to thank
M.Boari, E.Lamma and P.Mello for useful comments
and discussion.

References

Barruffi, R., and Milano, M. 1998. Interactive con-
straint satisfaction techniques for information gather-
ing in planning. Proc. of ECAI’98.

Barruffi, R.; Lamma, E.; Mello, P.; and Milano, M.
1998. Planning with incomplete and dynamic knowl-
edge via ICS. AIPS Workshop on Integrating Planning

Sheduling and Ezecution in Dynamic and Uncertain
Env. - AAAI Press.

Draper, D.; Hanks, S.; and Weld, D. 1994. Proba-

bilistic planning with information gathering and con-
tingent execution. In Proc. of AIPSY.

ECRC. 1992. ECL'PS® User Manual Release 3.3.
Etzioni, O.; Levy, H.; Segal, R.; and Thekkath, C.
1993. OS agents: Using AI techniques in the oper-
ating system environment. Technical report, Univ. of
Washington.

Garvey, T., and Lunt, T. 1991. Model based intru-
sion detection. In Proc. of 14th National Computer
Security Conference.

Golden, K., and Weld, D. 1996. Representing sens-

ing actions: The middle ground revisited. In Proc. of
KR’96.
Golden, K. 1997. Planning and Knowledge Represen-

tation for Softbots. Ph.D. Dissertation, University of
Washington.

ISS. 1998. RealSecure User Manual Release 8.0.
Jaffar, J., and Maher, M. 1994. Constraint logic pro-
gramming: a survey. Journal of Logic Programming -
Special Issue on 10 years of Logic Programming.
Joslin, D., and Pollack, M. 1995. Passive and active
decision postponment. In Proc. of EWSP’95.

Kahn, C.; Porras, P.; Staniford-Chen, S.; and Tung,
B. 1998. A common intrusion detection framework.
Proc. of Information Survivability Workshop.
Kambhampati, S. 1996. Using disjunctive orderings
instead of conflict resolution in partial order planning.
Technical report, Dept. of Comp. Science and Eng. -
Arizona State Univ.

Kumar, S., and Spafford, E. 1995. A software archi-
tecture to support misuse intrusion detection. In Proc.
of the 18th National Information Security Conference.

AiDIN99 Working Notes

69

Kwock, C., and Weld, D. 1996. Planning to gather
information. Technical report, Dept. of Comp. Science
and Eng. - Univ. of Washington.

Lever, J., and Richards, B. 1994. parcplan: a plan-
ning architecture with parallel actions, resources and
constraints. In Proc. of 8th ISMIS.

Lunt, T. 1993a. Detecting intruders in computer sys-
tems. In Proc. of the Conference on Auditing and
Computer Technology.

Lunt, T. 1993b. A survey of intrusion detection tech-
niques. Computers and Security.

Myers, K. 1996. A procedural knowledge approach to
task-level control. In Proc. of AIPS’96.

Olawsky, D., and Gini, M. 1990. Deferred planning
and sensor use. In Proc. DARPA Workshop on Innova-
tive Approaches to Planning, Scheduling, and Control.

R.Cucchiara; M.Gavanelli; E.Lamma; P.Mello;
M.Milano; and M.Piccardi. 1999. Constraint satis-
faction and value acquisition: why we should do it
interactively. In Proceedings of IJCAI’99. To appear.

Smaha, S. 1998. Haystack: An intrusion detection sys-
tem. In Proc. of Fourth Aerospace Computer Security
Applications Conference.

Tate, A.; Drabble, B.; and Dalton, J. 1994. Reasoning
with constraints within O-Plan2. Technical report, Al
Applications Inst. - Univ. of Edinburgh.

Teng, H.; Chen, K.; and Lu, S. 1990. Security au-
dit trail analysis using inductively generated predic-
tive rules. In Proc. of the 11th National Conference
on Intelligence Applications.

Tyson, M.; Moran, D.; Berry, P.; Blei, D.; Carpen-
ter, J.; and Lang, R. 1998. DERBI: Diagnosis, Ex-
planation and Recovery from Break-Ins. In Adaptive
Architecture Workshop.

Weld, D. 1994. An introduction to least commitment
planning. AI Magazine 15:27-61.

Yang, Q., and Chan, A. 1994. Delaying variable bind-
ing commitments in planning. In The 2nd Interna-
tional Conference on AI Planning Systems (AIPS).

Yang, Q. 1992. A theory of conflict resolution in plan-
ning. AIJ 58:361-392.

Orlando, Florida, July 1999

