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Abstract 

Blecent work (Balakrishnan, Bousquet , & Honavar 
1997; Balakrishnan, Bhatt , & Honavar 1998) has ex­
plored a Kalman filter model of animal spatial learning 
the presence uncertainty in sensory as well as dead­
reckoning estimates. This model was able to success­
fully account for several of the behavioral experiments 
reported in the animal navigation literature (Morris 
1981; Collett, Cartwright, & Smith 1986). This paper 
extends this model in some important directions. It ac­
counts for the observed firing patterns of hippocampal 
neurons (Sharp, Kubie, & Muller 1990) in visually sym­
metric environments that offer multiple sensory cues. 
It incorporates mechanisms that allow for differential 
contribution from proximal as opposed to distal land­
marks during localization. It also supports learning of 
associations between rewards and places to guide goal­
directed navigation. 

Introduction 
The computational strategies used by animals to ac­
quire and use spatial knowledge (e.g. , maps) for navi­
gation have been the subject of study in Neuroscience, 
Cognitive Science, and related areas. A vast body of 
experimental data directly implicates the hippocam­
pal formation in rodent spatial learning. The present 
model is based on the anatomy and physiology of the 
rodent hippocampus (Churchland & Sejnowski 1992) 
and on the locale hypothesis (which argues for the as­
sociation of configurations of landmarks in the scene 
to the animal's own position estimates at different 
places in the environment as suggested by O'Keefe and 
Nadel(O'Keefe & Nadel 1978). A computational model 
of rodent spatial learning and localization was proposed 
in (Balakrishnan, Bousquet, & Honavar 1997). At the 
core of this model is a three-layer feed-forward con­
structive neural network. The first layer roughly cor­
responds to the Entorhinal Cortex (EC). Neurons in 
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this layer act as spatial filters, responding to specific 
types of landmarks at specific relative positions to the 
animat (simulated animal) , producing a sparse code of 
sensory stimulus . The units have Gaussian activation 
functions , and the measurements of distances are cor­
rupted by a zero mean , un correlated Gaussian noise. 
Neurons in the second layer (which corresponds to the 
CA3 layer) respond to a group of EC layer activations, 
activating an internal learned place-code. Neurons in 
the third layer, corresponding to the CAl layer in the 
hippocampal system, compare this place-code with the 
dead-reckoning estimate (i.e., a position estimate that 
is generated by the animat by keeping track of its own 
movement) to establish a unique place code. A new 
set of neurons is recruited into the network if the ani­
mat finds itself at a previously unvisited place as it ex­
plores its environment. Such exploration can take place 
over multiple , separate episodes. Fragments of place­
maps learned over several such episodes are integrated 
to form a coherent map whenever there is an overlap 
in incoming sensory information. The model is able 
to successfully deal with perceptual aliasing (i.e., when 
different places look alike) during a single episode (Bal­
akrishnan, Bousquet , & Honavar 1997) . This model 
of spatial learning uses a Kalman Filter like approach 
(Kalman 1960) to calculate and correct estimates of 
the animat 's position in the environment in the pres­
ence of errors in sensing and dead reckoning (Balakr­
ishnan, Bousquet, & Honavar 1997). This model is 
able to successfully account for a large body of behav­
ioral results (Balakrishnan, Bhatt, & Honavar 1998), re­
ported in the animal navigation literature (Morris 1981; 
Collett, Cartwright, & Smith 1986) . In this paper , we 
report results of simulation based on extensions of the 
model in some key directions. The proposed extensions 
account for the observed firing patterns of hippocam­
pal neurons in visually symmetric environments that 
include multiple sensory cues reported in (Sharp, Ku­
bie, & Muller 1990) . They allow for differential con­
tributions of different landmark types during localiza­
tion. They also support learning of associations be­
tween places in the environment and rewards through 
exploration thereby providing a basis for goal-directed 
navigation. 
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Variable Tuning Widths of EC Layer 
Spatial Filters 

The Kalman Filter based model of spatial learning on 
which this work is based is described in detail in (Bal­
akrishnan, Bousquet, & Honavar 1997). EC layer cells 
in the present model act as spatial filters, responding 
to individual landmarks at specific positions relative to 
the animat. We have extended these filters in light of 
work by O'Keefe and Burgess (1996) , so that the tuning 
curves of such filters vary with the landmark distances, 
as discussed shortly. 

As the animat explores its environment, it recruits a 
new EC cell if no existing cell fires above a threshold 
level to an observed landmark position (Balakrishnan, 
Bousquet , & Honavar 1997) . A newly recruited EC cell 
has a Gaussian activation function: 

ECi = 1 exp(-~ ((x-rx )2 + (Y-ry )2)) 
27T 0"1 0"2 2 0"1 0"1 

0"1 = 0"0 (1 + 4J-tU R2) 

0"2 =0 (1 + 4J-tV R2) 

Where J-tl is the distance of the landmark in direction 
Xl from the current position of animat , and similarly, 
J-t2 is the distance of the landmark in direction X2 from 
the current position of animat. We have used a Carte­
sian cooridinate system where directions Xl and X2 are 
mutually orthogonal. 

For the purpose of simulation, 0"0 was set to 1.0 and 
R was set to 20, equal to the diameter of the circular 
arena. As we shall see in what follows, this modified 
activation function has an interesting effect on the lo­
calization behavior exhibited by animats. 

For the purpose of measuring the EC layer firing 
fields, animats were trained with one landmark present 
in the environment, and tested by adding another iden­
tical landmark in the environment. As can be seen in 
Figure, EC cell tuned to respond to a particular relative 
position of the landmark in training phase responded at 
two different locations, once for each of the landmarks 
during the testing phase. 

All-Or-None Connections Between EC and 
CA3 Layers 
While the animats are trained, if none of the CA3 layer 
cells fire above a threshold fraction of their peak firing 
level, a new CA3 layer cell is allocated . This newly 
created cell is then tied to the active EC layer cells. 
The connection weight assignment procedure was also 
modified to reflect a more all-or-none connection type. 
Rather than assigning weights proportionate to the ac­
tivation of corresponding EC cells, a weight of l/nconn 
was assigned to each of the links, where nconn is the 
total number of EC layer cells firing above their thresh­
old levels. Firing threshold of the newly allocated CA3 
layer cell was arbitrarily set to 70% of its maximum 
possible activation level. During testing, however, the 
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Figure 1: Activation field of an EC layer cell. Top: 
Trained with a single landmark . Bottom: Tested with 
an additional identical landmark . 

threshold was reduced to 25% of the maximum possible 
activation level. This enabled activation of CA3 cells, 
which, in turn allowed animats to localize even in pres­
ence of partial sensory stimulus. 

At this point it should be noted that CA3 cell ac­
tivation is simply a threshold sum of incoming Gaus­
sian activation functions from the EC layer cells. Such 
a method has been found to be successful in model­
ing place-cell firing characteristics in simplified environ­
ments (O'Keefe & Burgess 1996). 

It has also been observed that rodents give more 
importance, while localizing, to landmarks physically 
closer to their actual positions. Sharp and col­
leagues (Sharp , Kubie, & Muller 1990) performed ex­
periments on rodents in a cylindrical environment with 
a single polarizing cue present . After training, one more 
cue was added to the environment, producing a mir­
ror symmetry in the environment. It was found that 
an overwhelming number of place-fields retained their 
shape and orientation with respect to only one of the 
two cues. In other words, instead of place-fields firing 
at multiple places, once for each of the cues, they main­
tained their firing characteristics with respect to either 
of the two cues. Also, in most cases, place-fields were 
fixed relative to the cue that was nearest to the animal 
when it was first introduced in the environment.As we 
shall see shortly, our model, with the aforementioned 
modifications implemented , also exhibits a similar be­
havior. 

Association of rewards with places 
We have also extended the model to incorporate mech­
anisms that result in an enhancement of response in 



Figure 2: Activation fields of an EC layer cells in an 
environment with three landmarks. Top: a single EC 
cell responds to two landmarks. Bottom: EC cell firing 
before (distribution on left) and after (distribution on 
right) the landmark denoted by 'x' was moved 

the EC layer to landmark types that are closer to the 
reward locations. Whenever the animat receives a re­
ward upon visiting a pre-determined place in the envi­
ronment , the maximum possible activations in EC layer 
cells are updated according to the following rule: 

n 

;=1 

where n is the number of types of landmarks present 
in the environment, 0(i) is the total number of land­
marks of type i present in the environment, and r is 
the amount subtracted from the landmark weights. r 
is computed as follows: 

r=o 
for i = 1 to n 
do 

if Wi < a 0(i) 
r = r + Wi 

Wi = 0 
else 

r=r+a0(i) 
Wi = Wi - a 0( i) 

endif 
done 

If multiple landmarks of same type are present , 
weights are altered by summing the distances of land-
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marks of similar types to the estimated goal location . 
Here, the special case of n = 1 was handled separately. 
It is clear that the weights remain unaltered if all land­
marks are of the same kind , or, if all landmarks are 
equidistant from the goal. For the purpose of our sim­
ulations, a was set to 0.05 and the weights were initial­
ized to l.0. 

Briefly, the above rule gives more preference to land­
mark types that are near the goal location by removing 
a small amount from weights assigned to each of the 
landmark types , and redistributing it so that a land­
mark type gains weight if a landmark of the type in 
question is near the goal. On the other hand, if there 
are multiple landmarks of the same type, or, if land­
marks are far from the goal, such landmark type loses 
weight. It is also clear from the above equations that 
the sum of weights assigned to all landmark types re­
mains unaltered. 

It should be noted that the activation level is mod­
ulated uniformly across all EC cells that respond to a 
particular landmark type, and not just for EC cells that 
are active at the time of reward presentation. Or, in 
other words , animat learns to give more importance to 
particular types of features present in the environment, 
rather than to particular features themselves. 

Simulation Results 
For the simulations presented here, all parameters 
and methods were identical to those in (Balakrishnan , 
Bhatt, & Honavar 1998) . Briefly, the animats were 
introduced in an a-priori unknown environment that 
consisted of one or more landmarks. The landmarks 
could be identical or distinguishable from each other 
depending of the experiment being performed. Ani­
mats then explored their environments and allocated 
cells corresponding to different locations in the environ­
ment . They were also capable of updating their dead­
reckoning position estimates and the place fields using 
a Kalman Filter like update rule. Animats could ex­
plore their environments over multiple trials and could 
merge these separate training frames to form a single, 
coherent place-map. The animats were also rewarded 
for visiting specific locations as they explored its envi­
ronment . After a certain number of training trials, an­
imats were removed from the environment, landmark 
positions were altered and the reward removed. When 
reintroduced in the environment, animats were able to 
re-Iocalize , despite the change in configuration of the 
landmarks, using the available perceptual input , and 
moved toward the learned goal location. 

Firing characteristics of units 
In order to simplify analysis, for this part of experi­
ments, animats were trained over a single training trial 
of 750 steps of random exploration. 

As seen in Figure , animat consistently localized 
by giving more preference to the landmark physically 
closer to the point of entry into the environment. This 



phenomenon was not guaranteed with the scheme used 
in (Balakrishnan, Bhatt, & Honavar 1998). It should be 
noted, however, that the overall behavior displayed by 
animat stays unaltered with these enhancements, and 
we get search histograms similar to those in (Balakrish­
nan, Bhatt , & Honavar 1998). 

Figure 3: Left: Trajectories taken by an animat dur­
ing test trials. Right: Superimposed place field firing 
regions during test trials. 

Figure 4: Left to right: Trajectories taken by animat 
when trained in an environment with three landmarks. 
The landmark on far right was distinguishable from 
rest. The landmark on far right was moved further 
while testing. 

Figure also shows the activation of CAl layer place­
cells once animats localized. It is important to note that 
the place-cell in question fired only at one of the two 
places over a single test trial. The place-cell in ques­
tion fired at the position cluster based around position 
(12,5) when the animat localized according to the land­
mark on the left , while the same place cell fired at places 
clustered around (18,6) when the animat localized us­
ing the landmark on the right. Interestingly enough, 
the right cluster is spread over a larger area, signifying a 
larger place-field when animat localized using the right 
landmark. We suspect an insufficient amount of train­
ing at those points of re-introduction. Figure shows 
the trajectories during test trials , when one of the land­
marks was distinct from the rest during training. Also, 
in some of the trials animats were completely unable 
to localize. This was because of a lack of training at 
those points of introduction in the environment. It can 
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be seen in Figure that in one of the test trials, animat 
localized solely based on the position of the right most 
landmark . The reason for such a behavior is discussed 
in the next subsection. 

Landmark prominence based on location 
and uniqueness 
The extensions to the model that alter prominence as­
signed to landmark type is able to successfully replicate 
some of the behavioral results that were unaccounted 
for in (Balakrishnan , Bhatt, & Honavar 1998) , namely, 
the experiments where an array of three landmarks with 
different types of landmarks was transformed, in figure 
9 c of (Collett , Cartwright, & Smith 1986) as seen 
in Figure . The simulation parameters used here were 
identical to those in (Balakrishnan, Bhatt, & Honavar 
1998). 

In addition, simulations demonstrate that the pro­
posed extensions enable the animat to acquire associ­
ations between rewards and places and use them for 
goal-directed navigation. 

o 

0 0 

o 

Figure 5: Top Left: Training Environment;Top Right: 
Normalized test histograms averaged over five animats 
with ten test trials each, when landmarks were indistin­
guishable from each other; Bottom: Right-most land­
mark distinguishable from the rest 

As seen in Figure , during training the animats 
learned to give more weight to the type of landmark on 
the extreme right , due to its proximity to the goal as 



well as the uniqueness of its type. During testing, the 
right most landmark , which was distinguishable from 
the rest , was moved further towards right. Animats lo­
calized based on this unique landmark . Hence, a simple 
rule to associate the landmark type to a goal location 
was learned . Obviously, if all landmarks are identical, 
no such rule was learned, and the animats localized us­
ing a majority vote, as seen in Figure , top right. In 
Figure , since only one visit to goal was allowed dur­
ing training, the effect of weight update was not very 
pronounced . 

R elated Work 
Burgess and colleagues have implemented a robotic sim­
ulation of rat navigation , which effectively reproduces 
place-cell firing characteristics (Burgess et al. 1997) . 
However , it is unclear how a metric distance between 
any two places in the environment can be coded in their 
model. Our model , on the other hand , labels each place­
cell with a metric position in the environment , thus, 
providing a basis for computing the distance between 
any two place fields. Also, as the animat navigates in 
its environment, the model uses a Kalman Filter like 
update procedure to reduce the effects of errors in the 
sensory and the dead-reckoning systems. 

O 'Keefe and Burgess have been successful in repli­
cating place fields in an simple rectangular enVIron­
ment (O 'Keefe & Burgess 1996). However, in their 
model, the EC layer cells parameters were prepro­
grammed. In the model discussed in this paper, on 
the other hand , EC layer cells are automatically as­
signed Gaussian activation functions of varying widths. 
Nevertheless, the characteristics of the EC layer cells in 
the present model are similar to those of O 'Keefe and 
Burgess (1996) . Also, in the model discussed here , cells 
are allocated incrementally as new perceptual informa­
tion arrives. 

Conclusion and Future Work 
We have presented several extensions of a Kalman- filter 
based model of animal spatial learning that was pre­
sented in (Balakrishnan, Bousquet , & Honavar 1997; 
Balakrishnan, Bhatt , & Honavar 1998) . The model is 
capable of learning and representing metric places in an 
a priori unknown environment and localizing when rein­
troduced in an environment. The extensions presented 
here enable the model to learn to give preference to 
certain types of landmarks based on their uniqueness 
and proximity to the goals. This results in the usage of 
different strategies under different landmark configura­
tions . 

We have also demonstrated that the proposed model 
is able to successfully replicate the firing characteristics 
of cells in behaving animals in visually symmetric en­
vironments that offer multiple sensory cues as reported 
in (Sharp , Kubie , & Muller 1990). 

The mechanisms that govern selection of landmarks 
in a dynamic environment are yet to be understood . 
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Also , if the hippocampus is capable of storing informa­
tion about multiple environments, it would be interest­
ing to find out how such representations can co-exist, 
and how they can be retrieved when the animal first 
enters a familiar environment. 

Another question that can be asked is, do there exist 
multiple maps of the same environment , either at dif­
ferent granularities or using only subsets of the avail­
able sensory features? If such is the case, how is the 
path-integration system reset by the animal when it 
first enters a previously explored environment? Re­
cent evidence on place-field firings in rodent hippocam­
pus sched new light on the usage of sensory features. 
These findings suggest that neurons in the hippocam­
pus encode places using distinct subsets of environmen­
tal cues. It is suggested that processing within the 
hippocampus tends to reduce the conflicting orienta­
tion information conveyed by these distinct subsets of 
cues under altered environments (Tanila, Shapiro, & 
Eichenbaum 1997). Authors are currently investigating 
the feasibility of such a mechanism for deciding on a 
correct orientation of the place-map in presence of con­
flicting environmental cues using the present model of 
the rodent hippocampal system. 

Although several hypotheses about the hippocam­
pal function have been put forth in the literature (Mc­
Naughton et al. 1996; Redish & Touretzky 1997), they 
remain to be verified through concrete realizations in 
terms of computational models that explain the rele­
vant neurobiological as well as behavioral data. Against 
this background , precise computational characteriza­
tion of the capabilities and limitations, as well as exper­
imental comparison of different models of animal spa­
tial learning is clearly of interest . It is also interesting 
to explore whether Kalman-filter b::tSed approaches of­
fer a general framework for modeling the role of the 
hippocampus and related structures in settings other 
than spatial learning (e.g., episodic memories). Ex­
ploration of the relationship between such models and 
various hypotheses concerning the mechanisms under­
lying memory consolidation and the role of hippocam­
pal system in learning (Nadel & Moscovitch 1997; 
Redish & Touretzky 1998) , as well as further explo­
ration of reward-based learning in spatial domains offer 
other promising directions for future research . 
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