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Abstract 

The paper considers computational models of neural 
networks aim to reproduce neurophysiological experi­
mental data on spatia-temporal patterns registered in 
brain structures and to check hypotheses about the role 
of synchronization, temporal and phase relations in in­
formation processing. Three sections of the paper are 
devoted, respectively, to the neuronal coding, to the 
models that are used to study phase relations in os­
cillatory activity of neural assemblies, and to synchro­
nization based models of attention. 

Introduction 
The theoretical study of the temporal structure of neu­
ral activity is very important. Despite the great com­
plexity and variability of electrical activity in the brain, 
constantly increasing experimental data reveal consis­
tent temporal relations in the activities of single neu­
rons, neural assemblies and brain structures. Without 
a proper theoretical background, it is very difficult to 
guess how these relations can appear and what their 
role could be in information processing. This is espe­
cially important in the situation when detailed knowl­
edge of the mechanisms of neural activity and neural 
interactions have not 'led to a significant progress in un­
derstanding how the information in the brain is coded, 
processed, and stored. What are the general principles 
of information processing in the brain? How can they 
be discovered through the analyses of electrical activity 
of neural structures? Which part of available experi­
mental data reflects these general principles and which 
is related to the peculiarities of biological implemen­
tation of these principles in different brain structures? 
Are the observed temporal relations in neural activity 
related to information coding or they are the artifacts 
generated by special experimental conditions? These 
questions still wait their answer in future theoretical 
studies. 

Computational neuroscience is one of the promising 
directions in developing the brain theory. The math­
ematical and computer models provide the possibility: 
to form general concepts and to apply them to the anal­
ysis of experimental data; to extract essential variables 
and parameters of neural systems which determine their 

information processing capabilities; to analyze the role 
of different mechanisms (biophysical, biochemical, etc.) 
in neural system functioning; to propose new hypothe­
ses and to check their validity by comparing the model­
ing results with experimental data, to make suggestions 
about the further progress of neuroscience, to formulate 
the main ideas of new experiments and possible draw­
backs. 

In this paper, we consider several hypotheses which 
have been put forward to explain the role of temporal 
structure of neural activity for information processing. 
We describe neural networks that have been developed 
in support of these hypotheses and whose analysis re­
veals what kind of model neurons or neuron assemblies 
are suitable and how their interaction should be orga­
nized to implement different types of information cod­
ing and processing. 

Neuronal Coding 
Traditionally, a neuron is considered as a device that 
transforms a changing sequence of input spikes into dis­
crete action potentials that are transmitted through the 
axon to the synapses of other neurons. What are the 
properties of the neural spike train that provide the 
possibility to carry the information or take part in in­
formation processing? Until recently, the most popular 
hypothesis has stated that this property is the rate of 
spikes in the train. Rate coding explains how the pre­
sentation and intensity of the stimulus can influence 
neural activity but this coding neglects the temporal 
organization of spike trains. 

Experiments show that temporal patterns of neural 
activity can be very complex, and it is natural to admit 
that there should be some information encoded by the 
moments of spike generation. For example, different 
stimuli or tasks can elicit different patterns of activity 
that have the same firing rate. Experimental data ob­
tained in the last years show that in the slowly changing 
surrounding the rate code might be useful, but its effi­
ciency drops abruptly if stimulation conditions change 
quickly. In the latter case, the fine temporal structure 
of spike trains should playa much more important role 
(Mainen & Sejnowski, 1995). 

If we agree that the temporal pattern of activity car-
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ries the information about the stimulus, which features 
of this pattern are important? The popular hypothe­
sis is that the stimulus-driven oscillatory activity in a 
neuron is a code of a significant stimulus (Borisyuk et 
al., 1990; more recent discussion of this problem can 
be found in Singer, 1994). The essence of oscillatory 
coding can be reduced to two basic ideas: place cod­
ing: the stimulus is coded by the location of a neuron 
that shows the oscillatory activity; and binding: the 
integration of local stimulus representations is realized 
through impulsation synchrony. 

The other approach takes into account the fine tem­
poral structure of spike trains. The approach is based 
on the evidence that under some conditions of multiple 
stimulus presentation a neuron can reply, reproducing 
the moments of spikes with precision of 1 msec (Mainen 
& Sejnowski, 1995). Note that the general pattern of 
activity is far from being regular in these experiments. 

Phase Relations of Neural Activity 
Here we consider the case when the dynamics of neural 
activity is of an oscillatory type. This case is important 
for modeling since many EEG recordings show various 
rhythms (alpha, beta, gamma, etc.) during background 
activity (without presentation of an external stimulus) 
and in some functional states. For example, the impor­
tance of oscillatory activity and corresponding phase 
relations for information processing has been demon­
strated by O'Keefe and Recce (1993). They have found 
specific phase relationships between the activity of hip­
pocampal place cells and the EEG theta-rhythm. 

To perform mathematical analyses of oscillatory pro­
cesses in neural system, the theory of oscillatory neural 
networks has been developed which concentrates on the 
dynamical behavior of interacting oscillators. Usually 
an oscillator is formed by two interacting populations 
of excitatory and inhibitory neurons. For simplicity, a 
population can be approximated by a single excitatory 
or inhibitory element, which represents the average ac­
tivity of a neural population (the term "neuron" is kept 
to denote this element as well). A typical example is 
the Wilson-Cowan oscillator (Wilson & Cowan, 1972), 
its modifications are most frequently used in oscilla­
tory neural networks. If the input signal is absent or 
small, the oscillator will keep a low stationary level of 
activity. If an oscillator receives a strong enough in­
put signal, the activity of its excitatory and inhibitory 
components starts to oscillate. Being connected to each 
other in a network, the oscillators are capable of run­
ning with the same frequency. Thus, one or several 
assemblies of in-phase running oscillators are formed 
with different phase shifts between the assemblies. The 
values of the shifts mostly depend on the constrains put 
on the oscillators and their coupling. 

We omit papers on weakly coupled neural oscillators 
because complete presentation of this subject is con­
tained in the recently published book by Hoppensteadt 
and Izhikevich (1997), where a reader can find all nec­
essary details. In the following text, we address to the 

case, where connections between oscillators are strong 
enough. 

Usually, if connection strengths are not small, it is im­
possible to describe phase relations in terms of a math­
ematical theorem. The main tool kit for such inves­
tigations includes computer simulations and numerical 
methods for bifurcation analysis and parameter contin­
uation. 

Complete bifurcation analysis of the system of two 
coupled neural oscillators of a Wilson-Cowan type is 
given in (Borisyuk et aI., 1995). In these papers, the 
authors study how the type and the strength of con­
nections affect the dynamics of a neural network. All 
different connection architectures are investigated sepa­
rately from each other. In the case of weak connections, 
the connections from excitatory to inhibitory neurons 
and from inhibitory to excitatory neurons (synchroniz­
ing connections) lead to periodic in-phase oscillations, 
while the connections between neurons of the same 
type (from excitatory to excitatory and from inhibitory 
to inhibitory) lead to periodic anti-phase oscillations 
(desynchronizing connections). For intermediate con­
nection strengths, the network can enter quasiperiodic 
or chaotic regimes, and can also exhibit multistability. 
More generally, the analysis highlights the great diver­
sity of neural network dynamics resulting from the vari­
ation of network architecture and connection strengths. 

Phase shifts of oscillations in a system of two elec­
trically coupled Fitzhugh's oscillators are studied in 
(Kawato et al., 1979). A stable regime of anti-phase os­
cillations and bistability (coexisting in-phase and anti­
phase oscillations) are found. 

Similar results are obtained by Cymbalyuk et aI. 
(1994) for two electrically coupled model neurons de­
scribed by Hindmarsh-Rose equations. It is shown that 
the system demonstrates one of the five possible dy­
namical regimes, depending on the value of the external 
polarizing current: 

1) in-phase oscillations with zero phase shift; 
2) anti-phase oscillations with half-period phase shift; 
3) oscillations with an arbitrary fixed phase shift de­

pending on the value of the current; 
4) both in-phase and anti-phase oscillations for the 

same current value, where the oscillation type depends 
on initial conditions; 

5) both in-phase and quasiperiodic oscillations for the 
same current value. 

Ermentrout and Kopell (1994) present a learning al­
gorithm to memorize the phase shift between oscilla­
tions in a system of two identical Wilson-Cowan oscil­
lators. The case where the first oscillator influences 
on the second one through the connection between the 
excitatory neurons is considered. Some functional is 
introduced to describe the synchronization of two oscil­
lators. The functional is used to modify the connection 
strength between the oscillators to increase the syn­
chrony. The learning rule is implemented in the form 
of a differential equation for the connection strength. 
The steady state of the equation coincides with the de-
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sirable phase shift . It has been shown by Borisyuk et 
al. (1995) that in the case of excitatory connections 
the oscillators can run with the same period but some 
phase shift (out-of-phase oscillations). The phase shift 
value varies in a broad range depending on the cou­
pling strength and other parameters of oscillators. The 
learning rule introduced by Ermentrout and Kopell al­
lows step by step adaptation of the connection strength 
to move the phase shift to an assigned value. 

There is no general theory of oscillatory neural net­
works in the case of more than two interacting oscilla­
tors and an arbitrary architecture of connections. Most 
results are related to the following important types of 
architectures: all-to-all (global) connections and local 
connections. In both cases non-trivial relations between 
oscillation phases can appear. For example, in a net­
work of identical oscillators with global connections, a 
sa-called splay-phase state can exist, when there is a 
constant time lag in the phase dynamics of oscillators 
(see, e.g., Swift et al., 1992). 

Synchronization based models of 
attention 

According to modern concepts, the information in the 
brain is processed on two relatively independent levels. 
A low level (associated with preattention processing) 
is responsible for extracting features from input stimuli 
and for providing simple combinations of features . At 
this level, the brain structures operate in parallel with­
out preselection of input components. A high level 
(associated with attention) is responsible for forming 
complex representations of reality. At this level, the 
information fragments supplied by sensory modalities, 
memory, and motor components are bound into mean­
ingful patterns that are recognized and memorized. A 
characteristic feature of this level is its serial form of 
processing. At any moment attention is focused on a 
portion of information that is analyzed more carefully 
and in greater detail than the other information avail­
able (this portion of information is said to be in the 
focus of attention). The attention focus then moves 
from one object to another with a preference for new, 
strong, and important stimuli. 

The concept that there should be common principles 
of grouping the information on both levels of processing 
led to the application of synchronization hypothesis to 
explain also how the focus of attention is formed (Crick 
& Koch, 1990; Kryukov, 1991). The following difference 
has been assumed to exist between these two levels: on 
the low level the synchronization appears as a result 
of interaction between neural assemblies in the primary 
cortical areas, while on the higher level the synchro­
nization is controlled by some special brain structures 
(the thalamus, the hippocampus, the prefrontal cortex), 
which participate in selective synchronization of corti­
cal areas that should be included in the attention focus. 
Thus, this point of view suggests a plausible and gen­
eral mechanism of parallel processing on the low level 

and of sequential processing on the higher level. 
A model of attention is formulated in terms of an 

oscillatory neural network with a central element in 
(Kryukov, 1991). In Kryukovs model the central el­
ement is an oscillator (the so called central oscillator 
(CO», which is coupled with other oscillators (the so 
called peripheral oscillators (PO» by feedforward and 
feedback connections. Such network construction facil­
itates the analysis of network dynamics and interpreta­
tion of network elements in terms of brain structures. 
It is presumed that the septa-hippocampal region plays 
the role of the CO, while the pas are represented by 
cortical columns sensible to particular features. This 
concept is in line with Damasios hypotheses that the 
hippocampus is the vertex of a convergent zone pyra­
mid (Damasio, 1989) and the ideas of Miller (1991) who 
formulated the theory of representation of information 
in the brain based on cortico-hippocampal interplay. 

Attention is realized in the network in the form of 
synchronization of the CO with some pas. Those pas 
that work synchronously with the CO are supposed to 
be included in the attention focus (here synchroniza­
tion implies nearly equal frequencies) . The parameters 
of the network that control attention focus formation 
are coupling strengths between oscillators and natural 
frequencies of oscillators (the frequency becomes natu­
ral if all connections of an oscillator are cut off). 

Let the set of pas be divided into two groups, namely 
A and B, each being activated by one of two stimuli si­
multaneously presented to the attention system. The 
following types of dynamics of the network are interest­
ing for attention modeling: 

(a) global synchronization of the network (this 
mode is attributed to the case when the attention focus 
includes both stimuli); 

(b) partial synchronization of the CO and a group 
of pas (this mode is attributed to the case when the 
attention focus includes one of two competing stimuli); 

(c) no-synchronization mode (this mode is at­
tributed to the case when the attention focus is not 
formed). 

For mathematical analysis , the model has been spec­
ified as a network of phase oscillators (a phase oscillator 
is described by a single variable, the oscillation phase). 
The study has been restricted by the case when natural 
frequencies of oscillators representing the features of a 
stimulus are similar to each other. 

The results of the study give complete information 
about conditions when each of the above-mentioned 
types of dynamics takes place and describe possible sce­
narios of transition from one mode to another under the 
variation of some parameters (Kazanovich & Borisyuk, 
1994; Kazanovich & Borisyuk, 1999; Borisyuk et al., 
1999). In particular, the model shows that switching 
the focus of attention from one stimulus to the other 
goes through an intermediate state when the focus of 
attention is absent or when both stimuli are included in 
the attention focus. Another result of modeling is the 
formulation of conditions, when decreasing the interac-
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tion of the CO with the oscillators representing one of 
two stimuli that form the attention focus may lead not 
to focusing attention on the other stimulus but to de­
struction of the attention focus. For some parameter 
values it is found that the CO is capable of synchroniz­
ing alternately with one or the other of two groups of 
POs. This can be interpreted as a spontaneous switch­
ing of the attention focus which is observed in some 
psychological experiments. 

The model of attention considered above is based on 
synchronization of regular oscillations. The following 
example shows that regularity is not an obligatory con­
dition to obtain synchronous oscillations of neural activ­
ity, also synchronized chaotic oscillations can be gener­
ated by the networks of integrate-and-fire neurons. This 
gives the possibility to use chaotic oscillations in bind­
ing and attention models. An example of a neural net­
work that combines chaotic dynamics with synchroniza­
tion is presented in (Borisyuk & Borisyuk, 1997) . The 
authors have developed a neural network of excitatory 
and inhibitory integrate-and-fire neurons with global 
connections that can show spatially coherent chaotic 
oscillations. A specific property of this regime is that 
the periods of neuron bursting activity alternate with 
irregular periods of silence. Moreover, the number of 
spikes in burst and inter burst intervals varies in a broad 
range. Despite of the irregular, chaotic dynamics of a 
single neuron, the global activity of the network looks 
very coherent. Almost all neurons of the network fire 
nearly simultaneously in some short time intervals. 

Conclusions 
The purpose of this paper was twofold. First , we were 
going to show that temporal structures appearing in 
dynamical activity of neural network models are rich 
enough to properly reflect the basic neurophysiological 
data. Second, we aimed to show that dynamical mod­
els are helpful for checking the validity of hypotheses 
about the principles of information processing in the 
brain. In particular; the models can be used to elu­
cidate the possible significance of temporal relations in 
neural activity. We demonstrated that these models are 
compatible with experimental data and are promising 
for parallel implementation of information processing. 

In comparison with traditional connectionist theo­
ries, the theory of oscillatory neural networks has its 
own advantages and disadvantages. This theory tries 
to reach a better agreement with neurophysiological ev­
idence, but this results in more complicated analysis of 
the models. The further progress of the theory may be 
achieved in the following directions. 

1. Oscillatory networks with varying input 
signals. Most of the models developed until now re­
strict their consideration to the case when the input sig­
nals of oscillators are fixed . It would be much more im­
portant to study neural networks which are influenced 
by a time dependent stimulus (in mathematical terms, 
this results in the study of non-autonomous dynamical 
system). 

2. Hierarchical oscillatory neural networks. 
Multilayer oscillatory neural networks with different ar­
chitectures should be developed and analyzed. It seems 
reasonable to use for the earlier stages of information 
processing oscillatory neural networks with local con­
nections which could provide the interaction of small 
neural assemblies similar to the interaction of pyramidal 
neurons in cortical columns. Convergent forward and 
backward connections can be used for parallel transmis­
sion of information between the layers. For later stages 
of information processing the networks with the cen­
tral element should be used to provide the intensive 
information exchange between arbitrary parts of the 
network with a relatively small number of long-range 
connections. In particular, such networks are relevant 
to modeling the interaction between the hippocampus 
or the thalamus and the cortex. 

3. Networks with multifrequency oscillations. 
Envelope (multifrequency) oscillations have not re­
ceived much attention yet. We believe that envelope 
oscillations may be very helpful for information encod­
ing. It is known that frequency encoding of stimuli is 
impeded by insufficiency of information capacity. In­
deed, the range of admissible frequencies is not large, 
and due to relatively low resolution in the frequency 
domain, it may not be easy to distinguish between dif­
ferent frequencies . Therefore increasing the number of 
admissible frequencies will be helpful for weakening the 
limitations of frequency encoding. For example, double­
frequency oscillations make it possible to extend fre­
quency encoding, since the second frequency can play 
the role of a second encoding variable. Therefore, two 
coordinates could be used for encoding instead of one. 

Besides the theory of information processing in the 
brain, there is another important field of applications 
of oscillatory neural networks. We mean the theory 
of artificial neural networks. After a period of inten­
sive development, this theory seems to suffer from the 
reduction of the flow of new ideas. Neuroscience is a 
reliable and never exhausted source of such ideas. In 
the near future we can expect a significant progress in 
neurocomputing in relation to better understanding the 
principles of information processing in the brain. 

The dream of many researchers involved in neuro­
biological modeling is that some day their findings will 
result in development of artificial neural systems with a 
broad spectrum of intellectual capabilities competitive 
with those of the living systems. This dream may soon 
come true. An important step in this direction would 
be to develop a computer system for a combined solu­
tion of the problems of binding, attention, recognition 
and memorization. This project is quite real now. All 
necessary components are known already. The current 
task is just to scan through the set of existing models in 
order to choose those which are most efficient and most 
compatible with the modern concepts of neuroscience 
and then to find a proper interaction of these models in 
a unified system. Many details of this interaction are 
known already, others should be discovered by further 
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experimental investigations and relative mathematical 
and computer modeling. 
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