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Abstract 

In comparison with the speed and precision associated with 
processing in the auditory periphery, the temporal response 
properties of neurons in primary auditory cortex can appear 
to be surprisingly sluggish. For example, much of the 
temporal fme structure is lost, best modulation frequencies 
are generally low and the effects of forward masking can be 
detected for a surprisingly long time. What gives rise to 
these responses and can they be explained by some 
common mechanism? Intracortical inhibition has been 
suggested as a likely cause but inhibition does not provide 
an adequate account, at least in the case of forward 
masking, which is unaffected by the application of 
inhibitory antagonists. On the other hand, simple threshold 
neural models cannot replicate such behaviour without 
some form of inhibition. The purpose of this investigation 
was to explore whether depression at thalamocortical 
synapses could account for these observations. As far as we 
are aware, the experiments which we have replicated, many 
of them only recently published, have not previously been 
modelled, and certainly not all by the same model. Since 
syna~tic depression depends on pre- and not postsynaptic 
achvlty, the model also provides a novel account of the 
effect of subthreshold stimuli . 

Introduction 
There are many aspects of auditory perception, such as the 
growth of loudness with duration and the effects of 
masking, which indicate that the auditory system performs 
some ~ort .of temporal integration in processing incoming 
acoustIc SIgnalS. However, the auditory system is also 
capab~e of fine temporal resolution, as evidenced by gap 
detectIon, double click discrimination, and also in the short 
latency and lack of jitter of onset responses in cortex 
(Viemeister and Plack 1993). This has been termed the 
resolution-integration paradox, i.e. how is it possible for a 
system to integrate information over long periods while 
retaining fine temporal resolution. Most accounts which 
satisfy the integration criterion use long time constants and 
therefore fail to behave swiftly enough to explain fine 
temporal resolution, and vice versa. 

The time constants typically associated with sub-cortical 
processing differ substantially from those in the cortex. In 
comparison with the speed and precision associated with 
processing in the auditory periphery, the temporal response 

properties of neurons primary auditory cortex (AI) can 
appear to be surprisingly sluggish. For example, in the 
thalamocortical transformation of incoming signals a great 
deal of the temporal fine structure is lost (Creutzfeldt et al 
1980), best modulation frequencies measured in AI are 
generally below 15 Hz (Schreiner and Urbas 1988), and 
the effects of a masker on a probe tone can be detected up 
to 400 ms after masker offset (Brosch and Schreiner 1997). 
The focus in this paper is therefore on the temporal 
response 'properties observed in AI. As yet there have been 
no models proposed which can satisfactorily explain the 
observed behaviour of neurons in AI. Explanations in 
terms of intracortical inhibitory circuits have been 
proposed but inhibition does not provide an adequate 
account, at least in the case of forward masking which is 
unaffected by the application of a GABA antagonist 
(Brosch and Schreiner 1997). On the other hand, simple 
threshold neural models cannot replicate such behaviour 
without some form of inhibition or by means of very long 
time constants, which as discussed above, would then 
prevent the model from satisfying the requirements for 
good temporal resolution. 

Recently it has become apparent that cortical synaptic 
dynamics may be an important factor affecting the 
behaviour of biological neurons (Markram et al 1997, 
Abbott et al 1997, Thomson and Deuchars 1994, Reyes et 
al 1998). When synapses are repeatedly activated they do 
not simply respond in the same way to each incoming 
impulse and synapses may develop a short-term depression 
or facilitation, depending on the nature of the pre- and 
postsynaptic cells, and on the characteristics of the 
particular synapse involved (Thomson and Deuchars 1994, 
Reyes et al 1998). Within current neural network models 
synapses are generally modelled as simple gains and it is 
interesting to consider how models of cortical processing 
might be enhanced by the inclusion of a richer synaptic 
model. If synapses are not simply be viewed as passive 
weighting elements in neuronal circuits, but rather as 
dynamical systems in their own right, then perhaps many 
of the response properties observed in AI might be 
explained in a relatively simple way. To explore this 
hypothesis, a model of cortical synaptic depression was 
used to investigate the computational properties of a 
neuron model that included dynamic synapses. This model 
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was found to account for a wide range of experimental 
observations, including those outlined above. 

The Dynamic Synapse Model 

The dynamic synapse model we use here was presented in 
(Tsodyks and Markram 1997) and shown to replicate 
experimental results reported on synaptic depression. In 
fact, this model of the dynamics of neurotransmitter 
release had already been proposed much earlier by 
(Grossberg 1968, 1969), who derived a set of 
psychological postulates to explain the excitatory 
transients in transmitter release after a rest period and 
subsequent synaptic depression, which had been observed 
experimentally by (Eccles 1964). This synaptic depression 
model has been further developed and used subsequently 
by Grossberg in more recent years, for example to explain 
a number of important perceptual features involving the 
visual cortex. In the area of auditory modelling, a very 
similar model was also developed by (Meddis 1986) to 
describe transduction in cochlear inner hair cells. 

The dynamic synapse model characterises the synapse by 
defining a "resource", e.g. the amount of neurotransmitter 
in the synapse, a proportion of which can be in one of three 
states: available, effective, inactive. The dynamical 
behaviour of the proportions of the resource that are in 
each of these states is determined by a system of three 
coupled differential equations below. In these we use 
notation similar to that in (Grossberg 1969). 

dx 
- = g.y(t).1(t) - a.x(t) 
dt 

dy = p.w(t) - g.y(t)J (t) 
dt 
dw 
- = a.x(t) - p .w(t) 
dt 

where x(t) is the amount of effective resource, e.g. 
activated neurotransmitter within the synaptic cleft, as a 
proportion of the total resource, y(t) is the amount of 
available resource, e.g. free neurotransmitter in the 
synapse, and w(t) is the amount of inactive resource, e.g. 
neurotransmitter being reprocessed. 

The input signal I (t) represents the occurrence of a 
presynaptic action potential (AP) and is set equal to one at 
the time of arrival of the AP and for a small period of time 
8 thereafter, and otherwise is set equal to O. The constant 
p determines the rate at which the inactive resource w(t), is 
released to the pool of available resource on a continuing 
basis, and a represents the rate at which effective resource 
x(t) becomes rapidly inactive again. The instantaneous 
efficacy of the synapse is determined by the variable g, 
which can be interpreted as the fraction of available 

resource released as a result of the occurrence of the 
presynaptic AP. It takes a value in the range zero to one. 

The key idea behind the model is that there is a fixed 
amount K of total resource available at the synapse, a 
proportion g.y(t) of which is activated in response to 
presynaptic activity, rapidly becomes inactive, and is then 
subsequently made available again through reprocessing. 
Thus, if the synapse is very active the amount of available 
resource y(t) is rapidly reduced. There must then follow a 
period during which the synapse can recover in order to 
respond fully once more. This process appears to replicate 
the experimentally observed characteristics of synaptic 
depression, for example as reported in (Markram and 
Tsodyks 1996, Tsodyks and Markram 1997). 

The EPSP at the synapse, e(t), is computed from x(t) 
using the following equation for the passive membrane 
mechanism (Tsodyks and Markram 1997): 

de 
TEPSP ' - = y.x(t) -e(t) 

dt / 

The neuron model used is described by the following 
system of equations, which has been adapted from a model 
described in (McGregor 1989): 

TE dE =-E(t)+V(t)+GK(t).(EK -E(t)) 
dt 

set) = 1, if E(t) ~ B(t), else set) = 0 

To dGK = -GK (t) + 1].s(t) 
K dt 

TO dB =-(B(t)-Bo) +s(t) 
dt 

where, E(t) is the variation of the neuron ' s membrane 
potential relative to its resting potential, V(t) is the driving 
input found by summing all the synaptic EPSPs, GK (t) is 
the potassium conductance, divided by the sum of all the 
voltage-dependent ionic membrane conductances, EK is ~e 
potassium equilibrium potential of the membrane relative 
to the membrane resting potential, B(t) is the firing 
threshold potential, Bo is the resting threshold, s(t) is the 
variable which denotes firing of the cell, TE, TEPSP, T(}, and 
TGK are time constants, and y, X and 1] are constant 
parameters. 

Simulation Results 

Not all cortical synapses are depressing; for example, 
synapses between cortical pyramidal neurons and bi-tufted 
GABAergic intemeurons synapses are strongly facilitating 
(Reyes et al 1998). However, thalamocortical synapses 
appear to be depressing; they are mediated by non-NMDA 
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excitatory amino acids, depress rapidly and remain 
desensitised for some time (Thomson and Deuchars 1994). 
In the simulations that follow, it can be seen that the 
response characteristics of the model neuron, when the 
dynamic synapse model is included turn out to be very 
similar to that found in primary auditory cortex. 

Loss of Temporai Fine Structure 

Differences between the response properties of thalamic 
and cortical neurons were investigated by (Creutzfeldt et al 
1980). Activity in thalamic relay cells and subsequent 
activity in paired pyramidal cells in AI was recorded, and 
it was found that even when thalamic activity was clearly 
synchronised to the stimulus up to 200 Hz, the paired 
cortical cell was unable to follow the details of the signal 
beyond about 20 Hz. The plots in figure 1 show the 
response ofthe model to spike trains generated to resemble 
typical thalamic activity in response to stimuli of the 
frequencies indicated. Total activity for 20 presentations is 
plotted both for the presynaptic spike trains and the model 
response. The model behaviour resembles that found 
experimentally. The model responds to details of the 
stimuli occurring at 10 Hz and to a lesser extent to details 
at 20 Hz, but for higher stimulus frequencies, the model 
only responds strongly at the onset of the signal. The 
reason for this is that at high frequencies successi ve 
presynaptic spikes arrive before the synapse has time to 
recover. This causes a strong depression of the synapse, 
resulting in the generation of very smaIl postsynaptic 
EPSPs that are insufficient to raise the ceIl membrane 
potential above the firing threshold. 
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Figure 1. Simulation of the transmission of signals between 
thalamic relay and cortical pyramidal cells. The model 
qualitatively replicates the behaviour of paired pyramidal cells in 
AI, which showed almost no response except at signal onset 
when stimuli exceeded 20 Hz. 

Frequency Response ofthe Model 

The frequency response of the neuron model with a 
depressing synapse is illustrated in figure 2b. Although the 
synaptic dynamics were tuned to match those found 
experimentaIly in the somatosensory cortex (Markram and 
Tsodyks 1996), it is interesting to note that the model 
clearly responds preferentially to frequencies under 10 Hz, 
as is also found in AI. It seems to be the case that the 
dynamics of cortical depressing synapses may be quite 
similar across different cortical areas. 

For comparison the response of a neuron model without a 
depressing synapse is shown in figure 2c. Clearly such a 
model could not replicate the behaviour observed 
experimentally without the addition of delayed inhibitory 
inputs which somehow increase in strength with stimulus 
frequency. Alternatively, modeIling the synapse as a low 
pass filter but with very low cut-off frequency could result 
in a similar frequency response, but would fail 
simultaneously to account for the short response latency 
found in AI. The benefit of the proposed model is that it 

. can account both for the low pass frequency response and 
short onset latency. 
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Figure 2. Frequency response of the model. The response of the 
neuron model with and without a depressing synapse to an 
incoming spike train of the frequency indicated. Plots show a) 
total input activity; and the number of times the cell fired during 
the 20 second period b) with and c) without synaptic depression. 
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Limitations of the Simulations 

For many of the experiments simulated, the nature of the 
thalamocortical signals is unknown, which makes it 
difficult to know whether the stimuli used as inputs to the 
model are realistic. However, the details of the acoustic 
stimuli used in the experiments are generally we]] 
documented and therefore it is desirable to be able to 
simulate the experiments using similar acoustic stimuli. 
For this reason a well-documented and tested peripheral 
model, DSAM (O'Mard, Hewitt and Meddis), was used to 
generate signals characteristically found in auditory nerve 
fibre recordings in response to acoustic stimuli. The 
problem with this approach is that the rest of the 
subcortical auditory system has not been similarly 
modelled. Therefore, in the following simulations the 
output from the peripheral model is reprocessed to ensure 
that the firing rate remains below about 200 Hz by 
enforcing a reasonable refractory period. Clearly this 
ignores the computations which occur in the rest of the 
auditory system. However, the model can replicate a 
number of experiments and this would almost certainly be 
improved upon by more accurately modelling the 
thalamic-cortical signals. While recognising that this 
simplification likely to result in a poor approximation of 
actual thalamic relay ce]] activity, it is difficult at this stage 
to do much better, and has the added benefit of making the 
simulations tractable. 

For the remainder of the simulations, the acoustic signals 
specified are processed by the DSAM model that includes 
an outer-middle ear transfer function, a gammatone 
filter bank, and Meddis' inner hair cell model. A simple 
stochastic spike generator model is used and a 
convergence of 20 inner hair cells to 1 auditory nerve fibre 
assumed. The spike trains are then processed to ensure that 
refractory periods are generally greater than 20 ms. 
However, when m.ore than one spike occurs 
simultaneously, as is possible with a combinations of 20 
spike trains per channel, then the refractory period is 
allowed to decrease in proportion to the extent of the 
coincidence. This has the benefit of not destroying the 
enhanced onset response generated by the inner hair cells. 

Best Modulatiou Frequencies 

Rate modulation transfer functions were extensively 
investigated by (Schreiner and Urbas 1988), who found 
that the best modulation frequencies in AI were generally 
below 15 Hz. More recently very similar normalised rate 
modulation data was presented (Kilgard and Merzenich 
1998). To demonstrate the validity of the modelling 
approach taken, figure 3 shows a comparison between 
these experimental results and the response of the model to 
similar acoustic stimuli, pre-processed in the way 
described above. 
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Figure 3. Response to repeated tones at the given repetition rates; 
model ' 0 0' and experimental results '+ ... +' (Kilgard and 
MerzenichI 998). Normalised repetition rate transfer fimctions 
are found VSing a stimulus consisting of 6 tones pulses at the 
repetition rate indicated and then calculating the mean response 
to the last 5 tones in the sequence divided by the response to the 
first tone; each tone has a duration of25ms. 

The Time Course of Forward Masking 

Although there are undoubtedly a number of factors that 
contribute to the phenomenon of forward masking, it is 
clear that the depression of thalamocortical synapses must 
contribute to the total effect. Explanations for forward 
masking have also been sought in terms of lateral or 
forward inhibition. However, it has been shown that 
masking continues to exist even in the presence of a 
GABAA antagonist and therefore even if inhibitory inputs 
have some part to play they cannot provide a full account 
(Brosch and Schreiner 1997). Both cortical forward 
masking and that evidenced behaviourally have been 
shown to last far longer than explainable in terms of 
peripheral adaptation (Relkin and Smith 1991)'1?e m?del 
clearly provides a mechanism for forw:rrd maskin~, sI?ce 
synapses that have been previously actIvated requlfe hIDe 
to replenish their transmitter stores and respond le~s 
strongly when depleted. The time course of synaptlc 
recovery appears to be consistent with the time course of 
cortical forward masking. The tonotopic distribution of 
masking is also consistent with a model of forward 
masking in terms of the depression of thalamocortical 
synapses since it has been shown that masking is closely 
related to the receptive fields of cortical neurons (Brosch 
and Schreiner 1997, Calford and Semple 1995). Figure 4 
shows the transmitter depletion at synapses across the 
tonotopic axis in response to masking stimuli at the 
intensities indicated. 
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Figure 4. Distribution and time course of transmitter depletion at synapses across the tonotopic a'Xis in response to a 1000 Hz masker of 30 
ms duration at the intensities indicated. Greyscale indicates the percentage depletion relative to that at the start of the stimulus. These 
results are very similar to Brosch and Schreiner's plots of the time course and distribution of masking. 

An important aspect of this model is that it demonstrates 
that cortical forward masking could be dependent on 
presynaptic rather than postsynaptic activity. This offers a 
simple explanation for the puzzling experimental 
observation that masking is sometimes detected even in 
response to maskers that do not actually activate the target 
cell (Brosch and Schreiner 1997). If masking is a result of 
transmitter depletion of thalamocortical synapses, then it 
would be quite possible for such synapses to become 
depleted by thalamic activity even though there is 
insufficient incoming activity to actually cause the cortical 
cell to fire, which is how the response to the masker was 
determined. Since these synapses would nevertheless be 
depleted, the probe tone could therefore be masked by the 
' sub-threshold' masker. 

The Effect of Masker Duration 

In psychophysical experiments it has been shown that the 
degree of masking is affected by the duration of the 
masker and masking increases with masker duration (Kidd 
and Feth 1982). This was also found to be the case by 
(Brosch and Schreiner 1997) in their recordings in AI. 
However, the sensitivity to duration was observed even 
when the AI cell responded only at the onset of the 
masker, and although the effect of masker duration was 
noted, it was not suggested how this could occur. The 
model investigated here suggests a simple explanation, i.e. 
as long as there is some tonic incoming activity during the 
masker, then transmitter depletion at the thalamocortical 
synapses will be related to masker duration. Therefore, if 
as we hypothesise, the degree of masking is related to the 
degree of transmitter depletion at thalamocortical 
synapses, then the sensitivity to masker duration follows. 

(Brosch and Schreiner 1997) did not include any detailed 
results on' masker duration, so in figure 5, a comparison 
between the results in (Kidd and Feth 1982) and the 
model ' s response is shown. However, it should be noted 
that although these results are qualitatively the same, it is 
not clear how the degree of transmitter depletion in the 
model can be directly related to the probe threshold shifts 
plotted by Kidd and Feth. 

Disruption of Synchronisation Responses by 
Subthreshold Stimuli 

In a recent paper (Nelken and Yosef 1998), Nelken 
suggested that his experiments showed a correlate of 
comodulation masking release. Activity was record in AI 
in response to noise modulated at 10Hz, and was found to 
synchronise to each noise pulse as expected. However, 
when a very soft, even subthreshold, continuous pure tone 
with frequency corresponding to the cell's best frequency, 
was added to the noise, then this synchronisation was 
disrupted. In contrast, when the pure tone was added to an 
unmodulated noise then the response to the noise alone 
was indistinguishable from that to the noise plus tone. 
Nelken suggested that the cortex might therefore be able to 
detect masked sounds by means of their disruption of the 
more powerful masker. 

Once again a simple explanation of Nelken ' s results is 
suggested by the model, which can easily replicate the 
experimentally observed behaviour as long as there is 
some tonic thalamic activity in response to the pure tone. 
Because the activity in response to the pure tone continues 
through the silent gaps between the noise pulses, this 
prevents the recovery of the synapses between noise pulses 
and so the synchronised response is disrupted. This 
explanation is also consistent with Nelken ' s unpublished 
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Figure 5. The effect of masker duration. For comparison, experimental results relating masker duration and masker intensity to probe 
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observations that the synchronised response to the noise 
alone was far more reliably obtained when the noise was 
trapezoidally modulated, than when sine wave modulation 
was used. Figure 6 shows Nelken's experimental results 
and the model 's responses to similar stimuli. 

Discussion 

In this paper it has been shown how a model neuron which 
incorporates dynamic synapses responds to a number of 
differe~t stimuli. The results seem to indicate that synaptic 
depressIOn at thalamocortical synapses may explain a 
number of aspects of the response properties of neurons in 
AI. 

The nonlinearity of the. dynamic synapse model allows it to 
behave in many situations like a low pass filter whilst also 
re.tainin~ a fast onset response. In response to repeated 
stImulatIon much above 10 Hz, synaptic depletion prevents 
the cell from responding except at the onset of the 
stimulus. However, the synaptic dynamics are not slow and 
after a period of rest the synapse can respond with a large 
EPSP to the onset of a new stimulus, which can result in a 
response of short latency. Since the reliability of a 
depressing synapse also appears to be related to amount of 
available transmitter (Reyes et al 1998), an aspect not 
included in this model, this means that after a period of rest 
su~h :'Yllapses will tend to respond very reliably as well. 
TIus is therefore consistent with the generation of onset 
responses of short latency and with little jitter. Although 
the cell tends to respond only at the onset of stimuli 
important processing can continue to occur in the synapse~ 
throughout the duration of the stimulus. This allows the 
cell to exhibit sensitivity to stimulus duration, even when 
only active at stimulus onset. In addition, some of the 
apparent nonlinearities of responses measured in AI such 
as the influence of subthreshold stimuli or intera~tions 
between different components of a complex stimulus 
(Nelken and Yosef 1998), could be accounted for in this 
way. 

Since synaptic depression operates at thalamocortical 
s~apses which ~e the route through which sensory 
SignalS must pass m order to get to cortex, it seems likely 
that the dynamics of depressing synapses have a major role 
to play in sensory processing. Synaptic depression appears 
~o result in a relatively infrequent sampling of the sensory 
~puts by c~rtex, where such information is presumably 
mtegrated With ongoing cognitive processes. This bears a 
remarkable similarity to Viemeister' s 'multiple looks' 
model that was formulated in order to explain temporal 
processing in auditory perception and to resolve the 
resolution-integration paradox (Viemeister and Wakefield 
1991). In this model, it is envisaged that ' looks' or samples 
from a short time constant process are stored in memory 

and can be accessed and processed selectively depending 
on the task. 

The frequency response of the model, illustrated in figure 
2b, bears a strong relationship to speech modulation 
transfer ~ctions, with frequencies around 4 to 6 Hz being 
the dommant frequency of the envelope of speech signals. 
Syllables in speech are generally, although not always 
distinguished by an amplitude peak preceded and closed b; 
amplitude trough (Jusczyk 1997). Therefore, when the 
model is stimulated by a speech signal, it has a tendency to 
fire at the onsets of syllables within the signal. Synaptic 
depression may therefore give rise to a syllable-like 
segmentation of speech signals within AI. Such 
segmentation could occur in parallel across the tonotopic 
axis, independently within each frequency channel. This 
suggestion is consistent with the eX"}Jerimentally observed 
response to species-specific calls of neurons in AI, which 
tend to fire primarily at the onset of segments or syllables 
within calls, irrespective of the characteristic frequency of 
the neuron (Creutzfeldt et al 1980, Wang 1997, Wang et al 
1995). One effect this would have is to increase temporal 
synchrony across the tonotopic axis thereby promoting the 
grouping of related frequency components of a call. 
Synchronous activity is likely to be important for the 
effective transmission of signals to further processing 
centres which integrate information across frequency 
channels. 

In experiments in which species-specific calls were 
manipulated (Wang et al 1995), it was also shown that 
speeding up of slowing down the signal, or reversing it all 
resulted in reduced responses. We suggest that the reasons 
for this differ between manipulations and that the 
behaviour of the model can help to explain these results. In 
the first case when the signal is slowed down, activity is 
still generated in response to syllable onsets, but since 
these occur at a slower rate, the total amount of activity per 
second decreases. In the second case, when the signal is 
speeded up, synaptic depression would prevent 
synchronisation to syllable onsets as effectively as for the 
control case. Finally, reversing the signal results in a 
reduced response, not because of a change in timing of the 
stimulus but because of the change in the nature of the 
transients in the signal. As shown in experiments on onset 
latency, sharp transients with abrupt rises are far more 
effective in generating responses than those with slow rise 
times (Heil 1997). Reversing the speech signal means that 
the transients generally become less abrupt and therefore 
generate reduced activity. It seems reasonable to suppose 
that communication sounds have evolved to optimise their 
detection by cortex, and that the communication sounds 
that are used are those which are most salient within AI. 
Hence, the similarity between the modulation transfer 
functions of speech signals and of those measured in 
auditory cortex. Interestingly, although derived very 
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differently, the behaviour of the model is very similar to 
~e RAST A ftlter and which was found to markedly 
Improve speech recognition in noise (Hermansky and 
Morgan 1994). 

Conclusions 

By taking synaptic dynamics into account in modelling 
these experiments, it has been possible to account for a 
n~ber of previously unexplained results in a fairly 
~tnughtforward way. On the basis of these investigations it 
IS suggested that the dynamics of tllalamocortical synapses 
may help to explain the temporal integration observed in 
AI and in auditory perception. 
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