
27

Connectionist Propositional Logic
A Simple Correlation Matrix Memory Based Reasoning System

D K ustrin and J Austin
Advanced Computer Architecture Group

Department of Computer Science
University of York, York. YOlO 5DD, UK

(danlaustin)@cs.york.ac.uk

Abstract

A novel purely connectionist implementation of propo­
sitionallogic is constructed by combining neural Corre­
lation Matrix Memory operations, tensor products and
simple control circuits. The implementation is highly
modular and expandable and in its present form it not
only allows forward rule chaining but also implements
is a hierarchy traversal which results in interesting be­
haviour even in its simplest form. Additionally, some
biological relevance can be inferred from the architec­
ture given Hebbian learning mechanism, CMM con­
struction and utilisation of inhibitory synapses for con­
trol.

Introduction
Correlation Matrix Memories (CMMs) are simple bi­
nary feed forward neural networks which have recently
been applied to a large number of real world appli­
cations in domains as diverse as molecular matching
(Turner & Austin 1997b), image segmentation (O'Keefe
& Austin 1996) and financial forecasting (Kustrin,
Austin, & Sanders 1997). CMMs have been studied by
various research establishments over the years from ini­
tial theoretical work by K¢honen (1978) to more mod­
ern works like Sommer and Palm (1999) and Turner
(1997a) . Their well understood semantics, complex­
ity and storage properties makes them an ideal vehi­
cle for preliminary research into connectionist reasoning
systems since their operation characteristics are known
and a number of efficient implementations (both in soft­
ware and in hardware) exist (Kennedy et at. 1995) . In
this paper CMMs have been employed as execution en­
gines for a propositional logic implementation as well
as for implementation of an is_a hierarchy. The actual
system has been implemented as an interactive inter­
preter in which only the parser and proposition-to-code
translation was not built from connectionist compo­
nents: all actual processing is performed on a purely
connectionist architecture. In its operation it is most
similar to Smolenski's system (Smolensky 1990) but in
contrast to their architecture CPL is a purely binary
connectionist system with defined semantics and inte­
grated is_a hierarchy. Additionally it is also highly
modular and thus scalable. CPL builds on initial

CMM in reasoning theoretical papers (Austin 1994;
1995) and represents a step in evolution towards con­
nectionist higher order logic implementations.

The following section introduces the basic CMM op­
erations, atom binding and coding procedures, Ar­
chitectures section presents the actual implementation
while execution section contains an annotated sample
transcript from an interactive session with the system.

Operational Semantics
The CMMs, being equivalent to single layer binary
neural networks, have simple teaching and recall algo­
rithms. Their power lies in application of thresholding
and their ability to process overlapped input vectors.
Teaching of a matrix M given input vector I and out­
put vector ° is performed as

M' =MVOIT

and recall is simply

O=6e (MI)

(1)

(2)

where 69 is a transfer function performing a threshold
at level B. Thresholding is a very powerful technique
which allows extraction of correct associations even in
presence of some noise; by manipulating threshold level
it is possible to extract not only the matching associ­
ation but also outputs which are "close" to it. Since
CMMs work only on fixed weight binary vectors it is
necessary to convert all input/output values into ap­
propriate form. For propositional logic random binary
vectors are generated for each term; these vectors are
not necessarily orthogonal but are ensured to be sparse
(few bits set) which allows accurate and almost error­
free recalls. Error properties will not be discussed in
this paper, see (Turner & Austin 1997a) and (Sommer
& Palm 1999) for further information on CMM error
properties. It is interesting to notice that it has been
shown that binary CMMs exhibit lower crass-talk then
non-binary single layer feed-forward neural networks for
same associative tasks, which provides additional vali­
dation for use of CMMs (O 'Keefe 1997).

The implemented connectionist propositional logic
(CPL) is a slight extension of the traditional propo­
sitionallogic since it recognises two types: propositions

From AAAI Technical Report WS-99-04. Compilation copyright © 1999, AAAI. (www.aaai.org). All rights reserved.

28

and atoms. Each proposition is formed by binding of
two atoms and all rules (logic operations) are performed
exclusively on propositions. Atoms were introduced to
allow for more complex behaviour and are a direct con­
sequence of introduction of a is_a hierarchy. Additional
level of complexity is introduced by having two modes
of operation: learning of axioms and resolution. Before
presenting each logic operation and its semantics it is
necessary to define CPL syntax.

Sentence -+ AxiomSentence
Sentence -+ ResolveSentence

AxiomSentence -+ AXIOM Axiom Tail
AxiomTail -+ IsaTerm
AxiomTail -+ AxiomExp

~ AxiomExp
AxiomExp ' -+ BindTerm
AxiomExp -+ (AxiomExp)
AxiomExp -+ BindTerm A AxiomExp

ResolveSentence -+ RESOLVE ResolveExp
ResolveExp -+ (ResolveExp)
ResolveExp -+ ResTerm
ResolveExp -+ --, ResolveExp
ResolveExp -+ ResTerm A ResolveExp
ResolveExp -+ (ResolveExp) ~

(ResolveExp)
ResTerm -+ BindTerm
ResTerm -+ IsaTerm
IsaTerm -+ Atom ~ Atom

BindTerm -+ Atom ® Atom

Figure 1: A grammar for well-formed formulae in CPL.

Syntax

The alphabet of the CPL is defined as

where

A = {T, 1- , any, none, aI, a2,"'} (4)

P = {PI , P2, ... } (5)

Pi = a j ® ak (6)

operator ® is the binding operator. The truth values, T
denoting truth and 1- denoting false are special atomic
constants as are any and none. It is immediately obvi­
ous that the disjunction connective is not part of the al­
phabet and that propositions, Pi, are constructed from
atoms by application of the binding operator, ®. Due
to the operational semantic of the CMMs (see below) it
is possible to convert disjunctive expressions into CPL
well-formed formulae. Any expression of the form:

Pi V Pj V ... ~ Pq (7)

can be expressed as

Pi ~ Pq
Pj ~ Pq

~ Pq

and any expression of the from

Pi ~ Pj V Pk V . ..

can be expressed as

Pi ~

(8)

(9)

(lO)

These conversion forms allow rewriting of any disjunc­
tive expression in CPL wff. Given the CPL alphabet it
is necessary to present the grammar which shows the
difference between atomic and propositional sentences
as well as two modes of operation, see fig . l.

Strictly speaking the grammar is ambiguous since it
cannot be presented in LL(l) form. To solve this prob­
lem precedence ordering is defined (in the parser) as

is -a.
follows (from highest to lowest): ®, ----7 , -' , A, ~ .

Semantics
The easiest and most accurate way of describing CPL
implementation is defining its semantics, given basic
CMM and binary vector operations. The semantics of
the CPL is closely tied to CMM operation and their
properties. A CMM is a binary feed-forward neural
network which accepts and produces fixed length, fixed
weight binary vectors. Consequently, each atom has to
be converted into such a vector; in the implemented
architecture this is done by assigning a random fixed
length, fixed weight binary vector to each atom. Addi­
tionally, two out offour special atomic propositions (any
and none) have special forms: any is represented by a
vector with all bits set while none is a zero vector. The
binding operator, ®, performs a outer product (tensor)
between two atoms and produces a vector which given
atom vector length of n and weight of k will be of length
n 2 and weight k2

:

[b'
b2

b
f
] a, .. aj ~ a, "!laj ~ b:!

1
b2 bn

2 2
(11)

bl b2 bn
n n n

= [bi b2
1 b~] (12)

where b~ = af x a; . Outer product is used for binding
as it allows superposition of propositions without loss
of association.

As stated above, a CMM is a type of a neural net­
work it has two modes of operation: training and recall.
These two modes are mapped on to axiom presentation
and resolution. The training process can be defined as

29

an operator action (1') between two sets of binary vec­
tors 1 E lffin and 0 E lffin, denoting relational mapping
1 -+ 0 , and a CMM, M as follows:

l' (lffin , lffin , M'xn) -+ M'xn (13)

l' (1,0, Mi) = Mi VOlT = Mi+l

given MO = O. This equation shows that training is
just a disjunction of outer products. Similarly, recall
operator (9\) takes a CMM, input vector and an integer
(threshold) and produces an output vector:

9\ (lffin, M'xn, Z) -+ lffin (14)

9\(I,M,n) = en (MI) = 0

The threshold parameter can be varied to produce var­
ious effects but in this paper it is assumed to be set at
the input/output vector weight at all times, see (Austin
1995) for further information on application of thresh­
olds in CMMs.

These three definitions (binding, training and re­
call) allow specification of the semantics of BindTerm,
IsaTerm, AxiomTail implication and ResolveExpression
implication terms in the grammar:

Atom@Atom

Atom ~ Atom
is-a

ai --+ aj

M i • . a f- l' (ai,aj,Mi._a)

Atom ~ Atom

(lffin, lffin) -+ lffin
z

is-a
ai --+ aj

aj = 91 (ai, Mi._a, 8)

(15)

(16)

(17)

(18)

where (lffin, lffin) -+ lffin
2

(for example) is the type defi­
nition, first row is the grammar representation and the
second row is the implementation definition. The above
two forms of the is-a association relate to either train­
ing (axiom presentation), eq. 17, or recall (resolution),
eq. 18. The resolution equation (eq. 18) returns a truth
value which is a vector of length n 2 and weight k 2 , see
below. Similar equations can be constructed for the
implication connective:

BindTerm ~ BindTerm (19)

(lffinZ, lffinZ)

~ Pi ~ Pj
~ Mrule f- l' (Pi,pj,Mru1e)

BindTerm ~ BindTerm (20)

(lffin2,lffin2) -+lffin2

~ Pi ~ Pj
~ Pj = 91 (Pi, M ru1e , 8)

As in the eq. 17 and eq. 18, two modes of operation
exist: training and recall. In the recall (resolution) the
return value is a truth token, see below. The CMM
size in is-a case and rules case are different. The is-a
uses matrix of size n x n and type Mnxn while rules
store uses a CMM of size n2 x n2 and type ~z xn

2
•

The conjunction operator semantics are defined using
bitwise 'or' operation (V) as follows:

I

BindTerm 1\ BindTerm

(lffinZ , lffinZ) -+ lffin
z

Pi 1\ Pj

Pi V Pj

(21)

As it can be seen from the above equations, the basic
return value is a tensored vector of length n 2 and weight
k2 • The four primitive atomic propositions T , .1, any
and none are, although atomic, of the proposition size
and weight since they operate on propositional level.
The negation operator can, thus, be defined as

,BindTerm (22)
~ 'Pi

~ {: if Pi = .1
otherwise

This definition converts a proposition into a truth value.
Although not ideal it is necessary since even under
closed world assumption negation semantics is quite
difficult . Alternative would be to denote 'Pi as the
set of all propositions excluding Pi, 'Pi ~ all - Pi·
This approach was not chosen since it doesn't map well
to CMM architecture. The equality operation used in
eq. 18 and eq. 20 can be defined as

BindTerm = BindTerm

lffin , lffin -+ lffin (
Z Z) Z

Pi = Pj

{
T if Pi and Pj are identical
.1 otherwise.

Axioms and Resolution

(23)

CPL does not come with any predefined axioms. All ax­
ioms have to be presented to the architecture (trained).
The resolution system is also very simple. Since both
is-a and the rules sub-systems are built from the same
building blocks they implement the same algorithm:
chaining. In is-a mode they performs traversal up the

30

is-a tree while in the rules sub-system mode they for­
ward chain the rules .

The is-a hierarchy is a directed non-cyclical graph
depicting both membership and subset relations. In
traditional semantic networks there is a distinction be­
tween subset relations like Cats ~ Mammals and
B b Member C . . o) ats smce they necessanly have differ-
ent semantics, Cats C Mammals and Bob E Cats, re­
spectively. In CPL this distinction is not made and a

general is-a relation is used: Cat ~ Mammal and

Bob ~ Cat. Not making this distinction allows sim­
ple application of the binding operator to atoms for
formation of propositions. These propositions are then
passed to the rule sub-module which uses them for rule
searching. Traditionally it has been argued that using
is-a links instead of separate membership and subset
links leads to inconsistencies (McDermott 1976). Al­
though the formal semantics of inheritance has not been
developed for this system the problems outlined in (Mc­
Dermott 1976) are not applicable since the propositions
always have the form class 0 query atom in which only
the class part is modifiable. The class part can only be
changed to a superclass until the top of the inheritance
graph has been reached. Since the is-a hierarchy is as­
sumed to be a directed non-cyclic graph termination is
assured.

The rules sub-system accepts propositions and per­
forms forward chaining on left-hand sides of the rules.
Given an input rule Pi ~ Pj it will search for all
the rules matching Pi on the LHS. If none are found
it will request modification of the rule LHS by the is­
a module. This request will ask for replacement of
the Pi superclass by its superclass, if any exists, ego
if Pi = aj 0 ak and no rules are matched, the rule
sub-system will request the super-class of aj, say am,
which will then be bound to ak into a new proposition
Pn = am 0 ak· This new proposition will then be used
in another search. The searching process will end when
the is-a has reached -the top of its hierarchy.

Although the architecture only uses forward chaining
and a simple semantic network it is capable of perform­
ing resolution of a surprising flexibility.

Architecture
The connectionist architecture implementing the se­
mantics of CPL has been built. The grammar and the
semantics have been directly implemented in YACC and
LEX on a Silicon Graphics Supercomputer. Although
currently the architecture is simulated in software it is
a truly connectionist artifact. Both is-a and the rules
sub-systems have been built using exactly the same ba­
sic building block presented in fig. 2 (figure is slightly
simplified and shows only the recall connections and
omits training/recall switching and input/output pre
and post processing).

It is interesting to notice that all components used are
implementable in purely connectionist form: the Corre­
lation Matrix Memory is a simple binary feed-forward

<input hypothesis> <input>

True False <output>

Control
Output

Control

Figure 2: Basic building block for the connectionist archi­
tecture implementing CPL. Diagram only shows the data
paths for recall mode of operations.

neural network, the Selector components can be con­
structed by using inhibitory neurons while the compara­
tor is a simple bit-wise conjunction. This necessity for
inhibitory synapses for control of recursion is very inter­
esting since it suggests biological plausibility. The con­
trol input is used to "stop" the module from forward­
chaining and keep it at the current search parameter.
This is used, in the complete architecture, by the rules
sub-module for control of is-a hierarchy traversal. The
selector component is used bi-directionally either as a
input selector or output selector. Both variants are con­
trolled by a control signal and the component semantics
can be defined as follows, in input selection form:

Selector (II, h) -+ 0

0= {II
h

or, in output selection form, as

Selector (1) -+ Oi = I

i= g

if Control = 0
otherwise

if Control = 0
otherwise

(24)

(25)

31

Connectionist implementation of CPL
The complete system is constructed by combining two
building blocks via a tensor product ensemble (also
implementable as a purely connectionist artifact), see
fig. 3.

In the diagram, the left-hand module implements the
is-a hierarchy while the RHS implements the rule-base.
The is-a module CMM is of size n while the rules CMM
is of size n 2 • The system, as depicted in fig . 3 and
fig. 2 shows only the resolution connections and con­
trol. Training has a different set of connections access­
ing just CMMs in both modules and is independent of
the resolution system.

Execution
The implemented CPL provides an interactive shell for
presentation of axioms and for resolution. This section
presents an example session which involves learning of
a simple semantic network and related rules and some
resolution examples.

<atom> RuleUlS
<cons equen~ hypoth"is> I <superclas,f hyporhesis>

I I

j
BuiJdi1lgBJod

Control Input ~

@--

I
BuildingBlock

Control Output

I
I

~
TrueIFalse <suptrclass> <consequents>

Figure 3: Complete connectionist implementation of CPL.
Only recall data paths are shown, as before.

The first set of axioms presented to the systems de­
scribe a simple is-a graph (fig. 4):

AXIOM jim is_a man
AXIOM jim is_a professor
AXIOM dan is_a man
AXIOM dan is_a ra
AXIOM man is_a human
AXIOM professor is_a academic
AXIOM ra is_a academic
AXIOM academic is_a human

Hum..,

Figure 4: Example is-a hierarchy.

while the following rules define how these atoms are
interrelated:
AXIOM human:any => mortal:true
AXIOM academic:any => mad:true
AXIOM professor:any => has_big_office:true
AXIOM has_big_office : true => important:true
AXIOM man:jim => drinks_tea : true
AXIOM man:dan => drinks_coffee:true

Given the set of is-a axioms and the rule set it is
possible to perform a variety of resolution queries. Re­
solving an atom searches both the is-a set and the rules
set:
> RESOLVE jim
jim is_a man
jim is_a professor
jim is_a human
jim is_a academic
jim is_a human
jim => drinks_tea:true
jim => has_big_office : true
jim => important:true
jim => mortal:true
jim => mad : true
jim => mortal:true

Resolution on a bound atom produces a subset of the
results presented above:
> RESOLVE man:jim
man:jim => drinks_tea:true
man:jim => mortal :true

These examples show the search capabilities. To show
the proper rule resolution consider the following exam­
ples:
> RESOLVE (man:jim) => (has_big_office:true)
No .
> RESOLVE

(professor:jim) => (has_big_office : true)
Yes .

This example shows how the system performs reason­
able rule resolution, although jim is both man and pro­
fessor the property of having a big office is only re­
lated to being a professor (via the rule professor: any =>
has_big_office: true) . Hence the above example per­
forms correctly. To test rule chaining consider the fol­
lowing result
> RESOLVE (professor:jim) => (important:true)
Yes.

32

which is the result of chaining rules (professor: any) =>
(has_big_office:true) and (has_big_office :true) =>
(important : true) which suggests that jim is important
since he has a big office. Similarly, resolution

> RESOLVE (ra:dan) => (important:true)
No.

shows that dan is not important since he doesn't have
a big office.

Since the architecture has no axioms predefined to
produce proper modus ponens it is necessary to provide
the axiom stating that truth implies truth:

AXIOM (true:true) =>
(true:true)

which allows for queries like

> RESOLVE «(professor:jim =>
has_big_office :true) AND

(has_big_office:true =>
important:true)) =>

(professor:jim =>
important : true»

Yes.

Conclusion
This paper presented a pure binary connectionist rea­
soning system based on a propositional logic. The op­
erational semantics were presented as were its modular
structure and an example execution. Additionally some
interesting parallels with biological systems were high­
lighted since it is surprising that they should be present
in what is largely an engineering approach to building
connectionist propositional architecture. This apparent
coincidence offers an interesting future research direc­
tion.

Acknowledgements
This work is funded by EPSRC ROPA grant
GR/L75559.

References
Austin, J. 1994. Correlation matrix memories for knowl­
edge manipulation. In International Conference on Neu­
ral Networks, Fuzzy Logic, and Soft Computing: Iizuka,
Japan.

Austin, J. 1995. Distributed associative memories for high
speed symbolic reasoning. International Journal on Fuzzy
Sets and Systems 82(2) :223-233. Invited paper to the spe­
cial issue on Connectionist and Hybrid Connectionist Sys­
tems for Approximate Reasoning.

Kennedy, J. V.; Austin, J.; Pack, R .; and Cass, B. 1995. C­
NNAP: A parallel processing architecture for binary neural
networks. In International Conference on Neural Networks
(ICANN 95).

Kohonen, T. 1978. Associative Memory. Springer-Verlag,
first edition edition.

Kustrin, D.; Austin, J.; and Sanders, A. 1997. Appli­
cation of correlation memory matrices in high frequency
asset allocation. In Niranjan, M., ed. , Fifth International
Conference on Artificial Neural Networks. lEE.

McDermott, D. 1976. Artificial intelligence meets natural
stupidity. SIGART Newsletter 57.

O'Keefe, S. E. M., and Austin, J. 1996. Document fea­
ture recognition using a mesh of associative memories. In
British Machine Vision Conference 1996, 213-222. BMVA.

O 'Keefe, S. 1997. Neura l-Based Content Analysis of Doc­
ument Images. Ph.D. Dissertation, Department of Com­
puter Science, University of York.

Smolensky, P. 1990. Tensor product variable binding and
the representation of symbolic structures in connectionist
systems. Artificial Intelligence 46{1-2) :159-216.

Sommer, F. T ., and Palm, G. 1999. Improved bidirec­
tional retrieval of sparse patterns stored by hebbian learn­
ing. Neural Networks 12(2):281-297.

Turner, M., and Austin, J. 1997a. Matching performance
of binary neural networks. Neural Networks 10(9):1637-
1648.

Turner, M., and Austin, J . 1997b. A neural network tech­
nique for chemical graph matching. In Niranjan, M., ed.,
Proceedings of the Fifth International Conference on Arti­
ficial Neural Networks. lEE.

/

	Binder6.pdf
	Scan
	Scan 1
	Scan 2
	Scan 3
	Scan 4
	Scan 5

