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Abstract 

A novel purely connectionist implementation of propo
sitionallogic is constructed by combining neural Corre
lation Matrix Memory operations, tensor products and 
simple control circuits. The implementation is highly 
modular and expandable and in its present form it not 
only allows forward rule chaining but also implements 
is a hierarchy traversal which results in interesting be
haviour even in its simplest form. Additionally, some 
biological relevance can be inferred from the architec
ture given Hebbian learning mechanism, CMM con
struction and utilisation of inhibitory synapses for con
trol. 

Introduction 
Correlation Matrix Memories (CMMs) are simple bi
nary feed forward neural networks which have recently 
been applied to a large number of real world appli
cations in domains as diverse as molecular matching 
(Turner & Austin 1997b), image segmentation (O'Keefe 
& Austin 1996) and financial forecasting (Kustrin, 
Austin, & Sanders 1997). CMMs have been studied by 
various research establishments over the years from ini
tial theoretical work by K¢honen (1978) to more mod
ern works like Sommer and Palm (1999) and Turner 
(1997a) . Their well understood semantics, complex
ity and storage properties makes them an ideal vehi
cle for preliminary research into connectionist reasoning 
systems since their operation characteristics are known 
and a number of efficient implementations (both in soft
ware and in hardware) exist (Kennedy et at. 1995) . In 
this paper CMMs have been employed as execution en
gines for a propositional logic implementation as well 
as for implementation of an is_a hierarchy. The actual 
system has been implemented as an interactive inter
preter in which only the parser and proposition-to-code 
translation was not built from connectionist compo
nents: all actual processing is performed on a purely 
connectionist architecture. In its operation it is most 
similar to Smolenski's system (Smolensky 1990) but in 
contrast to their architecture CPL is a purely binary 
connectionist system with defined semantics and inte
grated is_a hierarchy. Additionally it is also highly 
modular and thus scalable. CPL builds on initial 

CMM in reasoning theoretical papers (Austin 1994; 
1995) and represents a step in evolution towards con
nectionist higher order logic implementations. 

The following section introduces the basic CMM op
erations, atom binding and coding procedures, Ar
chitectures section presents the actual implementation 
while execution section contains an annotated sample 
transcript from an interactive session with the system. 

Operational Semantics 
The CMMs, being equivalent to single layer binary 
neural networks, have simple teaching and recall algo
rithms. Their power lies in application of thresholding 
and their ability to process overlapped input vectors. 
Teaching of a matrix M given input vector I and out
put vector ° is performed as 

M' =MVOIT 

and recall is simply 

O=6e (MI) 

(1) 

(2) 

where 69 is a transfer function performing a threshold 
at level B. Thresholding is a very powerful technique 
which allows extraction of correct associations even in 
presence of some noise; by manipulating threshold level 
it is possible to extract not only the matching associ
ation but also outputs which are "close" to it. Since 
CMMs work only on fixed weight binary vectors it is 
necessary to convert all input/output values into ap
propriate form. For propositional logic random binary 
vectors are generated for each term; these vectors are 
not necessarily orthogonal but are ensured to be sparse 
(few bits set) which allows accurate and almost error
free recalls. Error properties will not be discussed in 
this paper, see (Turner & Austin 1997a) and (Sommer 
& Palm 1999) for further information on CMM error 
properties. It is interesting to notice that it has been 
shown that binary CMMs exhibit lower crass-talk then 
non-binary single layer feed-forward neural networks for 
same associative tasks, which provides additional vali
dation for use of CMMs (O 'Keefe 1997). 

The implemented connectionist propositional logic 
(CPL) is a slight extension of the traditional propo
sitionallogic since it recognises two types: propositions 
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and atoms. Each proposition is formed by binding of 
two atoms and all rules (logic operations) are performed 
exclusively on propositions. Atoms were introduced to 
allow for more complex behaviour and are a direct con
sequence of introduction of a is_a hierarchy. Additional 
level of complexity is introduced by having two modes 
of operation: learning of axioms and resolution. Before 
presenting each logic operation and its semantics it is 
necessary to define CPL syntax. 

Sentence -+ AxiomSentence 
Sentence -+ ResolveSentence 

AxiomSentence -+ AXIOM Axiom Tail 
AxiomTail -+ IsaTerm 
AxiomTail -+ AxiomExp 

~ AxiomExp 
AxiomExp ' -+ BindTerm 
AxiomExp -+ ( AxiomExp) 
AxiomExp -+ BindTerm A AxiomExp 

ResolveSentence -+ RESOLVE ResolveExp 
ResolveExp -+ ( ResolveExp ) 
ResolveExp -+ ResTerm 
ResolveExp -+ --, ResolveExp 
ResolveExp -+ ResTerm A ResolveExp 
ResolveExp -+ ( ResolveExp ) ~ 

( ResolveExp ) 
ResTerm -+ BindTerm 
ResTerm -+ IsaTerm 
IsaTerm -+ Atom ~ Atom 

BindTerm -+ Atom ® Atom 

Figure 1: A grammar for well-formed formulae in CPL. 

Syntax 

The alphabet of the CPL is defined as 

where 

A = {T, 1- , any, none, aI, a2,"'} (4) 

P = {PI , P2, ... } (5) 

Pi = a j ® ak (6) 

operator ® is the binding operator. The truth values, T 
denoting truth and 1- denoting false are special atomic 
constants as are any and none. It is immediately obvi
ous that the disjunction connective is not part of the al
phabet and that propositions, Pi, are constructed from 
atoms by application of the binding operator, ®. Due 
to the operational semantic of the CMMs (see below) it 
is possible to convert disjunctive expressions into CPL 
well-formed formulae. Any expression of the form: 

Pi V Pj V ... ~ Pq (7) 

can be expressed as 

Pi ~ Pq 
Pj ~ Pq 

~ Pq 

and any expression of the from 

Pi ~ Pj V Pk V . .. 

can be expressed as 

Pi ~ 

(8) 

(9) 

(lO) 

These conversion forms allow rewriting of any disjunc
tive expression in CPL wff. Given the CPL alphabet it 
is necessary to present the grammar which shows the 
difference between atomic and propositional sentences 
as well as two modes of operation, see fig . l. 

Strictly speaking the grammar is ambiguous since it 
cannot be presented in LL(l) form. To solve this prob
lem precedence ordering is defined (in the parser) as 

is -a. 
follows (from highest to lowest): ®, ----7 , -' , A, ~ . 

Semantics 
The easiest and most accurate way of describing CPL 
implementation is defining its semantics, given basic 
CMM and binary vector operations. The semantics of 
the CPL is closely tied to CMM operation and their 
properties. A CMM is a binary feed-forward neural 
network which accepts and produces fixed length, fixed 
weight binary vectors. Consequently, each atom has to 
be converted into such a vector; in the implemented 
architecture this is done by assigning a random fixed 
length, fixed weight binary vector to each atom. Addi
tionally, two out offour special atomic propositions (any 
and none) have special forms: any is represented by a 
vector with all bits set while none is a zero vector. The 
binding operator, ®, performs a outer product (tensor) 
between two atoms and produces a vector which given 
atom vector length of n and weight of k will be of length 
n 2 and weight k2

: 

[b' 
b2 

b
f
] a, .. aj ~ a, "!laj ~ b:! 

1 
b2 bn 

2 2 
(11) 

bl b2 bn 
n n n 

= [bi b2 
1 b~] (12) 

where b~ = af x a; . Outer product is used for binding 
as it allows superposition of propositions without loss 
of association. 

As stated above, a CMM is a type of a neural net
work it has two modes of operation: training and recall. 
These two modes are mapped on to axiom presentation 
and resolution. The training process can be defined as 
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an operator action (1') between two sets of binary vec
tors 1 E lffin and 0 E lffin, denoting relational mapping 
1 -+ 0 , and a CMM, M as follows: 

l' (lffin , lffin , M'xn) -+ M'xn (13) 

l' (1,0, Mi) = Mi VOlT = Mi+l 

given MO = O. This equation shows that training is 
just a disjunction of outer products. Similarly, recall 
operator (9\) takes a CMM, input vector and an integer 
(threshold) and produces an output vector: 

9\ (lffin, M'xn, Z) -+ lffin (14) 

9\(I,M,n) = en (MI) = 0 

The threshold parameter can be varied to produce var
ious effects but in this paper it is assumed to be set at 
the input/output vector weight at all times, see (Austin 
1995) for further information on application of thresh
olds in CMMs. 

These three definitions (binding, training and re
call) allow specification of the semantics of BindTerm, 
IsaTerm, AxiomTail implication and ResolveExpression 
implication terms in the grammar: 

Atom@Atom 

Atom ~ Atom 
is-a 

ai --+ aj 

M i • . a f- l' (ai,aj,Mi._a ) 

Atom ~ Atom 

(lffin, lffin) -+ lffin
z 

is-a 
ai --+ aj 

aj = 91 (ai, Mi._a, 8) 

(15) 

(16) 

(17) 

(18) 

where (lffin, lffin) -+ lffin
2 

(for example) is the type defi
nition, first row is the grammar representation and the 
second row is the implementation definition. The above 
two forms of the is-a association relate to either train
ing (axiom presentation), eq. 17, or recall (resolution), 
eq. 18. The resolution equation (eq. 18) returns a truth 
value which is a vector of length n 2 and weight k 2 , see 
below. Similar equations can be constructed for the 
implication connective: 

BindTerm ~ BindTerm (19) 

(lffinZ, lffinZ) 

~ Pi ~ Pj 
~ Mrule f- l' (Pi,pj,Mru1e ) 

BindTerm ~ BindTerm (20) 

(lffin2,lffin2) -+lffin2 

~ Pi ~ Pj 
~ Pj = 91 (Pi, M ru1e , 8) 

As in the eq. 17 and eq. 18, two modes of operation 
exist: training and recall. In the recall (resolution) the 
return value is a truth token, see below. The CMM 
size in is-a case and rules case are different. The is-a 
uses matrix of size n x n and type Mnxn while rules 
store uses a CMM of size n2 x n2 and type ~z xn

2
• 

The conjunction operator semantics are defined using 
bitwise 'or' operation (V) as follows: 

I 

BindTerm 1\ BindTerm 

(lffinZ , lffinZ) -+ lffin
z 

Pi 1\ Pj 

Pi V Pj 

(21) 

As it can be seen from the above equations, the basic 
return value is a tensored vector of length n 2 and weight 
k2 • The four primitive atomic propositions T , .1, any 
and none are, although atomic, of the proposition size 
and weight since they operate on propositional level. 
The negation operator can, thus, be defined as 

,BindTerm (22) 
~ 'Pi 

~ {: if Pi = .1 
otherwise 

This definition converts a proposition into a truth value. 
Although not ideal it is necessary since even under 
closed world assumption negation semantics is quite 
difficult . Alternative would be to denote 'Pi as the 
set of all propositions excluding Pi, 'Pi ~ all - Pi· 
This approach was not chosen since it doesn't map well 
to CMM architecture. The equality operation used in 
eq. 18 and eq. 20 can be defined as 

BindTerm = BindTerm 

lffin , lffin -+ lffin ( 
Z Z) Z 

Pi = Pj 

{
T if Pi and Pj are identical 
.1 otherwise. 

Axioms and Resolution 

(23) 

CPL does not come with any predefined axioms. All ax
ioms have to be presented to the architecture (trained). 
The resolution system is also very simple. Since both 
is-a and the rules sub-systems are built from the same 
building blocks they implement the same algorithm: 
chaining. In is-a mode they performs traversal up the 
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is-a tree while in the rules sub-system mode they for
ward chain the rules . 

The is-a hierarchy is a directed non-cyclical graph 
depicting both membership and subset relations. In 
traditional semantic networks there is a distinction be
tween subset relations like Cats ~ Mammals and 
B b Member C . . o ) ats smce they necessanly have differ-
ent semantics, Cats C Mammals and Bob E Cats, re
spectively. In CPL this distinction is not made and a 

general is-a relation is used: Cat ~ Mammal and 

Bob ~ Cat. Not making this distinction allows sim
ple application of the binding operator to atoms for 
formation of propositions. These propositions are then 
passed to the rule sub-module which uses them for rule 
searching. Traditionally it has been argued that using 
is-a links instead of separate membership and subset 
links leads to inconsistencies (McDermott 1976). Al
though the formal semantics of inheritance has not been 
developed for this system the problems outlined in (Mc
Dermott 1976) are not applicable since the propositions 
always have the form class 0 query atom in which only 
the class part is modifiable. The class part can only be 
changed to a superclass until the top of the inheritance 
graph has been reached. Since the is-a hierarchy is as
sumed to be a directed non-cyclic graph termination is 
assured. 

The rules sub-system accepts propositions and per
forms forward chaining on left-hand sides of the rules. 
Given an input rule Pi ~ Pj it will search for all 
the rules matching Pi on the LHS. If none are found 
it will request modification of the rule LHS by the is
a module. This request will ask for replacement of 
the Pi superclass by its superclass, if any exists, ego 
if Pi = aj 0 ak and no rules are matched, the rule 
sub-system will request the super-class of aj, say am, 
which will then be bound to ak into a new proposition 
Pn = am 0 ak· This new proposition will then be used 
in another search. The searching process will end when 
the is-a has reached -the top of its hierarchy. 

Although the architecture only uses forward chaining 
and a simple semantic network it is capable of perform
ing resolution of a surprising flexibility. 

Architecture 
The connectionist architecture implementing the se
mantics of CPL has been built. The grammar and the 
semantics have been directly implemented in YACC and 
LEX on a Silicon Graphics Supercomputer. Although 
currently the architecture is simulated in software it is 
a truly connectionist artifact. Both is-a and the rules 
sub-systems have been built using exactly the same ba
sic building block presented in fig. 2 (figure is slightly 
simplified and shows only the recall connections and 
omits training/recall switching and input/output pre 
and post processing). 

It is interesting to notice that all components used are 
implementable in purely connectionist form: the Corre
lation Matrix Memory is a simple binary feed-forward 

<input hypothesis> <input> 

True False <output> 

Control 
Output 

Control 

Figure 2: Basic building block for the connectionist archi
tecture implementing CPL. Diagram only shows the data 
paths for recall mode of operations. 

neural network, the Selector components can be con
structed by using inhibitory neurons while the compara
tor is a simple bit-wise conjunction. This necessity for 
inhibitory synapses for control of recursion is very inter
esting since it suggests biological plausibility. The con
trol input is used to "stop" the module from forward
chaining and keep it at the current search parameter. 
This is used, in the complete architecture, by the rules 
sub-module for control of is-a hierarchy traversal. The 
selector component is used bi-directionally either as a 
input selector or output selector. Both variants are con
trolled by a control signal and the component semantics 
can be defined as follows, in input selection form: 

Selector (II, h) -+ 0 

0= {II 
h 

or, in output selection form, as 

Selector (1) -+ Oi = I 

i= g 

if Control = 0 
otherwise 

if Control = 0 
otherwise 

(24) 

(25) 
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Connectionist implementation of CPL 
The complete system is constructed by combining two 
building blocks via a tensor product ensemble (also 
implementable as a purely connectionist artifact), see 
fig. 3. 

In the diagram, the left-hand module implements the 
is-a hierarchy while the RHS implements the rule-base. 
The is-a module CMM is of size n while the rules CMM 
is of size n 2 • The system, as depicted in fig . 3 and 
fig. 2 shows only the resolution connections and con
trol. Training has a different set of connections access
ing just CMMs in both modules and is independent of 
the resolution system. 

Execution 
The implemented CPL provides an interactive shell for 
presentation of axioms and for resolution. This section 
presents an example session which involves learning of 
a simple semantic network and related rules and some 
resolution examples. 

<atom> RuleUlS 
<cons equen~ hypoth"is> I <superclas,f hyporhesis> 

I I 

j 
BuiJdi1lgBJod 

Control Input ~ 

@--

I 
BuildingBlock 

Control Output 

I 
I 

~ 
TrueIFalse <suptrclass> <consequents> 

Figure 3: Complete connectionist implementation of CPL. 
Only recall data paths are shown, as before. 

The first set of axioms presented to the systems de
scribe a simple is-a graph (fig. 4): 

AXIOM jim is_a man 
AXIOM jim is_a professor 
AXIOM dan is_a man 
AXIOM dan is_a ra 
AXIOM man is_a human 
AXIOM professor is_a academic 
AXIOM ra is_a academic 
AXIOM academic is_a human 

Hum.., 

Figure 4: Example is-a hierarchy. 

while the following rules define how these atoms are 
interrelated: 
AXIOM human:any => mortal:true 
AXIOM academic:any => mad:true 
AXIOM professor:any => has_big_office:true 
AXIOM has_big_office : true => important:true 
AXIOM man:jim => drinks_tea : true 
AXIOM man:dan => drinks_coffee:true 

Given the set of is-a axioms and the rule set it is 
possible to perform a variety of resolution queries. Re
solving an atom searches both the is-a set and the rules 
set: 
> RESOLVE jim 
jim is_a man 
jim is_a professor 
jim is_a human 
jim is_a academic 
jim is_a human 
jim => drinks_tea:true 
jim => has_big_office : true 
jim => important:true 
jim => mortal:true 
jim => mad : true 
jim => mortal:true 

Resolution on a bound atom produces a subset of the 
results presented above: 
> RESOLVE man:jim 
man:jim => drinks_tea:true 
man:jim => mortal :true 

These examples show the search capabilities. To show 
the proper rule resolution consider the following exam
ples: 
> RESOLVE (man:jim) => (has_big_office:true) 
No . 
> RESOLVE 

(professor:jim) => (has_big_office : true) 
Yes . 

This example shows how the system performs reason
able rule resolution, although jim is both man and pro
fessor the property of having a big office is only re
lated to being a professor (via the rule professor: any => 
has_big_office: true) . Hence the above example per
forms correctly. To test rule chaining consider the fol
lowing result 
> RESOLVE (professor:jim) => (important:true) 
Yes. 
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which is the result of chaining rules (professor: any) => 
(has_big_office:true) and (has_big_office :true) => 
(important : true) which suggests that jim is important 
since he has a big office. Similarly, resolution 

> RESOLVE (ra:dan) => (important:true) 
No. 

shows that dan is not important since he doesn't have 
a big office. 

Since the architecture has no axioms predefined to 
produce proper modus ponens it is necessary to provide 
the axiom stating that truth implies truth: 

AXIOM (true:true) => 
(true:true) 

which allows for queries like 

> RESOLVE «(professor:jim => 
has_big_office :true) AND 

(has_big_office:true => 
important:true)) => 

(professor:jim => 
important : true» 

Yes. 

Conclusion 
This paper presented a pure binary connectionist rea
soning system based on a propositional logic. The op
erational semantics were presented as were its modular 
structure and an example execution. Additionally some 
interesting parallels with biological systems were high
lighted since it is surprising that they should be present 
in what is largely an engineering approach to building 
connectionist propositional architecture. This apparent 
coincidence offers an interesting future research direc
tion. 
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