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Abstract 

Biomimetic computation seeks to develop artificial 
intelligence by methodologies inspired by natural information 
processing mechanisms. Genetic algorithms simulate 
biological evolution by . operating on genotypes, while 
evolution strategies and evolutionary programming 
emphasize phenotypes. However, the ontogenetic mapping 
of genotypic space to phenotypic space in biological systems 
is not determini·stic, because ontogenesis is influenced by 
epigenetic factors , acting at the microenvironment and 
macroenvironment levels. Hence, phenotype results from 
both genetic and epigenetic operators. Although genomes 
and phenomes are fundamental aspects of evolutionary 
theory, ontogenetic evolutionism requires integration into the 
neoDarwinian synthesis, and epigenetic operators should be 
included in evolutionary computation. In this context we 
propose a novel perspective for simulated evolution: 
ontogenetic programming, in which ontogenetic algorithms 
involving epigelietic operators shape the adaptive trajectories 
of massively parallel cellular tensor multidimensional 

. manifolds during somatic development. We outline its 
theoretical rationale and its modular application to 
neurocomputational biocognitronics models, artificial life, 
and evolvable neuromorphic hardware. 

Introduction: Biomimetic Computation 
The creation of artificial intelligence and artificial life has 
been a goal of mankind from the beginnings of recorded 
history, as exemplified by Homer's account of Hephaistos' 
automata in The Iliad. Even the earliest" computer 
scientists focused on biological systems for inspiration in 
their computational endeavors. Alan Turing (Hodges 
1983) thought about the operation of assemblies of nerve 
cells in his quest to understand how brains learn, and 
became interested in biological pattern creation by means 
of morphogenesis. John Von N~umann (Aspray 1990) 
considered that the central nervous system employs a 
primary language from which mathematics is derived. 
And Norbert Wiener's seminal work Cybernetics (Wiener 
1961) is actually subtitled "control and communication in 
the animal and the machine". 

More recently several computational approaches inspired 
by biological processes have been developed; they form 
part of a field that we call biomimetic computation. For 
instance, artificial neural network models are algorithms 

based on the structure of biological nervous systems which 
are used for cognitive tasks such as learning and 
optimization. Cellular automata represent prototypical 
models for complex processes consisting of numerous 
identical, simple, locally connected elements with 
computational capabilities which provide insights into the 
behavior of extended dynamical systems, and are inspired 
by the geometrical organization of biological cells in 
tissues. In addition, the efficiency of neoDarwinian 
evolution as -' a search and optimization problem-solving 
mechanism has led to the elaboration of various paradigms 
that seek to create artificial intelligence by simulating 
natural evolutionary processes. However, there are other 
bioinformatics approaches that instead of simulating 
biological processes, actually employ biological 
macromolecular substrata, as in the case of DNA 
computing (Adleman 1994). 

Evolution of Intelligence or Intelligence of 
Evolution? 

The human brain is the most complex neurocomputational 
biological machine produced by natural evolution. And 
yet it is the intelligence of evolutionary mechanisms which 
has resulted in massively parallel biological optimizations 
to natural problems over eons. The engineering problem of 
addressing increasing complexity has been approached by 
biomimetic computational paradigms that simulate the 
evolutionary process. In contrast to expert systems used in 
knowledge engineering, these distributed problem-solving 
approaches seek to simulate nature's evolutionary 
mechanisms as described by the neoDarwinian synthesis, 
affording an effective strategy in situations where complex 
information processing systems require adaptive responses 
to a changing environment. Even Turing described a 
parallel between intelligence and "the genetical or 
evolutionary search by which a combination of genes is 
looked for", stating that "the remarkable success of this 
search confirms to some extent the idea that intellectual 
activity consists mainly of various kinds of search" 
(Hodges 1983). He envisioned evolutionary computation 
as a program that would simulate the plasticity of a child's 
mind instead of an adult ' s, thus affording a wider 
repertoire of choices as it grows. This viewpoint 
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represents artificial or synthetic ontogenesis, and is based 
on a biological perspective that we call developmental 
evolutionism or somatic neoDarwinism. In contrast, 
widely used paradigms in evolutionary computation focus 
on the genotypic or phenotypic levels, excluding the 
ontogenetic process. 

Genetic, Ontogenetic, Phenotypic 
Evolutionism 

Well described evolutionary computational approaches can 
be divided into two major categories, depending on level of 
abstraction (genotypic or phenotypic). Genetic algorithms 
and genetic programming focus on genotypic 
transformations, while evolutionary programming and 
evolution strategies emphasize phenotypes (Fogel 1995; 
Back, Hammel, and Schwefel 1997). 

The concept of genetic algorithms (Holland 1992), 
introduced and developed by John Holland and his 
collaborators, is . based on formulating any problem in 
adaptation in genetic terms. Genetic algorithms transform 
a "population" of individual mathematical objects into a 
new population. The objects in the original set are 
patterned after "chromosomal" strings with associated 
"fitness" values, which are transformed into the next 
"generation" by means of operations based on 
neoDarwinian principles such as reproduction and survival 
of the fittest, as well as other naturally occurring genetic 
mechanisms like recombination. The genetic 
programming paradigm increases the complexity of the 
structures undergoing adaptation by employing general 
hierarchical computer programs of varying characteristics. 

In contrast to the bottom-up approach used by the 
aforementioned genetic strategies, evolutionary 
programming and evolution strategies are optimization 
tools that focus from the top-down, phenotypic level. For 
instance, evolutionary programming emphasizes the 
linkage between "parents"· and their "offspring" instead of 
emulating specific genetic operators, and is devoid of the 
representational constraints of genomic string encoding. 

However, in biological systems, the ontogenetic mapping 
of genotypic state space to phenotypic state space is not 
deterministic, exhibiting irregular trajectories that may 
even result in regressive developmental events such as 
somatic cell death (Figure 1). This is because the process 
of ontogenesis is influenced by epigenetic factors, which 
act at the microenvironment (e.g. ' epistatic effects) and 
macroenvironment (e.g. gravitational forces) levels, 
Hence, phenotype results from a combination of both 
genetic and epigenetic operators during ontogenesis. 
Nonetheless, although the genomic and phenomic levels 
represent fundamental aspects of current evolutionary 
theory, developmental evolutionism requires further 
integration into the neoDarwinian synthesis, and epigenetic 
operators need to be included as part of evolutionary 
computational paradigms. In this context we propose a 

novel paradigm for simulated evolution: ontogenetic 
programming (OP). OP employs ontogenetic algorithms 
(OAs) involving epigenetic operators (EOs) which shape 
the trajectories of massively parallel cellular tensor 
manifolds (denoting differential gene expression in 
multidimensional space) on adaptive landscapes during 
somatic development. This paradigm is partly based on the 
theoretical underpinnings of ontogenetic evolvability, 
developmental statistical mechanics (ontogenetic 
mechanics), topobiology, and neuronal group selection 
theory, as well as on our investigations of epigenetic 
effects on cellular differentiation and morphogenesis, such 
as the induction of DNA rearrangements (McCarty and 
Love 1989), cellular tensegrity (Love and Johnson 1999a), 
and biological neural network topohistogenesis (Love and 
Cohen 1990; Cohen and Love 1993), 

It is important to note that some investigators, not 
formally trained in biological sciences, have attempted to 
address developmental issues (e.g. Sipper et al. 1997, Nolfi 
et al. 1994, Cecconi el al. 1995, Gruau and Quatramaran 
1997). However, they have generally focused on learning 
and behavior, considered the process predominantly 
deterministic, and given the biological terminology 
interpretations that differ significantly from the 
phenomenology exhibited by natural organisms. 

GenotypiC 
State Space 

ontogenesis 

Phenotypic 
State Space 

Fig. 1. Lewontin-type diagram illustrating the mapping of 
genotypic state space to phenotypic state space. The ontogenetic 
process is not deterministic (A), but rather a sinuous trajectory (B) 
shaped by epigenetic factors, which can result in regressive 
developmental events such as somatic cell death (C). 

Theoretical Framework for Somatic 
neoDarwinism 

The concept of relating the somatic developmental process 
(ontogeny) to the evolutionary hierarchy of animal species 
(phylogeny) is not new (Depew and Weber 1995), Darwin 
realized that an understanding of embryology was essential 
to comprehend natural selection. Haeckel, who coined the 
terms "ontogeny" and "philogeny", considered that 
embryonic development was simply an accelerated version 
of evolution. His "biogenetic law" postulated that life 
histories of organisms recapitulate their evolutionary 
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histories, and is based on the study of the similarities 
between early embryos of various species (Figure 2). This 
inaccurate view was thereafter rejected by other 
developmental biologists like Rou,,<, who emphasized a 
causal view of embryogenesis, proposing a scheme that he -
called "developmental mechanics" (in analogy to Newton's 
laws of celestial mechanics). Nonetheless, it is possible to 
consider the developmental process illlder the evolutionary 
viewpoint, but at the cellular level. The following 
theoretical approaches, emphasizing an ontogenetic 
framework for natural evolution, have recently contributed 
to the fOillldations of developmental evolutionism (somatic 
neoDarwinism), which represents the biological basis for 
ontogenetic programming. 

II 

Fig. 2. Morphological similarities of vertebrate embryos at 
various stages of development (after Romanes 1901), a 
fundamental observation suggesting common phylogeny and 
similar basic morphogenetic mechanisms (T=tortoise, C=chick, 
P=pig, B=bovine, R=rabbit, H=hurnan). 

Statistical Mechanics of Development and 
Ontogenetic Evolvability 
Lewontin's analysis of the evolutionary process denotes 
that a theory of genotype to phenotype mapping 
(ontogenesis) is essential in order to complete the 
neoDarwinian synthesis. In this context, Kauffman 
(Kauffman 1993, 1994) has reported the need for a new 
statistical mechanics (developmentaJ mechanics), in which 
the "developmental program" encoded by DNA can be 
viewed as a parallel-processing genomic system whose 
dynamical behavior unfolds during ontogeny. According 
to this framework, cell differentiation can be interpreted as 
a parallel-processing expression of genes in each cell 
lineage. Thus, it is necessary to understand how a 
biological organism arises from a parallel-processing 
dynamical system, and is molded by evolution and 
selection, in order to comprehend embryonic development 

from the fertilized zygote, and the evolvability of 
ontogenesis. 

Kauffman's "cell differentiation Boolean dynamical 
network" models the cybernetic genetic regulatory network 
illlderlying cell differentiation and ontogeny. This 
theoretical framework uses concepts from Boltzmann's 
statistical physics and dynamical systems theory, 
describing the relation between self-organization and 
selection. Adaptive evolution is modeled as a rugged 
"fitness" landscape, and alternative cell types are 
represented as state cycle dynamical attractors in genomic 
architecture space, where recurrent patterns of gene 
activity converge asymptotically (Figure 3). Hence, 
number of attractors map to cell type number, size of 
attractors map to gene expression pattern restrictions, and 
evolution of novel cell types results from alterations of 
attractors (as by means of mutation). Cell types are 
specified by a combinatorial epigenetic code. Adaptation 
occurs at the boundary of chaos, optimizing evolvability. 

In addition to the cellular differentiation issue (addressed 
above), the main problem in ontogeny is morphogenesis, 
the process by which cells become coordinated into 
organized tissues and organs. Kauffman approaches 
morphogenesis by means of an ensemble theory, 
integrating combinations of developmental mechanisms. 
Thus, pattern formation can be analyzed by cellular 
positional information in topological maps. In this 
framework, basins of dynamical attraction and cellular 
typology can be modified during development by 
mechanochemically modeled vectorial effects, such as 
"microhormone" gradients. In contrast to their genomic 
c oilllterp arts , morphologic fitness landscapes can be 
smooth in addition to rugged. In sum, by achieving self­
organization at the edge of chaos, selection optimizes the 
capacity of genomic systems to perform complex gene­
coordination tasks and evolve effectively, achieving 
optimal morphogenesis. 

Fig. 3. Statistical mechanics inspired rugged fitness landscape 
(top and lateral views). Dwing the ontogenetic process, 
developing cells adapt to a varying genomic and morphologic 
topography shaped by epigenetic factors, following (evolving) 
developmental trajectories in somatic time toward optimized 
phenotypes (dynamical attractors, denoted by landscape peaks). 
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Developmental Topobiology and Neuronal Group 
Selection Theory 
Edelman (Edelman 1987, 1988) has stressed that the 
ontogenetic mapping of genotypes to phenotypes · 
represents the most important of all evolutionary problems, 
without which the modem synthesis is incomplete. He has 
approached this issue within the topobiological framework. 
Topobiology focuses on place-dependent intercellular 
interactions that lead to the regulation of the primary 
processes of embryonic development and morphologic 
evolution. Topobiological mechanisms link developmental 
genetics to mechanochemical events, taking into account 
epigenetic factors, whose understanding is essential to 
complete the picture of molecular embryology. 
Environmental (epigenetic) factors, both internal and 
external, can exert a great selective force on newly 
appearing genetic changes. Hence, during development, 
epigenesis is just as important as genetics. While 
ontogenesis has genetic underpinnings, developmental 
events are epigenetic and topobiologically controlled. 
Thus, development involves highly nonlinear epigenetic 
changes, which are highly context dependent. Pattern, not 
simply cell differentiation, is the evolutionary basis of 
morphogenesis. 

Edelman's "morphoregulator hypothesis" is based on the 
notion of development as not being simply or directly 
related to genetic change. Instead, the primary processes 
that drive development show stochastic and nonlinear 
interactions that depend on mechanochemical factors, 
which are not prefigured in genes. Moreover, there are 
iopobiological constraints upon the size, movement, and 
interaction of cell assemblies. The temporally regulated 
expression of morphoregulators provides the selectivity 
that guides and kinetically constrains primary 
morphogenetic processes. Functional adaptive diversity 
and phenotypic variability result from the interaction of 
both genetic and epigenetic factors during development. 

Edelman's "neuronal group selection theory" (neural 
Darwinism) uses population thinking to evaluate nerve 
cells during neural development, and focuses on the 
adaptive aspect of variation and selection in brain 
connectivity reentrant mappings and signal patterns. Thus, 
the Darwinian aspect of cognition appears not only in its 
phylogenetic evolution but also in its somatic selectional 
processes. Although operating by means of different 
mechanisms, the immune system is also capable of 
intelligent recognition and exhibits· somatic evolution. 

Epigenetic Factors Affecting Differentiation 
and Morphogenesis: Case Studies 

The theoretical frameworks outlined above (ontogenetic 
evolvavility, developmental statistical mechanics, 
topobiology, and neural Darwinism) emphasize the 
importance of including the epigenetic perspective (in 

addition to the genetic) when analyzing the appearance of 
phenotypes by means of the ontogenetic process (somatic 
evolution). The following examples serve as illustrations 
of the effect of epigenetic influences on morphogenesis 
and differentiation in biological systems. 

Gravimorphogenesis and Sensory Deprivation 
Epigenetic stimulation is essential to development of 
various sensorineural systems. For instance, in the visual 
system, partial or total deprivation of visual stimulus 
during a critical developmental period results in 
irreversible abnormalities of the retina and several neural 
elements involved in the processing of visual information. 
Weare investigating the molecular and cellular 
underpinnings of gravisensory mechanisms in plants and 
animals, both under terrestrial conditions and in the 
spaceflight environment (Love and Cohen 1990; Johnson 
and Love 1999). The force of one gravitational unit 
characteristic of terrestrial ecosystems represents a stable 
and pervasive epigenetic influence that has affected the 
development' of biological organisms on the surface of 
planet Earth throught evolution. The effect of alterations 
of this epigenetic agent in the near-weightlessness 
(microgravity) medium of space are not well understood, 
and may contribute to fields ranging from gravitational 
biology to neurovestibular pathophysiology. 

Gene Amplification and Topological DNA 
Rearrangements 
Many topological rearrangements of the genetic material 
are epigenetic in origin. For instance, we have studied 
DNA alterations in cultured cells that became resistant to 
heavy metals, and described a gene amplification 
phenomenology (McCarty and Love 1989). In this case, 
the epigenetic influence of high concentrations of heavy 
metals (such as cadmium) resulted in amplification of the 
genes coding for metallothionein, a protein involved in 
heavy metal detoxification and homeostasis. Anticancer 
platinum-based drugs were also shown to cause this type of 
DNA rearrangement. Gene amplification plays an 
important role in evolution, affording the template for the 
generation of multigene families as well as gene products 
with related structural and functional domains. 

Embryonic Induction and Cellular Tensegrity 
Embryonic induction represents an epigenetic mechanism 
described by early experimental embryologists. For 
example, in amphibians, formation of the eye's lens is 
induced in the ectoderm overlying the optic vesicle. 
Removal of the optic vesicle results in failure of the lens to 
develop; conversely, transplantation to another part of the 
organism results in lens induction in the overlying 
ectoderm. More dramatically, inter-species transplantation 
of mesoderm also induces region-specific differentiation of 

." ,:'. ' .. . ..... . 
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ectoderm which then expresses its cell lineage fate 
according to its origin. 

Cellular tensional integrity (tensegrity) is another 
epigenetic aspect involved in ontogenesis (Love and 
Johnson 1999a). Mechanical forces transmitted via the . 
cytoskeletal network can modify the subcellular geometry 
of enzymes, thus influencing biochemical reactions and the 
differential gene expression they control. Moreover, 
cellular tensegrity helps explain self-assembly mechanisms 
essential to morphogenesis. 

Apoptosis, Trophism, and Regressive Ontogenetic 
Mechanisms 
The epigenetic effect of chemical agents in the ontogenetic 
process has a long history. Turing's interest in embryology 
led him to propose a chemical hypothesis for onset of 
pattern in dissipative systems (Hodges 1983). We have 
investigated spatiotemporal aspects of the development of 
the avian statoacoustic ganglion (Love and Cohen 1990; 
Cohen and Love 1993), a system in which some 25% of 
neurons die during ontogenesis (Figure 4). This regressive 
ontogenetic event is important in the development of the 
mature vertebrate nervous system. Programmed cell death 
(apoptosis) has been shown to occur in certain systems in 
the absence of a trophic factor, such as nerve growth factor 
in the case of sympathetic neurons (Johnson and 
Deckwerth 1993). 

Fig. 4. Morphological and biochemical changes in neuronal cell 
bodies (perikruya) during the ontogenesis of the avian 
statoacoustic ganglion. As neuronal cells develop (from I to II), 
they exhibit variation in sizes, as well as in neuron-specific 
enolase and neurofilament protein 200 kD immunoreactivities. 
Epigenetically regulated developmental cell death accounts for 
their reduction in number during embryogenesis. 

Toward Artificial Ontogenesis: From 
Adaptive Biomimetic Models to Evolvable 

Biomorphic Hardware 
Ontogenetic programming is being developed as a dual 
purpose tool: to evolve/adapt reverse engineered symbolic 

biomimetic models, and as a basis for ontogenetic 
engineering of adaptive/evolvable biomorphic machines. 

F or instance, we are interested in generating 
adaptive/evolvable gravisensory systems modeled after 
their biological counterparts by means of biocognitronics 
(BCT) reverse engineering (Love and Johnson 1999b). 
The BCT hybrid approach produces neurocomputational 
symbolic abstractions by implementing methodologies that 
combine fuzzy logic, cellular nonlinear automata, and 
artificial neural network elements in addition to the tools of 
statistical mechanics, tensor calculus, complexity, and 
dynamical systems theory. Applying BCT techniques to 
the vertebrate gravity-sensing organs (VGSOs) has yielded 
a protypical artificial gravity-sensing organ (AGSO): 
GRA VICOGNITOR (GC). GC is based on the cellular 
geometry and dynamic connectivity of VGSOs, and in its 
preliminary version exhibits the following pattern 
recognition characteristics. The gravitoinertial tensor 
space input on the otoconial membrane (depicted as a 
matrix with viscoelastic and piezoelectric properties) is 
converted to an Ising-like fuzzy encoding lattice 
(representing the directional sensitivity of apical sensory 
ha:ir bundles) by means of coordinate transformations. The 
resulting fuzzy electrotonic functional polarization patterns 
are then mapped to a manifold of hypercubical nonlinear 
fuzzy cytodes (representing the neuroepithelium), which 
are linked to a cellular nonlinear network of 
multidimensional fuzzy neurodes (representing the 
canonical nerve cell bodies in the first order sensory 
ganglion) interconnected by means of reentrant pathways. 
In this manner, the computational mechanics of 
gravicognitive pattern recognition are described by means 
of sequential mapping functions that transform 
gravitoinertial state space into sensorineural state space. 
GC can evolve by means of ontogenetic programming, and 
is the basis for related pattern recognition 
adaptive/evolvable modular hardware. 

Artificial Life Implications and Concluding 
Remarks 

During a recent conference on evolvable hardware, when 
the question was asked about expectations for the field by 
the year 2008, one of the panelists stated that more 
attention should be placed on "the transfer from genotype 
to phenotype" (DeGaris 1998). This perspective also 
applies to the field of artificial life in general, and is the 
focus of our ontogenetic ideology, which emphasizes the 
aspect of evolutionary theory without which the 
neoDarwinian synthesis remains incomplete. Ontogenetic 
programming with epigenetic operators may contribute to a 
more realistic modeling of adaptive/evolvable 
neurocomputational systems, as in the case of our artificial 
gravity-sensing organ. By simulating somatic neo­
Darwinism, it fills the gap between the genotypic and 
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Fig. 5. Relationships between biologically-inspired artificial systems and biomimetic paradigms based on 
developmental evolutionism (somatic neoDarwinism). 

phenotypic levels not addressed by other evolutionary 
computational paradigms; this is essential for artificial 
morphogenesis. Moreover, it may be used in the design, 
development, and control of adaptive/evolvable hardware 
by means of ontogenetic engineering. For instance, the 
biological neural net in our model of the vertebrate 
gravisensory apparatus can be used as a prototypical 
module in the generation of biomorphic cognitive 
machines that can adapt/evolve, as well as in other 
bioelectronic hardware. In conclusion, the following chart 
summarizes the relationships between biomimetic 
approaches based on developmental evolutionism and 
various biologically-inspired synthetic systems (Figure 5). 
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