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Abstract 

This paper attempts to identify certain neurobiological 
constraints of natural language processing and exam
ines the behavior of recurrent networks for the task 
of classifying aphasic subjects . The specific question 
posed here is: Can we train a neural network to dis
tinguish between Broca aphasics, Wernicke aphasics 
and a control group of normal subjects on the basis 
of syntactic knowledge? This approach could aid dia
gnosis/classification of potential language disorders in 
the brain and it also addresses computational modeling 
of language acquisition. 

Introduction 

Within the field of artificial neural networks, the bio
logical models from which they were originally inspired 
continue to offer a rich source of information for new de
velopments. Conversely, computational models provide 
the power of simulations, to support the understand
ing of neurobiological processing systems (Hinton and 
Shallice 1989). The study of language acquisition is an 
especially important part of this framework, not just be
cause of the importance of language-related neural net
work applications, but also because it provides a very 
good basis for studying the underlying biological mech
anisms and constraints involved in the development of 
high-order cognitive functionality. 

As part of this, studies on aphasia are directed at 
solving two major problems: the clinical treatment of 
aphasia patients and the computational modeling of 
language processing. In parallel with the psychological 
and linguistic aspects, computational simulations con
stitute a very important part of these studies - helping 
to understand the representational and functional lan
guage processes in the brain. There is a broad range of 
open questions that need an adequate answer before we 
reach any significant success in our computational mod
els. These questions start from very precise biophysics 
or biochemistry problems, pass through many interdis
ciplinary ones within the Nature v Nurture debate (El
man et al. 1996) , localist and distributed representa
tional/functional paradigms, language localization and 
plasticity paradigms and finally many questions arise 

in the application and theoretical levels of linguistics, 
psychology and philosophy. 

There are two major directions for studying the rep
resentational and functional processing of language in 
the brain. We can study the emergent language skills 
of humans, e.g. innate vs. learned, or we can study 
the effects of language impairments such as those due 
to brain "injury, e.g. aphasia. 

Discussing the first direction, some authors attempt 
to use new developments in neuroscience (and neuro
modeling) to make sense of issues as development and 
innateness, from a connectionist viewpoint (Elman et 
al. 1996). They argue that there is a lot more in
formation inherent in our environments, and that we 
therefore require much less innate hard wiring at cortical 
level than was previously thought. In their own words, 
"Representational Nativism is rarely, if ever a tenable 
position" , and "the last two decades of research on ver
tebrate brain development perspective force us to con
clude that innate specification of synaptic connectivity 
at the cortical level is highly unlikely" . 

Discussing the second direction, the study of human 
language impairments also provides a source for our un
derstanding of language. For quite a long time, the link 
between left-hemisphere injury and language impair
ments has been known and studied (Goodglass 1993). 
Most of these studies supported the notion of strong 
precoding of language processing in the brain. Until 
recently, this notion was dominant, despite the well
known facts such as lesion/symptom correlations ob
served in adults do not appear to the same degree for 
very young children with early brain injury (Lenneberg 
1962). In general, without additional intervention, in
fants with early damage on one side/part of the brain 
usually go on to acquire abilities (language, vision, etc.) 
that are considered within the normal range. 

Within recently published work on language, cogni
tion and communicative development in children with 
focal brain injury (Elman et al. 1996; Bates et al. 1997; 
Stiles et al. 1998; Bates et al. 1999) , the favorite view
point of brain organization for language has changed. 
Many scientist have taken a new consensus position 
between the historical extremes of equipotentiality (Len
neb erg 1962) and innate predetermination of the adult 
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pattern of brain organization for language (Stromswold 
1995; Bates in press) . However, there is still not a def
inite understanding of the levels of innateness and plas
ticity in the brain. Obviously, there is a lot of work 
to be done, and any advances will have a great impact 
for possible approaches of the many problems within 
clinical treatment or computational modeling. 

Studies on aphasia constitute a significant part of the 
effort to understand the organization of the brain. The 
approach suggested here uses a recurrent neural net
work in order to classify interviewed subjects into nor
mal or two different aphasic categories. The results 
obtained up to this point might be used in the clin
ical treatment of patients or classification of potential 
aphasics, but the proposed research continues into the 
direction of computational language modeling. Further
more, the model is put into a perspective of integration 
of symbolic/sub-symbolic approaches. We suggest the 
use of neural preference Moore machines in order to 
extract certain aspects of the behavior of the network 
in deriving s'ome neurobiological constraints of natural 
language processing. 

The paper is structured as follows: First we give an 
outline about different forms of aphasia. Then we de
scribe the recurrent neural network model and the spe
cific aphasia corpus. Finally, we present detailed results 
on classifying Broca, Wernicke and normal patients. 

Aphasia in the Brain 
Aphasia is an impairment of language, affecting the 
production or comprehension of speech and the ability 
to read or write. Aphasia is associated with injury to 
the brain - most commonly as a result of a stroke, par
ticularly in older individuals. It may also arise from 
head trauma, from brain tumors, or from infections. 
Aphasia may mainly affect a single aspect of language 
use, such as the ability to retrieve the names of ob
jects, the ability to put words together into sentences, 
or the ability to reaq. More commonly, however, mul
tiple aspects of communication are impaired. Generally 
though, it is possible to recognize different types or pat
terns of aphasia that correspond to the location of the 
brain injury in the individual case. The two most com
mon varieties of aphasia are: 

Broca's aphasia - This form of aphasia - also known 
as "non-fluent aphasia" - is characterized by a reduced 
and effortful quality of speech. Typically speech is lim
ited to short utterances of less than four words and 
with a limited range of vocabulary. Although the per
son may often be able to understand the written and 
spoken word relatively well , they have an inability to 
form syntactically correct sentences , which limits both 
their speech and their writing. 

Wernicke 's aphasia - With this form of aphasia, the 
disability appears to be more semantic than syntactic. 
The person's ability to comprehend the meaning of 
words is chiefly impaired, while the ease with which 
they produce syntactically well-formed sentences is 
largely unaffected. For this reason, Wernicke's aphasia 

is often referred to as "fluent aphasia". Sentences are 
often long and syntactically quite good, but do not fol
low on from each other and can contain meaningless 
jargon. 

Neural Network Models for Aphasia 
For many prediction or classification tasks we need to 
take into account the history of an input sequence in or
der to provide "context" to our evaluation. One of the 
earliest methods for representing time and sequences in 
the processing of neural networks was to use a fixed se
quence of inputs, presented to the network at the same 
time. This is the so-called sliding window architecture 
(Sejnowski and Rosenberg 1986). Each input unit (or 
more typically a group of input units) is responsible for 
processing one input in the sequence. Although this 
type of network has been used to good effect, it has 
some very basic limitations. Because the output units 
are only influenced by inputs within the current win
dow, any longer-term dependencies for inputs outside 
of the current window are not taken into account by 
the network. This type of network is also limited to se
quences of a fixed length. This is obviously a problem 
when processing variable length sentences. 

One possible solution of the problem of giving a 
network temporal memory of the past is to intro
duce delays or feedback - Time Delay Neural Networks 
(Haffner and Waibel 1990; Waibel et al. 1989) . Al
though this type of network is able to process variable
sized sequences, the history or context is still of fixed 
length. This means that the memory of the network is 
typically short. 

One very simple and yet powerful way to represent 
longer term memory or context, is to use recurrent con
nections. Recurrent neural networks implement delays 
as cycles. In the simple neural network (Elman 1990), 
the context layer units store hidden unit activations 
from one time step, and then feed them back to the 
hidden units on the next time step. The hidden units 
thus recycle information over multiple time steps, and 
in this way, are able to learn longer-term temporal de
pendencies. 

Another advantage of recurrent networks is that they 
can, in theory, learn to extract the relevant context from 
the input sequence. In contrast, the designer of a time 
delay neural network must decide a priori which part 
of the past input sequence should be used to predict 
the next input. In theory, a recurrent network can be 
used to learn arbitrarily long durations. In practice 
however, it is very difficult to train a recurrent network 
to learn long term dependencies using a gradient des
cent based algorithm. Various algorithms have been 
proposed that attempt to reduce this problem such as 
the back-propagation through time algorithm (Rumel
hart et al. 1986a; 1986b) and the Back-Propagation 
for sequences (BPS) algorithm (Gori et al. 1989; 
Mozer 1989) . 

As one possibility for relating principles of symbolic 
computational representations and neural representa-
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tions by means of preferences, we consider a so-called 
neural preference Moore machine (Wermter 1999) . 

Definition 1 (Preference Moore Machine) 
A preference Moore machine P 1\1£ is a synchronous se
quential machine, which is characterized by a 4-tuple 
PM = (I,O , S,fp), with 1,0 and S non-empty sets 
of inputs, outputs and states. fp : I x S -+ 0 x S is 
the sequential preference mapping and contains the state 
transition function fs and the output function fo . Here 
I 0 and S are n-, m- and {-dimensional preferences 

, I . 
with values from [0, l]n, [o,l]m and [0,1] , respectwely. 

A general version of a preference Moore machine is 
shown to the left of figure 1. The preference Moore ma
chine realizes a sequential preference mapping, which 
uses the current state preference S and the input pref
erence I to assign an output preference 0 and a new 
state preference. 

( Output 0 = [D, i]ffi ) 

( Input I = [D,I]° ) 
Input I 

Figure 1: Neural preference Moore machine and its re
lationship to a simple recurrent neural network 

Simple recurrent networks (Elman 1990) or plausibil
ity networks (Wermter 1995) have the potential to learn 
a sequential preference mapping fp : I x S -+ 0 x S 
automatically based on input and output examples (see 
figure 1), while traditional Moore machines or Fuzzy
Sequential-Functions (Santos 1973) use manual encod
ings. Such a simple recurrent neural network consti
tutes a neural preference Moore machine which gener
ates a sequence of output preferences for a sequence of 
input preferences. Here, internal state preferences are 
used as local memory. 

On the one hand, we can associate a neural preference 
Moore machine in a preference space with its symbolic 
interpretation. On the other hand, we can represent a 
symbolic transducer in a neural representation. Using 
the symbolic m-dimensional preferences and a corner 
reference order, it is possible to interpret neural pref
erences symbolically and to integrate symbolic prefer
ences with neural preferences (Wermter 1999). 

The CAP (Comparative Aphasia Project) 
Corpus 
The CAP corpus consists of 60 language transcripts 
gathered from English, German, and Hungarian sub-

jects. We summarize a description of this corpus based 
on the description in CHILDES database (Brinton and 
Fujiki 1996; Fujiki et al. 1996). Transcripts in the 
database for the English-speaking subjects are split into 
three groups: 

(1) Broca's - characterized as non-fluent aphasics, 
displaying an abnormal reduction in utterance length 
and sentence complexity, with marked errors of omis
sion and/or substitution in grammatical morphology. 

(2) Wernicke's - aphasics suffering from marked com
prehension deficits, despite fluent or hyper-fluent speech 
with an apparently normal melodic line; these patients 
are expected to display serious word finding difficulties, 
usually with semantic and/or phonological paraphasias 
and occasional paragrammatisms. 

(3) A control group of normal subjects. 
All of the subjects whose test results are presented in 

the database are right-handed and all had left lateral le
sions. To exclude any ambiguity of the analysis, the pa
tients with some additional non-aphasic diagnoses were 
excluded. 

The language transcripts have been collected using a 
variation of the "given-new" picture description task 
of Mac Whinney and Bates (Mac Whinney and Bates 
1978). Subjects were shown nine sets of three pictures 
as described by the sentences in table 1. 

The morpheme coding of the corpus patterns is 
mapped, using the following syntactic descriptors: DET 
(determiner), CONJ (conjunction), N (noun), N-PL 
(plural form), PRO (pronoun), V (verb), V-PROG 
(progressive), AUX (auxiliary verb), ADV (adverb), 
PREP (preposition), ADJ (adjective), ADJ-N (nu
meric). Each of these descriptors is coded as a binary 
vector. Therefore, each sentence is presented as a se
quence of descriptor vectors and a null vector to mark 
the end of a sentence. In fact the subjects from Broca's 
and Wernicke's groups do not give a simple sentence an
swer for many of the pictures. In this case, the answers 
are divided into subsequent sentences. 

After each pattern is presented to the network, the 
computed and desired output are compared. The ex
pected outputs correspond to a three-dimensional vec
tor with values of true or false for each of the three 
subject classes. A particular value is set to one if the 
sentence so far (i.e. from the first word up to and in
cluding the current word) matches the beginning of any 
sentence from that subject class. 

The CHILDES database contains test results for five 
subjects from each of the above three groups. The an
swers of the first three persons in each group are taken 
into the training set, and the answers from the other 
two construct the test set. Table 2 presents the distri
bution of examples in the two sets. 

Experimental Results 
A simple recurrent neural network is trained for 300 
epochs. For one epoch, all the examples from the train
ing set are presented, and the weights are adjusted after 
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1 
! 

! Series 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Syntactic Description 
DET N AUX V-PROG 
DET N AUX V-PROG 
DET N AUX V-PROG DET N 
DET N AUX V-PROG DET N 
DET N AUX V-PROG DET N 
DET N V PREP DET N 
DET N V PREP DET N 
DET N AUX V-PROG DET N PREP DET N 
DET N AUX V-PROG DET N PREP DET N 

Sentences 
A bear/mouse/bunny is crying. 
A boy is running/swimming/skiing. 
A monkey/squirrel/bunny is eating a banana. 
A boy is kissing/hugging/kicking a dog. 
A girl is eating an apple/cookie/ice-cream. 
A dog is in/on/under a car. 
A cat is on a table/bed/chair. 
A lady is giving a present/truck/mouse to a girl. 
A cat is giving a flower to a boy/bunny/dog. 

Table 1: Picture series. 

Subjects group Training set Test set 
Normal 92 58 
Wernicke's 182 135 
Broca's 85 68 

Table 2: Number of different sentences in the training 
and test sets. 

each word. After the training is completed, the net
work is tested on the training and test sets. The results 
presented in tables 3 and 4 suggest encouraging results. 

Subject '70 of answers classified as 
group Normal Wermcke s Jjroca s 

Normal 63 29 8 
Wernicke's 5 90 5 
Broca's 9 18 72 

Table 3: Results from the training set. 

Subject '70 of answers classified as 
group Normal VVermcke s Jjroca S 

Normal 65 19 16 
Wernicke's 24 63 13 
Broca's 16 19 66 

Table 4: Results from the test set. 

As we can examine, the model is able to provide 
a distinction between subjects with different forms of 
aphasia, based on syntactic information. On a level of 
a particular sentence, the information is not sufficient, 
but based on the whole set of answers in the patient's 
test, we are able to assign the subject to a correct group. 

Future Work 
We have described ongoing work on distinguishing 
aphasia forms with recurrent networks. The integra
tion of symbolic/sub-symbolic techniques will extend 
the range of the current research. An integration of 
neural preference Moore machines provides the sym
bolic interpretation and allows further, more detailed 

analysis of the network processing. In addition, such an 
analysis may suggest some architectural or representa
tional constraints of language processing in the brain. 
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