
Product Models and Reusability*

Frank Feldkamp, Michael Heinrich, Klaus Dieter Meyer-
Gramann

DaimlerChrysler AG
Research and Technology

AIt-Moabit 96a
D- 10559 Berlin, Germany.

Email: {feldkamp, heinrich,

meyer} @dbag.bin.daimlerbenz.com

Abstract

This paper describes and explains the rationale behind the
product model that is employed in the configuration design
tool SyDeR (System Design for Reusability, [SDR98]). 
its name indicates, SyDeR stresses the reuse of system
designs in later design projects. The field where SyDeR is
applied is configuration design lbr products for which there
is not a complete, fixed set of components, but rather a set
of previous designs from which one can be chosen to be
reused and/or adapted to the current configuration design
problem. This sub-field of configuration design is of major
economic importance, as e.g., the design of railway rolling
stock or trucks fall into this category.

Importance of reusability

Configuration design takes it for granted that components
can be reused in any product configuration. As we had to
learn in earlier application studies for configuration design,
not every product family meets these requirements. So, it is
an important issue to design components and product
families in a way that allows to use them in configuration
design.

Beyond configuration design in the narrower sense, reusing
a component design also saves the time to design it again
and the development risks that come with a new
development effort. Reuse saves money in development as
well as in later stages of the process chain (no new
manufacturing or testing equipment is needed, e.g.).
Reusability of product and component designs can be

* Copyright © 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved

significantly increased by intelligent software tools that
offer advice on how to reuse and adapt previous
component designs as well as to design components for
reusability in the first place.

Crucial to reusability is the way the product and its
components are modelled. This paper explores how a
product model that enables reusability should look like.

Before going into details, we would like to clarify our
terminology. There is a large vocabulary for the
components of a product (parts, components, assemblies,
modules, etc.), which can be a source of confusion. ’In the
SyDeR product model, we decided to call these objects
systems. We will stick to this decision throughout this
paper and kindly ask the reader to accept this (somewhat
abstract) choice for the next six pages.

In the paper, we will first look at a product model that aims
straightforward at describing a product without paying
much attention to reusability. In the following chapters, we
will describe extensions to this simple model that step by
step improve reusability.

Modelling product structure as if reusability

did not matter

Modelling a product breaks down into three tasks:

Modelling the properties of a product and its sub-
systems,
modelling the product structure and

modelling the design logic behind the product.

Modelling the properties is usually achieved by defining
attributes for systems describing properties like size,
weight, cost or material. "The product structure can be
modelled by a product tree, a hierarchical bill of materials
or a graph (see below). Rules or constraints can describe
the dependencies and the reasoning behind the product,
thus defining its design logic.

In the following, we will focus on the product structure
first and later take a look at how to integrate design logic
into the product model. As much as properties are
concerned, we will just assume that they are described by
attributes of simple (e.g., integer, float, string) or complex
data types without going into further details.

The product structure can be analyzed from two
perspectives: vertical and horizontal. The vertical product
structure is usually modelled by means of a part-of-
relationship. Each system is linked to the sub-systems it
consists of via such a part-of-relationship. These systems

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



again are linked to their constituent sub-systems, etc. The
transitive closure over the part-of-relationship - beginning
with the product root node - yields a product tree.

Besides the vertical structure, the horizontal structure plays
an important role in the design of a product, although many
product structure models (e.g. in EDM systems) ignore it.
It defines how systems are connected and which
relationships exist between the systems that belong
together building one assembled system. The horizontal
structure can be modelled with the help of a connected-
with-relationship, leadingto graphs which describe the part
topology.

Simply connecting systems usually is not enough. Often,
there is a need to treat each of the different connections
from one system to other systems in a different way. If, for
example, a certain system has a mechanical connection
with one system and an electrical connection with a third
system, you will not want to mix the two connections up.
Thus, it is necessary to introduce a modelling construct that
allows to make a difference between different connections.
A common means for this task is to attach ports to a
system. Each port is associated with one connected-with-
relationship so that the different connections can be
referenced via different ports.

These are also the basic ideas behind the SyDeR product
model. It describes systems by listing their properties and
the constraints that hold on these properties. It also uses
ports to define the potential connectivity of systems. But,
as we will see in the following, it adds a few more features
that enhance reusability.

generalized and more abstract version of the system in
question that is not burdened with the specific details of a
particular design context. This generic system definition
can be provided by a system type, with the actual systems
in the different design contexts being instances of this type.

The system type models those properties and rules which
hold for all instances of this type. Types allow to reuse
system definitions in other design contexts by creating
instances of this type in the new design context.

In order to enable reuse of knowledge between types, an
inheritance hierarchy of types should be defined. Properties
as well as rules/constraints are inherited.

Besides increasing efficiency, type hierarchies also support
a least commitment approach to design. The engineer is not
forced to commit himself early to detailed design decisions
he can not reasonably justify. Instead, in early stages of
design, he commits himself to more abstract classes (e.g. to
the type ,,motor") than in later stages (e.g. to an AC-motor
with 360 V).

The inheritance hierarchy also helps to get an overview of
the system types available, which is important for the reuse
of systems. Usually, the reuse process is semi-automatic.
The engineer selects a certain abstract system type (e.g.
AC motor) and specifies a few desired properties. A reuse-
supporting design tool (like SyDeR) should now search for
types which meet these requirements and propose them to
the engineer. An inheritance hierarchy helps the engineer a
lot to define a starting point for the search (and the tool to
search more efficiently).

A First Step towards Reusability: Types

Part-of- and connected-with-relationships together with
ports allow to define the vertical as well as the horizontal
product structure in a convenient manner. But at this stage
yet, there is not much support for reuse. All the engineer
can reuse are instances of systems that have been defined
earlier by copying these instances into her current product
design.

Following a motto from software enginering, abstraction is
the key for reusability. Usually, it is cumbersome to reuse a
system exactly as it has been used in a different design
context. Too many details that are valid only in that
context appear in the system description. This context-
specific information can come in the form of specific
property values, rules/constraints describing a design logic
that only holds in this context, or additional systems which
will not be needed in other design contexts.

Instead, the engineer would prefer to reuse a more

Bringing Structure and Types Together

So far, we have treated product structure and types quite
independently. To closely integrate them, it is necessary to
introduce a third kind of entity (besides types and
instances) that represents a system used to build another
system. Being used in the structural definition of another
system type (which is in turn supposed to be reused) is 
new role that can not be captured by means of types and
instances which only deal with reuse of the system itself.

In SyDeR, this leads to system refinements (corresponding
to types), system applications (corresponding to the usage
of a system inside another system) and system instances.

A similar approach has been used by [Callahan97], based
on the ideas of [Rappoport93]. Their part ,,trinity" consists
of part, part usage, and part occurrence. A part
corresponds to a system refinement, a part usage to a
system application, and a part occurrence to a system
instance. A part usage graph defines the (vertical) product
structure, while a rooted occurrence tree describes the
structure of assembly parts.

2



Modularity by Interfaces as a second step

towards reusability

Reusing a system basically means to move it from one
context to another. This can only work properly if the
system’s relationships to its environment (i.e., its
dependencies with other systems) are clearly defined and
made explicit. A convenient way to model these
relationships to the outside world of a system (that means
with other systems) is to define interfaces with other
systems.

In order to fully exploit the advantages of interfaces, the
modelling language for interfaces should be as rich as the
one for systems. It should allow to attach properties and
constraints to interfaces, interfaces should be typed, and
there should also be an inheritance hierarchy for interface
types. Types and inheritance yield the same benefit for
interfaces as they do for systems. We will explain in the
next chapter how useful properties and constraints in
interfaces are in terms of modularity.

Interfaces offer a number of advantages:

Interfaces explicitly describe which relationships exist
between a system and its environment (neighbouring
modules) and make clear under which terms this system
can be reused.

Interfaces can model connecting parts between systems,
relationships between systems (e.g., distance), or even
background knowledge about laws of physics etc.

Interfaces tend to have a longer life-span than systems,
and thus provide a stable backbone for the design
knowledge base.

Interfaces are fundamental for modularity, as they
decribe the dependencies between systems. Interfaces
also help to model the technical reasons for system
relationships.

In our application studies for the SyDeR tool, we have
used interfaces for a variety of purposes:

- To model the data flow from the initial specification
down to the component parameters;

- to model the flow of force along mechanical components;

- to model the relationship between subway tracks and the
subway lines ru ning on these tracks;

- to model transportation line for bags in an airport luggage
system;

- to model electric connections and control systems in a
street car.

Related work has been done by [Heinrich91]. The
resource-based paradigm for configuration design can be
seen as an ancestor of SyDeR-style extensive interface
modelling. In this paradigm, resources also modelled
relationships between systems (there called components),
but are weaker in terms of expressive power. Properties
can be attached to ressources only to a limited extent, and
there are only weak constraints.

Constraints should be modularr too

The last step in achieving as much modularity as possible
is to modularize not only the product, but also the design
logic behind it. This is a crucial factor for the maintenance
of the knowledge base behind a configuration design tool,
which often suffers from a lack of modularity in the
knowledge base. Often, local changes in a knowledge base
do not remain local, but lead to changes in other parts of
the knowledge base, which in turn cause other changes etc.
In order to keep local changes local, the knowledge base
has to be modular, too. The importance of this point cannot
be overestimated, as the cost for knowledge base
maintenance is one of the favourite reasons to terminate
the use of a knowledge-based system.

Our thesis is that the direct reference in rules or contraints
to properties of other systems causes most of the follow-on
changes in a knowledge base. So the key to modular
knowledge bases is to eliminate these direct references by
using intermediate interfaces.

Constraints attached to systems fall into one of three
classes, depending on how spread the parameters/variables
in the constraint are:

- constraints over parameters at one single system,

- constraints over parameters at subsystems of one system,
¯ - constraints over parameters which are distributed over

several systems.

Constraints of the first kind are local and pose no problem
in terms of reusability, as they have no connection to other
systems. Constraints over parameters at subsystems occur
frequently, e.g. to compute the total weight of a system by
summing up the weights of its subsystems. These
constraints do not limit reusability if we restrict ourselves
to constraints connecting different subsystems of the same
system refinement, so that the subsystems of a certain
system type are part of its definition and thus available any
time the system is used.

The third kind of constraints is more tricky and the one that
usually hinders reuse. One cannot assume that several
systems are always used and reused together just because



there is a constraint that touches all of them. Moreover, it
is not quite clear which system the constraint should be
attached to. The solution is to attach it to none of the
syst6ms, but to an interface that connects the systems. This
has the advantage, that it does not arbitrarily place chunks
of knowledge at one system where others are also affected.
It also stresses that interface modeling is very helpful in
reducing the maintenance cost for a knowledge-based
configuration design tool.

Summary

We first introduced a generic product model that was
expressive enough to capture product structure, properties
and design logic, b.ut did not pay attention to the needs of
reusability. We then extendend this basic model into a
generic product model that supports reusability as much as
possible.

The first step to enhance reusability was to introduce
system types and sort them in an inheritance hierarchy. The
integration of system types with a recursive product
structure lead us to ilae definition of third entity class
besides types and instances that represents the use of a
system in the definition of another system type. The second
step was to introduce interfaces to model relationship
between a system and its environment. The third step was
to make sure that constraints do not directly reference to
objects outside of the system where the constraint was
defined.

These steps lead to a product model that has been
implemented in the configuration design tool SyDeR. The
feasiblity of this approach has been confirmed in several
application studies, among them electrical street car design
and car engine water pump design.

References

Callahan97
Callahan, S.: ,,Relating Functional Schematics to
Hierarchical Mechanical Assemblies", Proc. Fourth
Symposium on Solid Modeling and Applications 1997,
pp.229-239, ACM, New York, 1997.

Heinrich91
Heinrich, M.; Jtingst, E.W.: ,,A Resource-Based Paradigm
for the Configuring of Technical Systems from Modular
Systems", Proc. Seventh IEEE Conf. on AI Applications
(CAIA’91); 257-264; 1991.

Rappoport93
Rappoport, A.: ,,A scheme for single instance
representation in hierarchical assembly graphs", IFIP
Conference on Geometric Modeling in Computer
Graphics, Genova, Italy, June 1993, B. Falcidieno and T.L.
Kunii, eds., Springer 1993.

deVries97
de Vries, T.; Weustlink, P.; Cremer, J.: ,,Improving
Dynamic System Model Building Through Constraints";
in: Computer Aided Conceptual Design ’97, Proc. 1997
Lancaster Intern. Workshop on Engineering Design CACD
’97; Lancaster University Engineering Design Centre 1997.

SDR98
Feidkamp, F., Heinrich, M., Meyer-Gramann, K. D.:
"SyDeR - System Design for Reusability", AI-EDAM
Special Issue on Configuration Design, September 1998.

Zeigler90
Zeigler, B.P.: ,,Object-Oriented Simulation with
Hierarchical, Modular Models - Intelligent Agents and
Endomorphic Systems", Academic Press, Boston; 1990.

Related Work

The idea of types is, of course, not a new one. Their
integration with a recursive product structure has been
solved in a similar way by [Callahan97, Rappoport93].
Object-oriented product models and constraints can, for
example, also be found in [deVries97, Ziegler93].
Extensive interface modelling and the strictly modular use
of constraints are ideas that we have not seen published
anywhere else. We regard the integration of all these ideas
and their implementation in the tool SyDeR as the major
contribution of this paper.




