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Abstract

System-level design refers to a synthesis, analysis, and
optimization process which reasons with the system in
a holistic manner. We are developing a model-based
approach to support parametric system-level design op-
timization. In this paper, we describe our modeling
methodology based on the Environment Relationship
net framework (Ghezzi et al. 1991) to represent a sys-
tem for the purpose of design optimization. Specifi-
cally, we model a reprographic machine system (e.g.,
printer, photocopier) whose elements include hardware
components and software processes. We discuss the
issues that arise in modeling this system and the chal-
lenges that remain to be addressed.

Introduction
System-level design refers to a synthesis, analysis, and
optimization process which reasons with the system in
a holistic manner. The National Science Foundation’s
report Research Opportunities in Engineering Design
(NSF 1996) observes that:

"It is getting harder to improve system perfor-
mance from advances in individual disciplines. The
number of specialists is increasing, while the num-
ber of generalists, capable of doing system integra-
tion, is decreasing. The need is for more generalists
in product design who can understand the big pic-
ture, not just some specialized problems."
To manage the complexity of the design process, de-

signers recursively decompose functional specifications
into subfunctions and focus their efforts on solving the
subproblems and then, integrating their solutions. In
the process, they often develop detailed designs of a
subsystem without paying adequate attention to its
dependencies with the rest of the system. With the
advent of embedded computer systems that integrate
hardware components with software computation ele-
ments (e.g., digital signal processors, digital printers),
tile choices available for decomposing functionality are
far wider than in traditionalsystems, and the complex-
ity of the interactions among the subsystems compli-

I Copyright (~)1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

/ .~ sof~warcsubsystcm .~ ]

Figure 1: Reprographic machine: an integrated hard-
ware and software system

cute their integration. The interactions between the
system’s components are often dynamic, i.e., they de-
pend on different tasks performed by the system at
run time. Designing the subsystems in isolation with-
out taking into account their dynamic interactions and
their inter-dependencies often necessitates backtrack-
ing (which lengthens the design cycle) or may lead to 
non-optimal solution.

Our research is targeted at supporting parametric
system-level design optimization. Given a configura-
tion of the system, we use a model-based reasoning ap-
proach to tune its parameters to optimize specified ob-
jectives, such as performance and manufacturing cost.
Our methodology for system level parametric design op-
timization requires a model that incorporates design
variables across the system and allows the designer to
study and reason about their effects on optimization ob-
jectives (Kapadia & Biswas 1999). The model must in-
Corporate not just a representation each subsystem, but
also capture the interactions and dependencies that ex-
ist across subsystems. In this paper, we describe our ap-
proach for modeling a system whose components span
multiple domains using the Enviromnent Relationship
net fi’amework (Ghezzi et al. 1991).
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Reprographic machine

As a test bed for our design optimization methodol-
ogy, we use a digital reprographic machine (e.g., printer,
photocopier), which is a computer-controlled electrome-
chanical system that produces documents by manipu-
lating images and sheets of paper. Given a configu-
ration for this system, we are interested in tuning its
parameters so that the designed machine optimizes job
completion times and manufacturing cost, while meet-
ing specified design constraints.

Fig. 1 shows a schematic description of the hardware
and software subsystems of interest. The hardware sub-
system is responsible for transporting sheets of paper in
the machine. It prints simplex (one-sided) and duplex
(two-sided) sheets. A sheet enters the machine through
an input port. An image is transferred (or printed) 
the sheet as it passes through the transfer component.
A simplex sheet passes through without inversion on
its way to the output port. A duplex sheet is inverted,
routed to the transport along the duplex loop, an im-
age is transferred on its back side (transfer), and the
sheet is inverted again, before it is sent, to the output
port. Parameters that affect desired optimization cri-
teria include the transit times of the components and
capacities of buffers at the input and output (Kapadia,
Biswas, ~z Fromherz 1997). To generate a document
(i.e., an ordered sequence of simplex and duplex sheets)
the transportation and printing of sheets must satisfy
behavior constraints, for example, sheets must be ma-
nipulated such that they are available at the output in
the specified order, and sheets must not collide with
each other anywhere in the paper path.

Fig. 1 shows a schematic of the software subsystem
which comprises the following processes. The accumu-
late process receives sheet descriptions from an exter-
nal source. State-of-the-art reprographic machines are
equipped with a scheduler (illustrated in Fig. 2) that re-
ceives a stream of sheet descriptions, and dynamically
determines optimal times at which individual actions
must be initiated to produce the desired output by a
process of heuristic search (Fromherz & Carlson 1994).
The scheduler may employ different online algorithms
(e.g., greedy methods, search with limited lookahead,
etc.) which trade off the optimality of the schedule gen-
erated and computation time. To prevent the scheduler
from being overwhelmed by large document descrip-
tions, it may be designed to consider a fixed number of
sheets (called its lookahead (L)) for any computation.
In general, we expect larger values of lookahead to im-
prove the prospect of determining an optimal schedule
because the scheduler has access to additional informa-
tion while making its decisions. However, the size of the
search space explored by the scheduler increases with
larger values of lookahead, which increases the software
computation time (T) and consequently, the overall job
completion time. We assume that T is a function of
L, i.e., T = f(L). At the termination of a computa-
tion, the scheduler may initiate the execution of all tile
actions computed in the schedule. Conversely, it may
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Figure 2: Schedule computation task

commit itself to only a predefined number of actions
(we call this the commitment parameter (C)). This pol-
icy of non-commitment affords it greater flexibility; if
more information about the document arrives later that
makes an alternative schedule look more promising, the
scheduler can reschedule the uncommitted sheets ac-
cordingly. The command process communicates control
commands to the hardware subsystem for the actions
committed to by the scheduler.

Table 1 shows an optimal schedule1 for the docu-
ment description consisting of one simplex sheet fol-
lowed by two duplex sheets, and then a simplex sheet
(i.e., st, d2, d3, s4) which is completed in 14 time units.
While generating this schedule, we assumed the fol-
lowing parameter values: printing an image on to a
sheet requires one time unit, inverting a sheet takes
two units, transporting a sheet along the duplex loop
requires three units, bypassing inversion is instanta-
neous, software computation takes one unit, lookahead
is two, and the commitment parameter is one. The job’s
completion time is a function of the system parameters
(both hardware and software) and the schedule for the
job. Optimizing the behavior of this system is partic-
ularly difficult because there is no predefined function
that maps the job completion time to the design vari-
ables for any job. In (Kapadia & Biswas 1999), we have
presented model-based reasoning techniques that start
from a compositional model of the reprographic ma-
chine system and determine this mapping for a given
job.

Modeling for optimization

A model of a system is a representation that is tai-
lored towards addressing a specific set of tasks to be
performed on the system. Creating a model for de-
sign optimization first requires that the designer must
identify design variables and system optimization objec-
tives. The model of system behavior must incorporate
the design variables as system parameters and allow the
designer to study and reason about their effects on op-
timization objectives. The designer must determine a
level of detail for modeling that is appropriate for the
design task. It may be necessary to combine different
kinds of knowledge into a single model, e.g., a model
may incorporate quantitative and qualitative relations
among its parameters. Creating a veridical model of
the system at the desired level of detail, is a difficult
problem that requires considerable insight, experience

1An optimal schedule for a job description is one that
completes the job in the shortest time.



Component/Process Place Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

accumulate P2 81 d2 d3 84

schedule P4 d2 d3 81,84

command P5 d2 d3 81 84

sheet in P6 d2 d3 81 84

transfer P7 d2 d3 81 d2 d3 84

invert PS d2 d3 81 d2 d3 84

transport P9 d2 d3

sheet out PlO 81 d2 d3 84

Table 1: Integrated hardware and software behavior for the job sequence st, d2, d3, sa ’ ,

and, often, trial and error. Compositional modeling ap-
proaches, particularly those that model the behavior of
the system from domain principles and component de-
scriptions, help to simplify this problem (Fromherz 
Saraswat 1995). Furthermore, the model must facilitate
the performance of tasks that are used for design op-
timization, e.g., behavior generation and analysis. Be-
havior generation for a system which combines subsys-
tems from disparate domains must support the study
of the interactions that occur among these subsystems.
Behavior analysis must be holistic, i.e., it must permit
reasoning about the effects of design variables on opti-
mization objectives in a system-wide manner.

Abstract models of components and processes.
(DeKleer & Brown 1984) model the behavior of a phys-
ical system in terms of material, components, and con-
duits. In our application, the system’s components span
the electromechanical hardware and the software do-
main, and we are interested tracking the movements of
sheets and data in tile system at discrete time points.
For each component (as shown in Fig. 3), we model its
structure (i.e., input and output ports) and, with the
demands of our application in mind, its temporal be-
havior defined "in terms of spatial locations and time
stamps of material and data (i.e., the time it takes for
the material to flow through tile component from an
input port to an output port).

(Gupta &: DeMicheli 1993) model software processes
in terms of primitive operations, i.e., assignments, con-
ditional tests, loops, etc. Their software model repre-
sents the time reqtfi~ed for the execution of each oper-
ation and temporal constraints among the operations.
(Thomas, Adams, & Schmidt 1993) choose a more ab-
stract representation for their software subsystems by
merging sets of operations into software processes. We
select a process level representation where each pro-
cess, which represents a collection of primitive opera-
tions, is modeled as an executable "black box". Data
flow through a process is analogous to material flow in
a hardware component. The time taken by a software
process to perform its specified computation is a func-
tion of the nature of the task and the design variables
that affect the process. Given that we are primarily in-
terested in tracking the movement of materials and data
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Figure 3: Modeling hardware components and software
processes

in the system at discrete time points, software processes
and hardware components in the reprographic machine
system may be modeled at a uniform level of abstrac-
tion as shown in Fig. 3.

Environment Relationship nets. We are develop-
ing a modeling methodology that can represent our
hardware and software subsystems in a uniform man-
ner and can support reasoning about the dependencies
among them. We have adapted the Environment Re-
lationship (ER) Net (Ghezzi et al. 1991) framework,
a timed extension of basic Petri nets which supports
tokens with properties, as the basis of our system mod-
eling methodology. Petri nets have been used to model
discrete systems because of their graphical nature, their
ability to represent system structure and dynamic be-
havior, and the availability of mathematical analysis
techniques. A key advantage of this framework is that
we can use the same language to represent both hard-
ware and software subsystems. We describe the proper-
ties of our ER net-based modeling methodology below.

Material. In the ER net framework, a token is a col-
lection of attribute-value pairs (ID, V), where ID is a
set of identifiers, and V is a set of values.. Among the
attributes is the token’s time stamp, i.e., the time when
the token is created. Tokens are described by the fol-
lowing notation.

¯ A place name (e.g., P) stands for any token in 

¯ If y is a token, and z is an attribute, then y.z stands
for the value of attribute x in token y.



In the hardware subsystem, sheets represent mate-
rial that flows through the machine. A sheet is repre-
sented by a token with the following attributes: type
E {s,d} (s for simplex, d for duplex); position in doc-
ument; number of remaining passes (pass) through the
transfer component, initially if type = s, pass = 1; if
type = d, pass = 2; and a time stamp of the token that
represents current time.

For each physical sheet in machine, we model a corre-
sponding sheet description datum in the software sub-
system. A sheet description is modeled by a token with
the following attributes: type, position, pass, time, and
execution. The first three attributes are used to identify
the token, while time represents the token’s time stamp
and execution records the time at which the physical
sheet corresponding to the sheet description is intro-
duced at the hardware subsystem’s input port for ex-
ecution. A schedule for a set of sheets is represented
as a token with two attributes: an ordered list of sheet
description tokens (the tokens are in ascending order of
their execution time attribute), and a measure of op-
timality that expresses the designer’s qualitative belief
in the optimality of the schedule, which is related to L,
i.e., optimality o¢ L.

Components and processes. In the ER net frame-
work, each transition has an associated action that
maps tokens in its input places to tokens in its out-
put places. Associated with an action is a predicate
that must be satisfied by tokens in the input places for
the transition to be activated. A transition is enabled
in a marking, if and only if, for every input place of the
transition there is a token that satisfies the predicate
of the action. An enabled transition fires by remov-
ing a token in each of its input places and producing
one in each output place. The values of the attributes
of tokens in the output places are determined by the
action.

Our abstractions of hardware components and soft-
ware processes (Fig. 3) allow us to model them in 
uniform way. Hardware components are modeled as a
set of transitions with one or more input and output
places corresponding to the component’s ports. Soft-
ware processes are modeled as a set of transitions with
places corresponding to input and output buffers where
data can be stoxed for any length of time. Sometimes
a place may act as both input and output for a com-
ponent, e.g., a buffer which is updated (i.e., both read
from and written to by a process). Actions associated
with transitions correspond to functions that the com-
ponent or process performs, i.e., the transformations
that the material (data) undergoes as it passes through
the component (process), and its behavior, i.e., how
the component (process) transforms the material (data)
flowing through tile component (process).

Formally, a process or component is modeled by a tu-
pie (P, T) where P = {pl .... , Pro} is a set of places and
T = {tl,...,tn} is a set of transitions. The notation

(a) inverter

¯
t "

¯ ~,,)bt

(b) schedule

Figure 4: Modeling hardware components and software
processes as ER nets

for describing a transition is:

tl : {(input places, output places)]actions}.

Fig. 4(a) shows an EFt net fragment for the inverter
component which performs two functions: it either in-
verts a sheet or lets it pass through without inversion.
pi and Po are the input and output of the inverter, re-
spectively. Its behavior is represented by the following
transitions:

1. tb represents bypassing inversion in the inverter. We
assume that simplex sheets bypass inversion instan-
taneously, tb = {(pl,po)lp~.type = and po.time +-
pi.time}.

2. ti represents the inversion of a sheet in the inverter.
We assume that inversion requires k2 units of time,
and only duplex sheets undergo inversion, to =
{(Pi,Po)lpi.type = and po.time e-- pi .time + kg.}.

Fig. 4(b) shows an ER net fragment for the repro-
graphic machine’s scheduler, which computes execution
times for each sheet description. The scheduler has the
following input places:

¯ buffer bi stores sheet description tokens that have not
been scheduled for execution, and

¯ place bt stores the current time; initially, bt.time = O.

Its output places are:

¯ buffer bo which contains a schedule of operations, i.e.,
a list of sheet description tokens ordered according to
their execution times, and

¯ place bt so that bt.time can be read and updated.

The scheduler (represented as transition t,) is in-
voked when there are L sheet description tokens in bi,
where L is the lookahead parameter2. It computes a
schedule spending T units of time in this process, where
T = f(L). We assume that this function can be estab-
lished empirically from past experience.

To formally define transition G, we first define the
following auxiliary functions.

¯ compute(Place) computes a schedule for the list of
tokens in Place and returns a list of sheet descrip-
tion tokens with their assigned execution times. The

2Once the complete job description is available at its in-
put, the scheduler is invoked even if there are fewer than L
tokens.
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list is in chronological order of the execution times
(which as demonstrated in Table 1, may differ from
the specified order of tile sheets, e.g., d2 is introduced
first at time 2, while sl is introduced at time 7).

* commit(List, C) commits to the execution of the first
C actions in List.

¯ maximum(Place) returns the maximum time at-
tribute for all tokens in Place.

¯ max(X, Y) returns the maximum value of two inte-
gers X and Y.

We have:

(({b,, b,}, {~,, bo})l 
bo ~-- commit(compute(bi), 
and bt.time +- max(bt.time + T,

maximum(bi) + T) and for each token in bo,

bo.time e- max(hi.time + T, maximum(bi)
+T) and bo.optimality c< L}.

Once t, is invoked, it must not be invoked again for
T units of time (i.e., it must not be preempted). 
nets allow us to impose the condition that no tran-
sition can be fired before the time attribute of any
token that is consumed by the transition. In this
model, each subsequent firing of t, is delayed until
max(bt.time + T, maximum(b/) + T).

Model composition. We represent connections be-
tween system components by sharing places. For ex-
ample, we model the connection between two hardware
components by sharing the output port of one with the
input port of the other, and the communication be-
tween two software processes or a software process and
a hardware component by sharing buffers. Combining
the hardware and software component models by shar-
ing p5 results in the composite model of Fig. 5 for the
reprographic machine of Fig. 1.

Discussion
Our research is targeted at developing a methodology
to support system-level design optimization (Kapadia

Biswas 1999). In this paper, we presented a frame-
work for modeling the behavior of a system with com-
ponents that span multiple domains. Developing a uni-
form representation for such a system allows for trans-
parent communication of relevant design information
and decisions between members of a design team work-
ing concurrently on the problem and the application
of global reasoning mechanisms to different aspects of
system design.

Supportihg design optimization. Presently, we
have developed techniques that utilize our models for
the following tasks.
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Figure 5: Reprographic machine system model with ER
nets

Behavior generation. We can use our El( net model
to generate system behavior as shown in Table 1. Gen-
erating integrated hardware and software behavior fa-
cilitates an accurate and holistic analysis of the system.

Modeling temporal constraints between system events.
(Fromherz & Saraswat 1995) employ compositional
models of system components to derive temporal con-
straints that are used for controlling system behavior.
In a similar manner, our ElL net system model may
be used for scheduling operations in the reprographic
machine system (Kapadia, Biswas, & Fromherz 1997).

Generating optimization relations. As mentioned be-
fore, the relation between a job’s completion time and
the system design variables may not be known explic-
itly because it depends on decisions made by the sched-
uler at run time. We have developed an optimization
methodology that derives an event model from the ER
net system model and a given job description. An event
model is a directed acyclic graph where each vertex rep-
resents an event (informally, an event is the arrival of
a token in a place in the system model) and a directed
edge between two vertices represents a precedence re-
lation between the corresponding events. Formally, we
use the notation t(r)~ to represent the event that the ith

token is in place j on it’s rth pass through the machine.
Fig. 6 shows the event model for the ER net system
of Fig. 5 and the behavior depicted in Table 1. We
have used event models to derive relations between op-
timization objectives and design variables for different
job descriptions (Kapadia & Biswas 1999).

Dependencies among subsystems. Integrating
different subsystems requires considering dependencies
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Figure 6: Event model for Table 1

among their parameters and events in order to find op-
timal design solutions.

An example of a dependency among parameters
in our reprographic machine system is the maximum
lookahead constraint for making an optimal scheduling
decision which captures the dependency between soft-
ware parameters lookahead (L) and commitment (C),
and transit times for hardware components for print-
ing an image to a sheet (kl) and transporting a sheet
along the duplex loop (k4). By combining intuition and
strong domain knowledge (Kapadia 1999), we have dis-
covered that the following constraint guarantees opti-
mal scheduling decisions:

| k4 -{- kl - 1W, J
AN example of a dependency among the system’s

events is the issue of synchronizing the computation
and commitment of sheet descriptions in the software
subsystem and the execution of the corresponding op-
erations in the hardware subsystem. If the commitment
parameter C is too small and the software computation
time T is too large, it is possible that the hardware
subsystem may be largely idle while the software sub-
system is always busy. This is undesirable because it
results in poor utilization of the hardware subsystem.

We are investigating techniques to derive these de-
pendencies from our system models rather than from
our intuitions of system behavior. We anticipate that
inferring these dependencies may require augmenting
traditional model-based reasoning with techniques from
machine learning.

and T = f(L)) which capture our intuition and experi-
ence regarding software computation. We are trying to
develop a coherent set of "first principles" in the soft-
ware domain and reasoning techniques that will help us
to use these principles to derive such associations.
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