
Towards A Configuration Specification Language

Based On Constraints Logic Programming

Mahmoud Rafea

Central Laboratory for Agricultural Expert Systems (CLAES)

El Nor St., Dokki, Giza, 12311, Egypt

mahmoud @esic.claes.sci.eg

Abstract
In this paper, we concentrate on describing a configuration
specification language suitable for most of configuration
problems. The language and the generated configuration
task code are based on the key-component approach. The
implementation of the language is based on the CLPFD
library of SICStus Prolog. The language consists of a
number of Prolog clauses, which are compiled into CLPFD
constraints. The problem solver is the engine of the
Constraint Logic Programming Finite Domain (CLPFD). 
challenging configuration example from the classics is used
to demonstrate the efficiency of the language
implementation.

Introduction

A component, which is sometimes called a part, is the
building block of any system. It may be either configurable
(complex) or non-configurable (primitive). Complex
component which needs to be configured itself, can be
considered as a configuration problem structurally isolated
from the original configuration problem, but, functionally
part of it. In this way the configuration task becomes
scalable. The definitions of the configuration task (Mittai
and Frayman, 1989; Najmann and Stein, 1992, Buchheit,
1994; Stefik, 1995) do not differentiate between complex
and primitive components.

In this paper, we present a language suitable for most of
configuration problems. The language supports scalable
configuration systems. In other words, The problem is
structured as complex and primitive components. The idea
is to help the application developer to rapidly and
efficiently encode the system specifications. The language
code is then compiled into constraints, which are efficient
but difficult to encode manually. The compiled code can be
integrated with a suitable interface for user interactions.

The work of this paper is based on a challenging
configuration example given by Stefik, 1995. The example
is shown in Figure 1. The configuration specification
language that describes this example is shown in Figure 2.
The corresponding compiled constraints are shown in
Figure 3 and Figure 4. In this paper, we concentrate on
describing the proposed configuration specification
language, section 2, and the corresponding compiled
constraints, section 3.

The configuration specification language

In this language, the configuration task is based on the key-
component approach. The problem solving of the
configuration problem is based on Constraint Logic
Programming (CLP), using the Finite Domain type (FD).
The implementation of the language is based on the
CLPFD library (Carisson et al, 1997) of SICStus Prolog
version 3.7.1.

The language is simple and declarative. The system
specifications are encoded as Prolog clauses; which
represent the language statements. The encoded system
specifications represent the problem knowledge base. The
Prolog clauses of the language can be classified into:
¯ Task specifications clauses

¯ Functional hierarchy specifications clauses

¯ Parts sub-model specifications clauses

¯ Solution Optimization clauses

Notice that the arrangement sub-model cannot be generic,
but it can be defined for a" particular type of arrangement.
In the given example, the cabinet arrangement model is
directly coded into constraints. A generic language
constructs for cabinet arrangement needs further work.

23 " ¯

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



Functional hierarchy

I A widget component I

Parts sub-model
Part A- l Part B-I Part C-I Part D-I

[ Requiredparts:2B’s 1] Required parts:2C’s It Required parts:NoneI[Required parts:B&2Cs ISize: Half slot Size: Half slot Size: Half slot Size: Half slot

Part A-2 Part B-2 Part C-2 Part D-2

[ .Requiredparts:3B’s1[ Required parts:None II Required parts:NoneII Required parts:C-I ISize: Full slot Size: Full slot Size: Half slot Size: Double slot

Arrangement Sub-model
Half slot

Widget Left
Case

Pull slot Double slot slots

Right

Extension plug

I
Must occupy last I
unused top half slot
of previous case

Sharing sub-model
All parts are allocated for exclusive use.

Figure 1: Configuration example showing the widget model which is written by Stefik, 1995

Task specifications
The main purpose of the task specification is to describe
the system in terms of its complex components. The
complex component is termed ’sub-system’. Consequently,
the configuration task is divided into smaller configuration
tasks or sub-tasks. This helps in:
¯ Encoding of the system in a structural way.

¯ Facilitates the compilation process by compiling a
subsystem at a time.

¯ Enhances the system performance especially for large
systems.

To define a system, the following construct is used:
system <system> : [<subsystem> .... ].

Where the non-terminal <system> is a Prolog atom
denoting the name of a system and the non-terminal
<subsystem> is a Prolog atom denoting the name of a
subsystem. The list: "[<subsystem> .... ]" should contain
all the subsystems that constitute the system <system>.
Notice that if there are different alternatives for declaring
the system <system>, the system/1 declaration can be
repeated.

For each subsystem two constructs need to be defined:
1. subsystem <subsystem>: [<key-component> .... ].

24



2. <subsystem> init_components [<number> - <key-
component> .... ].

Where the non-terminal <key-component> is a Prolog
atom denoting the name of a key-component. The list:
"[<key-component> .... ]" is a Prolog list containing the
names of all key-component that constitute the subsystem
<subsystem>¯

The clause init_components/2 defines the list of key
components that are not required by any other components,
but are part of the subsystem. The non-terminal <number>
is an integer value denoting the number of instances
needed from the associated key-component in configuring
the subsystem. Notice that there is no restriction on the
length of the list parameter for both substsem/2 and
init components/2 clauses.

% Task Specification
°/So................. ." .....
system widget:lwidget sys].
subsystem widget-sys:[-a,’b,c,dl.
widget__sys init-components [l-a,l-dI.
% Functional Hierarchy
070 ...........................

a consist of [al,a2|.
b consist-of Ibl,b2].
c consist-of lcl,c2]. .
d eonsisCof [dl,d2l."

% Parts Submodel
O/o ...................

al require [keyComp(b,2)l.
a2 require IkeyComp(b,3)].
bl require IkeyComp(c,2)l.
b2 require JJ.
cl reqmre [1"
~121 require ̄req uire I~eyCom p(b, I ),keyComp(e,2)l.
d2 require |eomp(el,I)].

at consume resource(case,slot, l) % Half slot
a2 consume resource(case,slot,2) % Fullslot
bl consume resource(case,slot, I)
b2 consume Iresource(case,slot,2)
cl consume ~esource(case,slot, I)
c2 consume resource(case,slot,I)
dl consume resource(ease,slot, I)
d2 consume resource(case,slot,4)]. % Double slot

% Solution Optimization
O/o................. . ..........

amaxl0, bmaxl0, emaxl0, dmaxi0.

price(al, 10.
price(el, price(c2, 15).price(b2, 15/.
price(a2, [05/: price(bl, IO).

priee(dl, 10). price(d2, 15).

maxPrice(widget_sys, 100).
maxResourees(wldget_sys, case, slot, 12).

Figure 2: The widget model written by the proposed
configuration specification language

It should be remarked that the subsystem could not have
more than one definition. To express the different
subsystem alternatives, the subsystem name can be
suffixed or prefixed by a suitable word and a new instance
of system/l is defined with the new subsystem.

Functional Hierarchy
The purpose of the functional hierarchy is to define the key
components that constitute the subsystem. In fact, a key-
component represents a class that can be specialized to a
particular component. The corresponding generated
constraints ensure that the configured sub-system contains
all the needed components.

For each key component the following construct must be
defined:

<key-component> consist_of [<component> .... ].

Where the non-terminal <component> is a Prolog atom
denoting the name of a component.

Parts sub-model
This model ensures that the configured system contains all
the components that make a functioning system. Also, It
ensures that the number of components neither exceeds nor
less than the defined requirements. Two constructs are
currently used. The first construct, require/2, defines the
dependencies between components. Each primitive
component must be represented even if it does not require
any other component for its functioning. It can be defined
using the following syntax:

<component> require [keyComp(<key-component>,
<number>) .... ]. or
<component> require [comp(<omponent>, <number>),
..,]. or
<component> require [keyComp(<key-
component>,<number>) ..... comp(<omponent>,
<number>) .... ]. or
<component> require [].

The second construct, consume/2, defines needed
resources. For each primitive component the following
construct must be defined:
<component> consume [resource(<resouree-provider>,
<resource>, <number>) .... ].

Where the non-terminal <resource-provider> is a Prolog
atom denoting the name of a component which provides
the resource <resource>. The non-terminal <resource> is a
Prolog atom denoting the name of a resource.

25



widget_sys :: {
attributes([components([]), resources([]), total_res([]), total_price([])) 

key_comp_const(a,A) :- A = 1 
key_comp_const(d,A) :- A = 1 

comp_const(widget_sys,A,B,C,D) 
: (A#>0#A(B#>0#A(C#>0#AD#>0))) 

comp_const(a,A,B-C,D-E) 
: ((B#=I #AD#=0#VB#=0#AD#= I)#A(C#=A*B#AE#=A * D)) 

comp const(b,A,B-C,D-E) 
: ((B#= 1 #AD#=0#VB#=0#AD#= 1 )#A(C#=A *B#AE#=A *D)) 

comp_const(c,A,B-C,D-E) 
:((B#=I #AD#=0#VB#=0#AD#= I)#A(C#=A*B#AE#=A*D)) 

comp_const(d,A,B-C,D-E) 
:((B#=I #AD#=0#VB#=0#AD#= 1)#A(C#=A*B#AE#=A*D)) 

req_const(al ,A,B,C) 
:((C#>0#<=>A)#AC#=B*2*A) 

req_const(a2,A,B,C) 
:((C#>0#<=>A)#AC#=B*3*A) 

req_const(bl,A,B,C) 
:((C#>0#<=>A)#AC#=B*2*A) 

req_const(d I ,A,B,C,D) 
:((C#>0#<=>A)#AC#=B* 1 *A#A((D#>0#<=>A)#AD#=B*2* 

req_const(d2,A,B,C) 
:((C#>0#<=>A)#AC#=B * i * A) 

res_const(al ,A,B,C) 
:(C#=B* 1 #A(C#>0#<=>A)) 

res_const(a2,A,B,C) 
: (C#=B *2#A(C#>0#<=>A)) 

res_const(bl ,A,B,C) 
:(C#=B* 1 #A(C#>0#<=>A)) 

res_const(b2,A,B,C) 
:(C#=B*2#A(C#>0#<=>A)) 

res_const(c I ,A,B,’C) 
:(C#=B* 1 #A(C#>0#<=>A)) 

res_const(c2,A,B,C) 
:(C#=B* I #A(C#>0#<=>A)) 

res_const(dl ,A,B,C):-
:(C#=B* 1 #A(C#>0#<=>A)) 

res const(d2,A,B,C) 
:(C#=B*4#A(C#>0#<=>A)) 

start :-
:domain([A,B,C,D,E,F,G,H],0,1),
I=[J,K,L,M,N,O,P,Q],
R=[S,T,U,V,W,X,Y,Z],
key_comp_const(a,Al),
key_comp_const(d,B 1 ),
comp_const(widget_sys,A I ,C 1 ,D 1 ,B 1 ),
comp_const(a,Al ,A-El ,B-FI ),
comp_const(b,CI,C-GllD-Hi),
comp const(c,D 1 ,E-I 1 ,F-J I ),
comp_const(d,Bl,G-KI,H-L1),
req_const(a I ,A,E 1 ,M 1 ),
req_const(a2,B,F! ,NI),
req const(b I ,C,G i ,O 1 ),
req_const(d I ,G,K 1 ,P I,Q 1),
req_const(d2,H,LI,Ri),
res_const(al,A,J,S),
res_const(a2,B,K,T),
res_const(b I,C,L,U),
res_const(b2,D,M,V),
res_const(c I,E,N,W),
res_const(c2,F,O,X),
res_const(d I,G,P,Y),
res_const(d2,H,Q,Z),
:clp_sum_list([M 1 ,N 1 ,P 1 ],C I ),
:clp_sum_list([O I ,Q 1 ],D 1 ),
:(J#=EI), :(K#=FI), :(L#=GI), :(M#=HI),
:cip_sum_list([l I ,R 1 ],N),
:(O#=Jl), :(P#=KI), :(Q#=LI),
:(Si #= S+(T+(U+(V+(W+(X+(Y+Z))))))),
:(SI #> 0),
:labeling([],l),
:labeling([],R),
:labeling([min],[S 1 ]),
:(TI is J* 10+(K* 15 +(L* 10+(M*I5 

I 0 + (O * 15 + (P * i 0 + Q * i 5))))))),
set(components(l)),
set(resources(R)),
set(total res(S 1)),
set(total_price(TI )) 

super(widget)
],

Figure 3: The compiler generated constraints for the specifications of subsystem ’widget..sys’.

widget :: {
main :-

widget_sys :: start,
widget_sys :: get(totai_res(A)), :(A=<I2),
widget_sys :: get(total_price(B)),:(B=<100),
:true &

super(utility)
}.

Figure 4: The compiler generated constraints for the specifications of system ’widget’.

26



Solution optimization

An optimal configuration solution is the main objective for
a configuration task. Optimization is usually related to
system price and resources utilization for a particular
specification. In the current implementation three
optimization parameters can be defined. The first
parameter determines the maximum number of a
component in a subsystem. It can be defined using the
following syntax:

<component> max<maximum number>

The second optimization parameter determines the
maximum number of a resource in a subsystem. It can be
defined using the following syntax:

maxResources(<subsystem>, <resource-provider>,
<resource>, <maximum number>).

The third optimization parameter determines the subsystem
with the best price. Two types of clauses need to be
defined. The first is the prices of components and the
second is the maximum price of the subsystem. They can
be defined using the following syntax:

price(<component>, <price>).
maxPrice(< subsystem>, < maximum price>).

¯ The total price is extracted from the attribute
total_price/l.

¯ The number of total resources needs to allocate is
extracted from the attribute total_res/l.

¯ The components are extracted from the attribute
components/1.

¯ The resources needed by each component are
extracted from the attribute resources/l.

init
subsystem/1 and
consist_of/2

comp_const/X

3 require/2 req_const/X
4 consume/2 res consll4
5 1, 2, 3, 4 and max/2 start
6 system/l, price/2, main

maxPrice/2, and
maxResources/4

Table I: Summarizes the mapping between Prolog clauses
and the compiler generated constraints

The generated configuration constraints

The system specification knowledge base is compiled into
CLPFD constraints. Those constraints are encapsulated
inside objects. If the configuration task includes more than
one system defined by system/l clause, the generated
objects will be represented as a forest. Each system top
object is named after the system being configured and
saved in a separate file. Also, each subsystem is
represented in a separate object, which inherits the system
top object and saved in a separate file. The constraints of
each subsystem are encapsulated in the subsystem object.
The object and the file are named after the name of the
subsystem.

Each clause in the’ specification knowledge base is
compiled into a CLPFD constraini. The constraints
generated from the specification given !n Figure 2 are
illustrated in Figure 3 and Figure 4. Some clauses are
mapped to a particular constraint while others are
combined together in one constraint. The mapping between
Prolog clauses and the generated constraints are
summarized in table 1.

It is important that calling the constraint main/0 of the
object ’widget’ (Figure 4) will give the best possible
solutions. The solution is extracted from the attributes
defined in each subsystem object. Each subsystem solution
consists of:

Conclusion

Compiling the specification, given in Figure 2, produced
the constraints, given in Figures 3 and 4. Running, the
generated code, it outputs three solutions. Figure 5 depicts
those three solutions. One of those solutions, solution I, is
the solution given in Stefil, 1995. Interestingly, the two
other solutions are not documented and are better than the
documented one. This points to that the use of CLPFD in
configuration will help in generating the best solutions that
may not be recognizable by human expert professionals.

A, B, c, lc, I °2
B-1 C-I C-! C-I

Solution I

B-2 B-2

I
B-2 C-I D-I

C-I
SolutionlI

1_~ B-2
B-2 I B-2 C-2 D-I

C-2
SolutionlII

Figure 3: Configuration solutions allocated to a widget cabinet

27



The language is missing some important features that will
be cpnsidered in future work. These features are:
¯ Specialized libraries and language statements for the

arrangement sub-model specifications.
¯ Considering the connections sub-model specifications.
¯ Considering the sharing sub-model

References
Buchheit, M., Klein, R., and Nutt, W. 1694 Configuration
as model construction: The constructive problem solving
approach. In Proceedings of the 3rd International
Conference on Artificial Intelligence in Design, AID’94.

Carlsson, M., Ottosson, G., and Carlson, B. 1997 An
Open-Ended Finite Domain Constraint Solver, in book:
Programming Languages: Implementations, Logics, and
Programming, Editors: H. Glaser and P. Hartel and H.
Kueken, Lecture Notes in Computer Science, Volume:
1292, pages: 191--206, Springer-Verlag, Southampton.

Mittal, S., and Frayman, F. 1989 Towards a generic model
of configuration tasks, IJCAI, Vol. 2, pp. 1395-1401.

Najmann, O. and Stein, B. 1992 A theoretical framework
for configuration. In Proceedings of the 5th IEAAIE.

Stefik, M. 1995 Configuration, in book: Introduction to
knowledge systems, Morgan Kaufmanns Publishers.

28




