
Knowledge Acquisition for Configuration Tasks :

The EXPECT Approach

Surya Ramachandran Yolanda Gil
USC Information Sciences Institute
4676 Admiralty Way, Suite 1001.
Marina del Rey, California 90292

{ rama, gil } @ isi.edu

Abstract
Configuration systems often use large and complex
knowledge bases that need to be maintained and extended
over time. The explicit representation of problem-solving
knowledge and factual knowledge can greatly enhance the
role of a knowledge acquisition tool by deriving from the
current knowledge base, the knowledge gaps that must be
resolved. This paper details EXPECT’s approach to
knowledge acquisition in the configuration domain using the
propose-and-revise strategy as an example. EXPECT
supports users in a variety of KA tasks like filling
knowledge roles, making modifications to the knowledge
base including entering new components, classes and even
adapting problem-solving strategies for new tasks.
EXPECT’s guidance changes as the knowledge base
changes, providing a more flexible approach to knowledge
acquisition. The paper also examines the possible use of
EXPECT as a KA tool in the complex and real world
domain of computer configuration.

Introduction

Knowledge Acquisition is an integral part of any
configuration system. Changes and modifications need to
be continuously made with respect to changes in markets.
With the emergence of new product-lines and the
discontinuation of old ones there is a need not only for
good configuration systems, but also for knowledge
acquisition tools that will help to keep knowledge bases
current. Further, with the changes in the business needs of
customers more sophisticated tools that help change
configuration constraints and parameters are needed. These
would be a very useful capabilities, since product
knowledge changes at a high rate (40-50%/year) is reported
for configuration systems such as R1 (McDermott 82) and
PROSE (Wright et al. 93).

EXPECT (Swartout and Gil 95; Gil 94; Gii and Paris 94)
is a flexible KA tool that has been used for a variety of
tasks and domains including configuration. The
problem-solving strategy is represented explicitly, and the
knowledge acquisition tool reasons aboUt it and
dynamically derives the knowledge roles that must be filled
out, as well as any other information needed for problem
solving. Because the problem-solving strategy is explicitly

Copyright © 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

represented, it can be modified, and as a result, the KA tool
changes its interaction with the user to acquire knowledge
for the new strategy. EXPECT provides greater flexibility
in adapting problem-solving strategies because their
representations can be changed as much as needed.

The paper begins by describing propose-and-revise and
its use in a role-limiting tool for knowledge acquisition.
Then we summarize the work described in (Gil and Melz
96) to illustrates how EXPECTs knowledge acquisition
tool works when the system is using a specific
problem-solving strategy. EXPECT not only supports users
in filling out knowledge roles, but extends the support to
acquire additional knowledge needed for problem-solving.
We use the propose-and-revise paradigm in small domain
for U-Haul rentals (Gennari et al. 93). We then look at
possible implementation and usefulness of a KA tool for
the computer configuration domain, a domain that is
considerably more complex and real world. Though not
implemented, it serves as an example of the power of
EXPECT as a KA tool. We describe the types of
knowledge that need to be acquired for configuration tasks
and show how EXPECT could support users in
implementing them.

Solving Configuration Design Tasks with
Propose-and-Revise

Propose-and-revise is a problem-solving strategy for
configuration design tasks. A configuration problem is
described as a set of input and output parameters (or
variables), a set of constraints, and a set of fixes to resolve
constraint violations. A solution consists of a value
assignment to the output parameters that does not violate
any constraint.

Propose-and-revise constructs a solution by iteratively
extending and revising partial solutions. The extension
phase consists of assigning values .to parameters. In the
revision phase, constraints are checked to verify whether
they are violated by the current solution and if so, the
solution is revised to resolve the violation. Violated
constraints are resolved by applying fixes to the solution. A
fix produces a revision of the solution by changing the
value of one of the parameters that are causing the
constraint violation.

Propose-and-revise was first defined as a problem-
solving method for configuration in VT (Marcus 88) for

29

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

designing elevator systems. Input parameters for VT
included features of the building where the elevator was to
be installed. Output parameters included the equipment
selected and its layout in the hoistway. An example of a
constraint is that a model 18 machine can only be used with
a 15, 20, or 25 horsepower motor. An example of a fix for a
violation of this constraint is to upgrade the motor if the
current configuration was using one without enough
horsepower.

SALT (Marcus and McDermott 89) which was used
build VT, is a knowledge acquisition tool for
propose-and-revise using a role-limiting approach. In this
problem-solving strategy, there are three types of
knowledge roles; procedures to assign a value to a
parameter which would result in a design extension,
constraints that could be violated in a design extension and
fixes for a constraint violation. Consequently, the user
could enter one of the three types of knowledge. For each
type of knowledge, a fixed menu is presented to the user to

relational expressions to retrieve the fillers of a relation
over a concept. Some method bodies are calls to Lisp
functions that are executed without further subgoaling.

We first look at an example of EXPECT’s
representations using propose-and-revise as a strategy for
solving the following type of problems in the U-Haul
domain: Given the total volume that the client needs to
move, the system recommends which piece of equipment
(e.g., a truck, a trailer, etc.) the client should re.nt. Figure
graphically shows parts of the factual domain model for
propose-and-revise and for the U-Haul domain. IThe upper
part of the picture shows factual knowledge that is domain
independent and can be reused for any domain. In the
configuration process, there is an explicit representation of
state variables (which denote a configuration) and
constraints. The state variables can be associated with
components the make up the configuration. Constraints are
associated with valid sets of instantiations for the state
variables. The lower part of the picture shows factual

:some
r-sl~te~._ .. ~ r-variables~ r-value . r-upgrade

~ ,-~t~ ~ r-variables ~ r-value ,~ r-capacity
~" equipment- v e ui merit ~"

\r-constraints
~ ~ ~r-constraints

\ ’ . . I r-fixes ,..i . .
CapacityConstramtI v[UpgradeEqulpmentFix]

Figurel: EXPECT’s representation of some of the factual knowledge needed for propose and revise problems, for configuration problems
and the U-Haul domain.

be filled out. SALT does not provide support in updating or
maintaining the knowledge about elevator components.

Explicit Representations in EXPECT

In EXPECT, both factual knowledge and problem-solving
knowledge are represented explicitly. This means that the
system can access and reason about the representations of
factual and problem-solving knowledge and about their
interactions. Factual knowledge is represented in LOOM
(MacGregor 91), a knowledge representation system based
on description logic. Factual knowledge includes concepts,
instances, and the relations among them. Problem-solving
knowledge is represented in a procedural-style language
that is tightly integrated with the LOOM representations.
Subgoals that arise during problem solving are solved by
methods. Each method description specifies: 1) the goal
that the method can achieve, 2) the type of result that the
method returns, and 3) the method body that contains the
procedure that must be followed in order to achieve the
method’s goal. A method body can contain nested
expressions, including subgoal expressions that need to be
resolved by other methods; control expressions such as
conditional statements and some forms of iteration; and

knowledge that is relevant to the U-Haul domain. Here
state variables denote things like pieces of equipment and
constraints contain information about capacity restrictions,
etc.

There is a continuum between the representation of
domain-dependent and domain-independent factual
knowledge in EXPECT. They are represented in the same
language, yet they can be defined and maintained
separately. Once a U-Haul problem is specified as a kind of
configuration problem, it inherits the fact that it has
constraints and fixes. Trucks are not defined as having
upgrades, since having upgrades is a way to look at
components from the point of view of configuration
problems. Instead, they are defined as configuration
components, which have upgrades.

(defmethod REVISE-CS-STATE
"To revise a CS state, apply the fixes found for the
constraints violated in the state."
:goal (revise (obj (?state is (inst-of cs-state))))

1 By convention, we denote relations with the prefix r-.

3O

:result (inst-of cs-state)
:body (apply (obj (find (obj (set-of (spec-of

(for (find
(obj (set-of (spec-of violated-constraint)))
(in ?state)))))

(to ?state)))

(defmethod CHECK-CAPACITY-CONSTRAINT
"To check the Capacity Constraint of a U-Haul
configuration, check if the capacity of the rented
equipment is smaller than the volume to move."
:goal (check (obj CapacityConstraint)

(in (?c is (inst-of uhaul-configuration))))
:result (inst-of boolean)
:body (is-greater-or-equal

(obj (r-capacity (r-rented-equipment ?c)))
(than (r-volume-to-move ?c))))

Figure 2: Problem-solving knowledge in EXPECT.

Figure 2 shows two different problem-solving methods.
REVISE-CS-STATE is one of the methods that specifies
how propose-and-revise works. The CHECK-CAPACITY-
CONSTRAINT specifies that the capacity of the equipment
rented must at least be equal to the volume of the client’s
needs.

Knowledge Acquisition in EXPECT

EXPECT’s problem-solver is designed to detect errors and
to report them to the KA tool (see table 1) together with
detailed information about how they were detected. The
KA tool uses this information to support the user in fixing
them. Other modules that can detect and report errors are
the parser (which detects syntax errors and undefined
terms), the method analyzer.(which detects errors within
problem-solving method), and the instance analyzer (which
detects missing information about instances).

EXPECTs problem-solver can analyze how the different
pieces of knowledge in the knowledge-based system
interact. For this analysis, it takes a generic top-level goal
representing the kinds of goals that the system will be given
for execution. In the U-Haul example, the top-level generic
goal would be (solve (obj (inst-of uhaul-problem))),
specific goal for execution would be (solve (obj
jones-uhaul-problem)).

EXPECT analyzes how to achieve this goal with the
available knowledge. EXPECT expands the given top-level
goal by matching it with a method and then expanding the
subgoals in the method body. This process is iterated for
each of the subgoals and is recorded as a search tree.
Throughout this process, EXPECT propagates the types of
the arguments of the top-level goal, performing an
elaborate form of partial evaluation supported by LOOM’s
reasoning capabilities. During this process, EXPECT
derives the interdependencies between the different
components of its knowledge bases. This analysis is done
every time the knowledge base changes, so that EXPECT
can re-derive these interdependencies.

The EXPECT’s problem solver is designed to detect
goals that do not match any methods, and to detect relations
that try to retrieve information about a type of instance that
is not defined in the knowledge base. In addition to
detecting an error, each module is able to recover from the
error if possible, and to report the error’s type and the
context in which it occurred. It would also report this error
to the knowledge acquisition module, together with some
context information and a pointer to the part of the
problem-solving trace where the subgoal was left unsolved.

Once the errors are detected, EXPECT can help users to
fix them as follows. EXPECT has an explicit representation
of types of errors, together with the kinds of corrections to
the knowledge base that users can make in order to solve
them. This representation is based on typical error
situations that we identified by hand. Table 1 shows some
of the errors that can currently be detected by two of the
modules: the problem solver (el through e3) and the
instance analyzer (e5).

Knowledge Acquisition for
Propose-and-Revise in EXPECT

Previously, we pointed out some of SALT’s limitations in
terms of its lack of flexibility as a knowledge acquisition
tool. In this section, we illustrate how EXPECT’s explicit
representations support a more flexible approach to
knowledge acquisition.

Code [Error/Potential Problem Suggested Corrections

modify method body

el no method found to achieve modify another method’s goal
goal G in method body M add a new method

modify instancer coneept~ relation

e2 role R undefined for type C in modify method M
method M add relation R to C

modify method M
e3 expression E in method M has

invalid arguments modify another method’s goal
modify instance, concept, relation

add information about instance
eS missing filler of role R of

instance I needed in method M modify method body
delete instance

Tablel: Some of the potential problems in the knowledge bases
detected by EXPECT.

Acquiring Domain-Specific Knowledge
Suppose that U-Haul decided to begin renting a new kind
of truck called MightyMover. The user would add a new
subclass of truck, and EXPECT would immediately request
the following:

E1---I need to know the capacity of a MightyMover.
The reason for this request is that EXPECT has detected
that the capacity of rental equipment is a role that is used
during the course of problem solving, specifically while
achieving the goal of checking the CapacityConstraint with
the method shown in Figure 2.

This corresponds to errors of type e5 in Table 1.
EXPECT will only request the information that is needed
by the problem-solving methods.

31

Acquiring New Constraints and Fixes

Instead of needing the definitions of schemas to enter
constraints and fixes, EXPECT requests them as
constraints and fixes that are to defined by the user.
Suppose for example that the user wants to add a new
constraint that restricts the rental of trailers to clients with
cars made after 1990 only. The user would add a new
instance of constraint: TrailersForNewCarsOnly. EXPECT
would analyze the implications of this change in its
knowledge base and signal the following problem:

E2---I do not know how to achieve the goal
(check (obj TrailersForNewCarsOnly) (in (inst-of
uhaul-configuration)))

This is because during problem solving EXPECT calls a
method that tries to find the violated constraints of a
configuration by checking each of the instances of
constraint of U-Haul problems. This is a case of an error of
type el. Before defining this new instance of constraint, the
only subgoal posted was (check (obj CapacityConstraint)
(in (inst-of uhaul-configuration))) and now it also posts
subgoal (check (obj TrailersFor NewCarsOnly) (in (inst-of
uhaui-configuration))). There is a method to achieve
former subgoal (shown in Figure 2), but there is no method
to achieve the latter.

To resolve E2, the user chooses the third suggestion for
errors of type el and defines the following method to check
the constraint: Once this method is defined, E2 is no longer
a problem and disappears from the agenda. EXPECT’s
error detection mechanism also notices possible problems
in the formula to check the constraint. For example, if
r-year had not been defined EXPECT would signal the
following problem (of type e2):

E3---I do not know what is the year of a car.
When the user defines the role r-year for the concept car
this error will go away. EXPECT can also detect other
types of errors in the formulas to check constraints. For
example, if r-year was defined to have a string as a range,
then EXPECT would detect a problem. It would notice that
there is no method to check if a string is greater than a
number, because the parameters of the method for
calculating is-greater must be numbers. EXPECT would
then tell the user:

E4---I do not know how to achieve the goal
(is-greater (obj (inst-of string)) (than

Like E2, E4 is an error of type el. But in this case the user
chooses a different way of resolving the error, namely to
modify the definition of the relation r-year. If the user
defined a fix for the new constraint, then EXPECT would
follow a similar reasoning and signal the need to define a
method to apply the new fix.

EXPECT changes its requests for factual information
according to changes in the problem-solving methods. This
can be illustrated in this example of adding a new
constraint. An effect of the fact that the user defined the
new method to check the constraint is that new factual
knowledge about the domain is needed. In particular,
EXPECT detects that it is now important to know the year

of the car that the client is using (and that is part of the
configuration), because it is used in this new method. The
following request will be generated for any client that, like
in this case Mr. Jones, needs to rent U-Haul equipment:

E5---I need to know the year of the car of Jones.
This is really requiring that the information that is input to
the system is complete in the sense that configuration
problems can be solved. In EXPECT, the requirements for
inputs change as the knowledge base is modified.

Changing the Propose-and-Revise Strategy

Suppose that the user wants to change the revision process
of propose-and-revise to introduce priorities on what
constraint violations should be resolved first. The priorities
will be based on which variable is associated with each
constraint.

The user would need to identify which of the
problem-solving methods that express propose-and-revise
in EXPECT needs to be modified. The change involves
adding a new step in the method to the revise state in the
propose-and-revise methodology. The new step is a subgoal
to select a constraint from the set of violated constraints.
EXPECT would signal the following request:

E6---I do not know how to achieve the goal
(select (obj (spec-of constraint)) (from (set-of (inst-of
violated-constraint))))

This is an error of type e5, and it indicates that the user has
not completed the modification. The user needs to create a
new method to achieve this goal. The user may also need to
define a new method for the take subgoal.

With these modifications to the knowledge base, the
propose-and-revise strategy that EXPECT will follow has
changed. Because the representation of the new strategy is
explicit, EXPECT can reason about it and detect new
knowledge gaps in its knowledge base. As a result of the
modification just made, there is additional factual
information needed including new information about an
existing knowledge role and a new kind of knowledge role.
EXPECT would then signal the following requests (both of
type e5):

E7---I need to know the ~onstrained variable of
TrailersForNewCarsOnly.
E8---I need to know the preference of equipment-
variable.

E7 and E8 illustrate that EXPECT has noticed that the
change in the problem-solving strategy requires the user to
provide new kinds of information about the factual
knowledge used by the strategy. This shows that in
EXPECT the acquisition of problem-solving knowledge
affects the acquisition of factual knowledge. Recall that E2
illustrated the converse.

KnowledgeAcquisition for Computer
Configuration

In this section we shall describe how the explicit
representation of knowledge approach used in the EXPECT
architecture can aid knowledge acquisition in the computer
configuration domain. This is not an implemented domain

32

but serves as an example to show that the approach taken in
the U-Haul domain can be applied to more complex real
world domains. In EXPECT the separation of different
pieces of knowledge can help the user (or developer)
acquiring different forms of knowledge. In the computer
configuration domain we shall look at problem solving
methods (PSMs), constraints, class hierarchies and the
actual instances of data that populate these classes as
examples of knowledge.

For lucidity in the explanation of the benefits of a KA
tool in the computer configuration domain, let us look at a
possible way of representing constraints and component
specifications. As the reader is aware the knowledge
representation framework used by EXPECT is LOOM a
description logic based KR system (detailed in the section
on explicit representations in EXPECT). Frame based
semantics that provide for the definition of Concepts (or
frames), Instances of these concepts and Roles which
provide a way to relate instances. LOOM allows for class
hierarchy descriptions of components. A hierarchy of
constraints can then be defined that closely relates to the
class hierarchy.

The advantages of using a description logics based
system as described in the PROSE system (Wright, et al
93) which uses C-Classic (Weixeibaum 91) are applicable.

¯ Classification. The ability to find all descriptions
applicable to an object; finding all descriptions that
are more general or more specific than it
(subsumption architecture).

¯ Completion or propagation of logical consequences.
including but not limited to inheritance.

¯ Contradiction detection where a particular instantiation
of features does not represent a legal combination.

¯ Dependency maintenance. A truth (or falsity)
preservation over the entire set of assertions.

Figure3 depicts, on the left, a possible representation of
the class hierarchy for the general class of storage mediums
that can be further decomposed into hdd (hard disk drives),
fdd (floppy disk drives), CDROMs and so on. On the right,
a similar hierarchy is shown describing a common data bus
architectures found in the computer domain today.

An example of what kinds of attributes an actual instance
would have are also depicted. Instances here are actual
components that are manufactured and that make up the
final configuration.

Generally, constraints can be defined as the rules or
heuristics that govern the binding of values to a set of
variables for a given problem specification. A constraint
limits the possible values that can be assigned to these
variables. The constraint satisfaction problem (CSP) can
thus be defined as a consistent set of variable assignments
such that the resultant solution does not violate any of the
given constraints. Configuration can be classified as a type
CSP where the final solution is a list of instances (or
variable instantiations) from the domain of products that do
not violate any constraints (which is represented in the top

half of figure 1). Constraints in the computer configuration
domain can be represented either as roles (or relations)
defined on the component class hierarchy at the LOOM
level or as explicit problem solving methods in EXPECT.

IStorage Medium]

IDMI2341tDD
¯ Type : SCSI 2
¯ Capacity 4.2 Gb
¯ Speed : 10,000 Rpm
¯ Dim : 5 1/4 L

3 1/2W
1 1/2H

.Cost : 240.00

Data Busses]

SCSI2NBUS
¯ Type : SCSI 2
¯ Aux Type : Narrow
¯ Transfer Rate : 15 Mb/see

Figure3 : Hierarchical representation of classes and instances.

Let us now look at some examples of constraints. A
typical constraint on the class of storage mediums may try
to assign a data bus to connect the device to. This constraint
may in turn be composed of two disjunctive sub-
constraints. One trying to assign an existing data bus
checking for bandwidth availability. Failing which (OR),
the assignment of some component to be included in the
configuration that will provide the correct bus type and
enough bandwidth. But the focus of this section is not on
the formulation of constraints or the actual configuration
process but rather on enumerating the clear benefits of
using an architecture like that of EXPECT for the ease of
knowledge acquisition. We shall now describe the benefits
that a KA tool provides at various levels of the hierarchy
and :aspects of the configuration process. We have
identified four main levels that a KA tool Can provide
support and aid the user/developer.

The addition of a new component.
By representing explicitly the information used in the
constraints and problem solving methods, the KA tool can
identify which attributes of a class are needed in the
configuration task. Thus the KA tool can be used to guide
the users (or data entry operators) to enter only relevant
information for configuration. The benefits here are that not
only do data entry operators spend less time entering
information on new components but the automation of this
process will lead to the configuration system co-existing
with other applications in the enterprise by sharing
information from different databases. An example of the
extraction of component information from databases may
include; a database that maintains product sheets for user
information, a database that has stock and warehouse
information and another that has current pricing
information. This is similar to El for knowledge
acquisition in the U-Haul domain,

33

The addition of a new component class.

By exploiting the inter-dependencies between the various
constraints and classes (i.e. the attributes used in
constraint must be defined in at least one class in the
constraint hierarchy) the KA tool can suggest the possible
list of attributes that would be needed for that class by
comparing the list of attributes that are mentioned in the
constraints and the, inherited attributes at that level of the
component hierarchy. The KA tools can further help in
defining the value, range, and domain if such information is
exploited in the constraints. Thus the configuration system
can be modified with relative ease and without the domain
knowledge of either the component manufacturer or the
component hierarchy knowledge. This resembles El for
KA in the U-Haul domain.

The addition of new constraints.
By identifying the level of applicability of a constraint with
respect to it’s position in the constraint hierarchy and the
class of components it affects, the KA tool can guide the
user in effectively using all parts of the KB that are
available at that level (often times with complex class
hierarchies and inheritance patterns, the user may not be
completely aware of what attributes are available to him
while writing a constraint). Another area where a KA tool
can help the user write constraints is by looking for similar
constraints that may already exist, and the modification of
which would not only lead to greater uniformity and less
mistakes in the knowledge bases but would also be a
conservation of time and effort. This is similar to E2
through E5 for KA in the U-Haul domain.

The modification/extension of PSMs.

By explicitly representing the problem solving methods
used by the configuration system and having access to a
library of PSMs, the KA tool can help the user make the
appropriate change to the PSMs for a new application in a
domain requiring different inferential capabilities. For
example, the choice of which part of a disjunctive
constraint to evaluate first may be based on some criteria
like the amount of computation needed to explicitly make a
choice at to which branch to explore first. The primary
benefit of having a KA tool actually guiding the user
throughout this process is the fact that its usage will lead to
a more robust and efficient configuration system. This is
similar to E6 through E8 for KA in the U-Haul domain.

Discussion and Conclusion

Throughout the paper, we have referred to a generic user
wanting to make changes to the knowledge base. This is not
necessarily one user, and not necessarily the end user or
domain expert. For example, the end user may only enter
knowledge about clients and new parts. A more technical
user would be able to modify propose-and-revise. A
domain expert who does not want to change the
problem-solving methods can still use EXPECT to fill up
knowledge roles and populate the domain-dependent
factual knowledge base. Supporting a range of users would

require adding a mechanism that associates with each type
of user the kinds of changes that they can make to the
knowledge base and limiting the users to make only those
changes. The important point is that all the changes, no
matter who ends up making them, are supported by the
same core knowledge acquisition tool. EXPECT’s explicit
representations of problem-solving strategies can be used to
support,flexible approaches to knowledge acquisition. Our
goal iis to apply this approach to support users to maintain
and extend configuration systems.

Acknowledgments

The authors are grateful to all the members of the EXPECT
group, past and present. Especially to Eric Melz for his
work on the U-Haul Domain. We are grateful for the
support of DARPA with contract DABT63-95-C-0059 as
part of the DARPA/Rome Laboratory Planning Initiative,
and with grant F30602-97-1-0195 as part of the DARPA
High Performance Knowledge Bases Program.

References

Gennari, J. H., Tu, S. W., Rothenfluh, T. E., and Musen, M. A.
Mapping methods in support of reuse. In Proc. of the 8’h

Knowledge Acquisition for Knowledge-Based Systems
Workshop, Banff, Alberta, 1994.

Gil, Y. Knowledge refinement in a reflective architecture. In Proc.
of the 12’h National Conference on AI, Seattle, WA, 1994.
Gil, Y., and Paris, C. Towards method-independent knowledge
acquisition. Knowledge Acquisition, 6(2): 163-- 178, 1994.

Gil, Y. and Meiz, E. Explicit Representations of Problem-Solving
Strategies to Support Knowledge Acquisition. In Proc. of 13’~

National Conference on AI, AAAI 96. 469-476, 1996.
McDermott, J. RI: A rule-based configurer of computer systems.
Artificial Intelligence 19:39--88, 1982.

MacGregor, R. The evolving technology of classification-based
knowledge representation systems. In J. Sowa, editor, Principles
of Semantic Networks: Explorations in the Representation of
Knowledge. Morgan Kaufmann, San Mateo, CA, 1991.
Marcus, S., and McDermott, J. SALT: A knowledge acquisition
language for propose-and-revise systems. Artificial Intelligence,
39(1):1--37, May 1989.

Marcus, S., Stout, J., and McDermott, J. VT: An expert elevator
designer that uses knowledge-based backtracking. AI Magazine
9(1):95--112, 1988.
Swartout, W. R., and Gil, Y. EXPECT: Explicit Representations
for Flexible Acquisition. In Proc. of the 9’h Knowledge
Acquisition for Knowledge-Based Systems Workshop, Banff,
Alberta, 1995.

Weixelbaum, E. C-CLASSIC Reference Manual, Release 1.0,
Technical Memorandum 59620-910731-07M, AT&T Bell
Laboratories, Murray Hill, NJ. 1991.

Wright, J. R., Thompson, E. S., Vesonder, G. T., Brown, K. E.,
Palmer, S. R., Berman, J., and Moore, H. A knowledge-based
configurator that supports sates, engineering, and manufacturing
at AT&T Network Systems. AI Magazine 14(3):69--80, 1993.

34

attrs(digital_module) = {sw_v}.
dora(digital_module, sw-v) = {1, 2, 3}
attr s(contr ol_module) = { address, sw w
dora(control_module, sw_v) = {2, 3}.
dora(control_module, address) = { 1 64}.

We use three predicates for associating tylJes, connections, and
attributes with individual components. A type t is associated with
a component e through a literal type(e, t). A connection is repre-
sented by a literal corm(el, pl, e2, p2) where pl (p2) is a port
component cl (c2). An attribute value v assigned to attribute a
component e is represented by a literal val(e, a, v).

Attributes and connections between components must obey the
following application-specific constraints (some only given verbally
for space reasons):

CI Digital modules must be bundled with software of version 1 or
2, controller modules with version 2 and 3.

VM : type(M, digital_module) ~ val(M, sw_v, 1) V vat(M, sw_v, 2).
VM type(M, control_module) ~ val(M, sw_v, 2) V val(M, sw_v, 3).

C2 A mounted_on-port of a module must be connected to a slot of
a frame:

V M : type(M, analog_module) Y type(M, digital.module
type(M, control_module)
--~ 3F, P : type(F, frame) A corm(M, mounted_on, F,

C3 The mixing of analog and digital modules within a frame is not
allowed:
VF, PI,P2, MI,M2 : type(F, frame) A PIE ports(F)A
ports(F)
A corm(F, P t, M 1, mounted_on) A corm(F, P2, M2, mounted_on)
A type(M 1, analog_module) A type(M2, digital_module)
--+ false.

C4 Connections are symmetric.
C5 A port can only be connected to one other port:
C6 if there exists a slot in a frame which is connected to a digital

module, then at least one of the slots contrl and contr2 must also
be connected to a control_module and the control module must be
set to the appropriate address.

C7 Control modules and digital modules in a frame must have the
same software version.

A simple configuration task in this domain could be: configure a
system which includes the following modules: four digital_module
and three analog.module. This task can be easily represented with
the following facts

type(dml, digital.module), type(dm2, digital.module).
type(din3, digital.module),type(din4, digital.module).
type(aml, analog_module),type(am2, analog.module).

type(am3, analog_module).
which give requirements" for valid configurations in one particular

problem instance.
Based on this domain and problem description there are numerous

valid configurations, where a valid configuration is one that satisfies
the set of logic sentences. A Configurations with minimal number of
components is depicted below.

type(dml, digitai_module),type(dm2, digital_module).
type(dm3, digital_module),type(dm4, digital.module).
type(am l, analog.module),type(am2, analog_module).

type(am3, analog_module).
type(fl, frame), type(cml,control.module).

corm(f l, slot l , dm l , mounted_on), corm(f l, slot2, din2, mounted_on).
corm(f1, slot3, din3, mounted.on), corm(f l, slot4, din4, mounted_on).

eonn(f 1, contr l , em l , mounted_on).
type(f2, frame).

corm(f2, slotl, am l, mounted_on), corm(f2, slot2, am2, mounted_on)~
corm(f2, slot3, am3, mounted_on).

val(dml, sw_v, 2). val(dm2, sw_v,2).
val(dm3, sw.v, 2). val(dm4, sw.v,2).

val(cml, sw_v,2), val(cml, address, 1).

Figure 1. A Configuration

36

All other cost optimal configurations use the same set of compo-
nents and are only permutations of the connections of the depicted
confguration.

In the following section we will provide a precise definition for
the notion of valid configuration.

3 Definition of Configuration

We first define the concept of a configuration problem, i.e., the spec-
ification for a particular system that is to be configured. The descrip-
tion consists of a generic part and a problem specific part:

Definition 3.1 (Configuration Problem) A Configuration problem
is defined as a pair of sets of logical sentences (D D, SRS), where
DD is the domain description and SRS is the specific requirements
which are application dependent.

In practice, configurations are built from a catalog of component
types that is is fixed for a given domain, e.g., a particular company’s
product line of telephone exchanges or computers. This catalog spec-
ifies the basic properties and the set of logical or physical connections
that can be established between different components. Therefore the
domain description DD must contain the definition of a set types.

To define the properties and connections, DD must define func-
tions ports and attributes, ports maps each type to the set of con-
stants that represent the ports provided by components of that type,
i.e., the possible connections for each component type. attributes
defines the set of attributes, and the function dorn defines the domain
of an attribute for a particular type. The rest of the domain descrip-
tion describes valid value assignments to ports and other conditions.

An individual configuration consists of a set of components, their
attribute values, and the connections between them.

Definition 3.2 (Configuration) Let (DD, SRS)
a configuration problem. A configuration is a triple
(COMPS, CONNS, ATTRS):
¯ COMPS is a set of ground iiterals type(c, t) where t E types
and c is a Skolem constant. The type assignment is unique for a
given component (we refer to this requirement as AX1).

¯ CONNS is a set of ground literals corm(el, pl, e2,p2) where
el, e2 are components and pl,p2 are ports. The types of these
components and their ports must correspond to DD, and each
port can be part of a connection which must then be unique (AX 2

¯ ATTRS is a set of ground literals of the form val(el, al, vl)
where el is a component, al is an attribute name, and vl is the
value of the attribute. Attribute values must be unique (AX 3

The set of axioms AX = {AX1, AX2, AX3} is assumed to be
included in DD. Note that there is no innate requirement that ports
have to be connected to some component. This information is part of
individual domain descriptions.

Definition 3.3 (Consistent Configuration) Let (DD,
S RS) be a configuration problem. A configura-
tion (COMPS, CONNS, ATTRS) consistent iff
DD U SRS U COMPS U CONNS U ATTRS is satisfiable.

This intuitive definition allows determining the validity of partial
configurations, but does not require the completeness of configura-
tions. For example, taking only one frame (e.g., f2) and all its con-
nections from Figure ! would also be consistent configuration. As we
see, for practical purposes, it is necessary that a configuration explic-
itly includes all needed components (as well as their connections and
attributes), in order to manufacture and assemble a correctly func-
tion system. We need to introduce an explicit formula to guarantee
this completeness property.

For ease of notation we write Comps(t, COMPS) for the
set of all components of type t mentioned in COMPS, i.e.,
Comps(t,COMPS) = {cltype(c , t) E COMPS}.

We describe the fact that a configuration uses not more than a
given set of components Comps(t, COMPS) of a type t E types
by the literal complete(t, Comps(t, COMPS)) and the formula

complete(t, Comps(t, COMPS))
(VC : type(C, t) -+ C E Comps(t, COMPS)).

We denote the fact that COMPS describes all allowed type facts Based on our experiences in various configuration domains it is
by necessary to allow general clauses¯ (See, e.g., constraint C6 in our in-

. troductory example.) Our example clauses are presented by using the
(CL1) UCOMPS = {complete(t, Comps(t, COMPS))It E types}implication form as notation, made more compact by allowing both

We will write COM~PS to denote COMPSU UCOMPS.
Similar to the completion of the type literals, we have to make

sure that all conn facts are included in CONNS. We use the name

(CL2) UCONNS = {VX, Y : -~conn(c, p, X, Y)l
type(c, t) E COMPS A p E ports(t)A
conn(c, p, _, _) ¢_ CONNS A conn(_, _, c, p) ~_ CONNS}

and write CONNS to denote CONNS tJ UCONNS. Finally, the
completion of attribute values is specified by

(CL3) UATTRS = {VV : -,val(c, a, V)ltype(c, t) E COMPSA
a E attrs(t) ^ val(c, a, _) ¢ ATTRS}

We write ATT"-’-RS to denote ATTRSOUATTRS, and define
CL = {CL1, CL2, CL3}.

Given a particular configuration according to the above definition,
the most important requirement is that is satisfies the domain descrip-
tion and does not contain any components or components which are
not required by the domain description (note that this does not imply
that a valid configuration is unique or has to have minimum cost).

We will define CONF to refer to a configuration consisting
of components COMPS, connections CONNS, and attributes
ATTRS, and

C ONF = CO~M’PS U CO NNS U A~TTRS
CONF = COMPS U CONNS U ATTRS

Definition 3.4 (Valid and Irreducible Configuration) Let (DD,
SRS) be a configuration problem¯ A configuration CONF is valid

iff DD U SRS U CONF is satisfiable. If CONF is valid, we call
it irreducible if there exists no other valid configuration CONF’
such that CONF’ C CONF.

¯ *

Because we use Skolem constants as component identifiers (which
do not appear in the underlying theory) we have decoupled the set
COMPS, i.e., the individual component instances, from the prob-
lem description. Therefore the validity and irreducibility of configu-
rations is independent of a bijective renaming of these constants.

With the above definition we have defined a class of configurations
which are interesting from a practical point of view, since we are in-
terested in parsimonious configurations. In some tasks where no def-
inite costs function for configurations exists, it is necessary to con-
sider the generation of (all up to equality) valid configurations which
are irreducible, although they may not be cost optimal¯ In real world
settings such situations do sometimes occur, e.g., in some cases all
racks should look the same as much as possible even if this means
that this is not a cost optimal solution. However, in many applications
it is exactly the minimal cost configurations which are of interest.

Note that for a configuration problem (DD, SRS), a valid con-
figuration CONF exists iff DD U SRS U CL is satisfiable¯ Note
that up to now valid configurations would include those which use
infinitely many components. In practice, DD will of course be spec-
ified in such a way that if a valid configuration exists, it is finite.
E.g., using an upper bound on the term-depth for decidability rea-
sons ensures also the property that finite models exist (and therefore
finite configurations as well) if any model exists at all. In addition,
the configuration process can be aborted if a certain bound on the
number of components is exceeded.

4 A simple configuration language

Based on the problem definition above the important task .in order
to achieve successful applications is to find a compromise between
expressive power and efficiency. In particular, purely rule-oriented
knowledge bases, whether based on OPS-style production rules or
horn clauses, tend to be brittle. First, even simple constraints have
to be expressed by multiple rules, second, reasoning strategies are
encoded in the rules, thus leading to maintenance problems.

A and V in the consequent and antecedent of the implication (which
can be can be translated to the usual implication form). In addition,
we demand that clauses are range restricted, i.e., every variable in the
consequence part of a clause occurs in the antecedent as well

In the clauses we allow the predicates type, val, and corm
as well as interpreted predicates (e.g., tests for port and attribute
names, equality, inequality, and use use of the functions ports and
attributes), and interpreted functions¯ These are defined over the
specified ports, types, attributes, and attribute domains. Therefore,
no new symbols (e.g., types) can be introduced as a side effect and
no function symbols are allowed except for interpreted functions.

In practical configuration problems the number of components that
will make up the finished configuration is rarely known a priori. What
is needed is a mechanism that allows expressing information about
components that are not initially specified (e.g., in SRS), but are
added later as required by the domain description. We achieve this
by a local weakening of the range restrictedness condition through
allowing sorted existential quantification on components in the con-
sequence part of the clauses. All other existential quantifications in
the consequent (e.g., of ports) are only allowed if they can be trans-
lated into a disjunction by substituting individuals (e.g., individual
port names) for the variable, e.g., see constraint C2 above¯

By introducing existential quantification the question regarding
decidability becomes an important issue¯ As we noted, existential
quantification is only allowed for components and therefore decid-
ability could be simply enforced by limiting the number of compo-
nents. The generation of valid configurations depends not only on
the content of the knowledge base but also on the search strategies.
In practical applications we have made the experience that it was
quite easy to ensure that for each possible customer requirement,
valid configurations are generated.

Another extension is the inclusion of aggregate operators. These
are used to express global conditions that require the testing of prop-
erties of a larger set of components, since, the enumeration of all
components on which such a global constraint must be evaluated
would be tedious, error-prone, or (in cases which refer to the ma-
jority of the components in the final configuration, such as a global
cost boundary), not possible beforehand, e.g., a constraint that states
that the maximum traffic load of all modules in a frame (which may
be up to 32 modules in a full configuration) must not exceed a certain
boundary. We use a macro operator to apply a condition over sets of
components and aggregate operators (such as ~, max or average)
to evaluate the properties of these components in combination. For
space reasons we do not discuss these operators in more detail; they
can be found in the full version of this paper [12].

5 Consistency-based configuration vs. diagnosis

The definitions presented so far consider configuration as finding a
consistent theory that specifies a set of components, their types and
attribute values, and the connections between those components. Not
surprisingly, this task is related to other consistency-based reason-
ing tasks like consistency-based (model-based) diagnosis [10, 2].
model-based diagnosis we seek a consistent mode assignment where
each component of a fixed set of components is assumed to behave
correctly or abnormally according to a fault mode. This section ex-
amines the relationship between diagnosis and configuration from
the common viewpoint of consistency-based reasoning, to provide a
platform for analyzing similarities and differences between the two
problem area, and to examine what results and methods from diag-
nosis can be carried over to configuration.

We use the following definitions for model-based diagnosis [10]:
¯ A system is a triple (SD, COMPONENTS, OBS) where:

SD, the system description, is a set of first-order sentences;
COMPONENTS, the system components, is a finite set of
constants;

¯ OBS, a set of observations, is a set of first-order sentences.
¯ Furthermore, we define an ab-literal to be ab(e) or -qab(c)

for some c E COMPONENTS, and AB = {ab(c)lc
OOMPONENTS}.

37

¯ For D CAB, A = D U {-~ab(c)iab(c) E AB \ D} is a diagno-
sis for -(SD, COMPONENTS, OBS) iff SD U OBSU A is
consistent.

¯ Finally, a conflict CONFL of (SD, COMPONENTS, OBS)
is defined as a disjunction of ab-literals containing no comple-
mentary pair of ab-literals s.t. SD 19 OBS ~ CONFL. A minimal
conflict is a conflict such that no proper subclause is a conflict.
Table l shows the correspondence between consistency-based di-

agnosis and consistency-based configuration.

Diagnosis Configuration
SD DD O CL
OBS SRS
AB UNIV
D CONF

Table I.

The system description SD and the domain description DD de-
scribe the general properties of an application domain. Since the gen-
eral behavior of the diagnosis problem is completely defined through
the system description, when viewed from the diagnosis point of
view, the system description would consist of the domain descrip-
tion and the closure axiom set CL.

In contrast to these static items, the observations OBS and the sys-
tem requirements SRS depend on a specific problem instance. Since
the number of needed components in configuration is not known a
priori, the number of facts needed for the description of a configura-
tion is not known in advance (thus the introduction of CL). A diag-
nosis solution is one-dimensional (one ab literal per component). In
configuration, there are three types of literals (type, corm, and val),
and there may be several corm and val literals per component.

In addition, since the number of components is theoretically un-
bounded, so is the number of potential literals. This set of poten-
tial literals is what we call the universe of the configuration problem
(UNIV). Note that UNIV, like AB, only contains positive literals,
and in searching for an irreducible, valid, finite configuration (if one
exists), only finite subsets should ever be generated, i.e., those (ex-
clusively positive) literals which actually occur in partial solutions.
Therefore, the diagnosis A (specified extensionally) is equivalent to
CO-’NF (which consists of an extensionally speei fled part, CONF,
and an intensional one. CL.

Despite these differences, the following theorems have a natural
correspondence to results in model-based diagnosis.

6 Conflicts and Configurations
For characterizing configurations and pruning the search space we
employ the concept of conflicts. If we find that a given configuration
is not valid, we have to conclude that at least one literal exists in the
configuration (or in CL) that must be negated to arrive at a state that
can be extended to a valid configuration.

Definition 6.1 (Conflict) A conflict C for a configuration problem
(DD, SRS) and a set of components COMPS of a configuration
CON F is a disjunction (not necessarily ground) of literals:
¯ type(c, t) where type(c,t) E COMPS and t E types
* conn(cl,pl,c2,p2) where type(cl, tl) E COMPS,
type(e2, t2) E COMPS, pl E ports(tl), and p2 E ports(t2)

¯ val(cl,al,vl)where type(cl,tl) E COMPS,
attrs(tl),

¯ complete(t, Comps(t, COMPS)) where t E types
¯ uconn(c, p) where type(c, t) E COMPS, p E ports(t).
¯ noval(c, a) where type(c, t) E COMPS, a E attrs(t).

such that DD U SRS U CL ~ C.

Stated conversely, the negation of a conflict is a conjunction of
assumptions about the type of components, their connections and at-
tributes, and the comtSleteness of components s.t. this conjunction is
inconsistent with D D U S RS O C L.

The predicate uconn(c, p) holds if port p of component e is not
connected to any other component, and noval(e, a) likewise states
that attribute a is not assigned a value. (Basically, they are shorthand
for expressing the absence of such assignments.)

A valid configuration can be described by the following theorem.

Theorem 6.1 Let (D D , S RS) be a configuration problem, CON
a configuration, and CS the set of all conflicts of this configura-
tion problem and configuration. CON F is a valid configuration iff

C S O CON F is satisfiable.

The concept of conflicts was introduced by [I 0] in order to detect
those assumptions which are inconsistent with a given theory. Given
an irreducible set of conflicting assumptions, at least one assumption
has to be negated in order to restore consistency.

Solving a configuration problem can be seen as assuming sets of
components for each component type as well as connections between
components such that these assumptions are consistent with the re-
quirements defined by DD and SRS. Conflicts provide the informa-
tion which sets of component types and connections are invalid. They
are used to prune the generation of assumptions and are re-used dur-
ing the search for valid configurations. Therefore, we are interested in
most general conflicts in order to maximize pruning and reusability.
For a configuration to be valid it is sufficient if it is consistent with
the most general conflicts. A conflict C1 is most general iff there ex-
ists no other conflict C2 such that C2 ~ C1. This characterization
helps avoid useless search and a~sumption testing.

Example (continued) Consider our exam-
ple in Section 2 and the set of components
{type(tirol, digital_modMe), type(din2, digital.module),
type(aml, analog_modMe), type(frl, frame)}.

-~conn(dm 1, mounted.on, f r 1, slot 1)
-,conn(aml, mounted.on, frl, slot2) V -,type(frl, frame).

is a conflict since digital and analog modules may not be mixed in
one frame, it is not most general, since it is entailed by the conflict

VF, 81, 82 : ~conn(dml, mounted_on, F, S1)V
-~conn(aml, mounted_on, F, $2) V -~type(F, frame).

7 Computing Configurations

For computing irreducible configurations we employ a search strat-
egy that is based on constructing an interpretation, i.e., we seek a
model tbr all conflicts. This approach is closely related to the con-
struction of prime implicants as described in [2, 5].

Since the set of irreducible configurations is often prohibitively
large, we employ a best first search algorithm for the construction
of the best irreducible valid configurations, e.g., valid configurations
within a certain distance from the cost optimal valid configuration.

Definition 7.1 (Configuratlon-Tree/C-’l)ree) Let CS be a set of
conflicts, for a given configuration problem (DD, SRS). All nodes
are labeled by a ground conflict L or by sat. For each node n, we
write e(n) for the label of
¯ The edges are labeled by positive ground corm, type, or val
literals.

¯ For each node n that is not the root, we define PC(n) as the
union of edge labels that occur in the path from the root node to
n. If n is the root of the tree, then we define PC(n) =

¯ Let CONNS, COMPS, and ATTRS be the set of
(positive) corm, type, and val literals in PC(n),

S~oeCtively, defining a configuration (with CONF MPS U CONNS U ATTRS as usual).
¯ A node n is labeled by sat/ff DD U SRS U CONF is satisfi-
able, i.e., the node represents a valid configuration described by
PC(n).

¯ A node n is labeled by unsat iffDD O SRS U CONF is unsat-
isfiable, i.e., PC(n) cannot be extended to a valid configuration.
Such a node has no successors, i.e., there ape no edges leading
away from it.

¯ lfc(n) ¢ {sat. unsat}, then each edge leadingawayfrom n is la-
beled by conn(cl,pl,c2,p2), val(cl,al,vl), or type(c,t)
eral l such that l implies the conflict L and I is consistent with
ApePC(n)

38

We now define an algorithm that computes configurations based
on the definition of the C-Tree. Let CONF be the configuration
defined by a node n in the tree. For the algorithm, we assume the
existence of a theorem prover TP(CONF) which outputs
¯ sat if CONF is a valid configuration.
¯ unsat if DDOSRSOCONF is unsatisfiable. In this case

CONF cannot be extended to a valid, configuration.
¯ c, a most general conflict of the conflict ~c’ where c’ is CO’NF.

Since CONF is not a valid configuration (otherwise the label

would be sat instead of c) and therefore DD U SRSU CONF
is unsatisfiable, ~c’ is a conflict.
Various sophisticated techniques for implementing TP exist,

e.g., [2]. Note that previously found conflicts are re-used.
The following algorithm generates all or the best irreducible

configurations based on a cost function. We assume an admissi-
ble heuristic function which assigns a cost value costs(PC(n))
to each path PC(n). Typically, costs will be associated with each
type and connection literal. The costs of a node PC(n) are

~’~l~ec(,~) costs(l). The costs of PC(root) are 0.

Algorithm 1
I. Initialize:
open_nodes= {root}
minimal_costs= +o0

2. Choose the node n with minimum costs costs(PC(n)) from
open_nodes

3. Mark node n by TP(PC(n))
Case e(n) is
¯ unsat: delete n from open_nodes
¯ sat: delete n from open_nodes

If costs(PC(n)) < minimal_costs then minimaLcosts:=
costs(PC(n))

¯ c: Generate all possible edges leading away from n.
Insert the remaining successor nodes in open_nodes

4. Ifopen_nodes~ 0 then go to 2.

Generating all possible edges: A node n is labeled b.yya general-
ized ground conflict c]= c’ where ~c’ is a subset of CONF. There-
fore, the conflicts c and c’ contain negative type, corm, uconn, val,
and complete literals. The edges leading away from node n have
to be labeled with positive ground conn or type literals so they are
consistent with AX LI PC(n) and AX together with edge the label
l(n) imply c, i.e., at least one literal of the conflict has to be implied.

There are several different types of literals in a conflict e returned
by TP for a node n:
¯ -~type(c,t) E e: Since type(e,t) is contained in PC(n)

there is no label l(n) such that l(n)U AX ~ type(c, and
l(n) U AXO PC(n) is satisfiable.

¯ -~conn(cl,pl,e2,p2): as in the previous case
conn(cl,pl, c2,p2) is contained in PC(n). Therefore there is
no edge labeling for this case.

¯ -~val(cl, al, vl): as in the previous case val(cl, al, vl) is con-
tained in PC(n).

¯ -~complete(t, Comps(t, COMPS)): we have to extend the
components of type t. We generate an edge labeled with type(c, t)
where c is a Skolem constant.

¯ -,uconn(c, p): the port p of component c has to be connected to
some other port. For each port of a component c’ mentioned in
COMPS and some port p’ of c’ not mentioned in CONNS, i.e.
not used, we generate an edge labeled by conn(c, p, I, p’).
In addition there may exist a component c’ not mentioned
in COMPS with port p’ to which port p is connected. We
generate for each type t E types a component type(e’,t).
Port p can be connected to each port p’ of these components.
For each possible connection we generate an edge with label
{type(d, t), conn(c, p, c’, p’)

¯ -~noval(c, a): the attribute a of component c of type t has to be
assigned some attribute value. For each attribute of a component
c’ mentioned in COMPS that does not occur in ATTRS, we
generate an edge labeled by val(c, a, v), where v E dora(e, t).
Note the role of the closure predicates in the labeling: whenever

one oi’ the closure-related predicates uconn and complete occurs

in the conflict, this means the partical configuration is unsatisfiable
unless extended (by a component or a connection, respectively).
a relaxing condition on TP, [5] describes pruning techniques in the
case the conflicts returned be TP are not most general. The main rea-
son for presenting the technique was pointing out the way in which
the basic assumptions made in the representation interact during rea-
soning: Closing connections, finding attribute values, and adding
components.

8 From consistency-based to constraint satisfaction

So far, we have used first order logic for the description of configura-
tion problems. This provides a concise representation and solid basis
for examining the properties of the representation. However, for im-
plementation purposes, the formulas presented can be regarded as
instantiation schemes for a transformation to other representations,
e.g., propositional logic or constraint networks, in particular, the con-
tent of the previous chapters presents a high-level view of the lan-
guages developed and used in the COCOS configuration project [131,
which used as representation a constraint satisfaction scheme that can
be defined by a direct mapping from the consistency based semantics
of the previous sections.

Formally, a constraint satisfaction problem (CSP) is defined
a set of variables, and a set of constraints. Each variable can be
assigned values from an associated domain. Each constraint is an
expression or relations that expresses legal combinations of vari-
able assignments. The fundamental reasoning task in CSPs is find-
ing an assignment to all variables in the CSP so that all constraints
are satisfied, it is clear that if a mapping can be constructed from
the logical representation of a configuration problem (DD, SRS)
to a CSP, finding a solution to the CSP will mean that a solution to
(DD, SRS) exists and that the assignment is also a model for the
configuration problem defined by (DD, SRS). Since many effec-
tive algorithms and heuristics for solving CSPs have been presented
in the literature, this provides an approach to efficient implementa-
tion of a configuration problem solver, while retaining the formal
properties of the first order representation.

Representing configuration as a CSP was first mentioned in [3].
Variables in the CSP correspond either to parameters in the config-
uration or to "locations" where missing components can be placed.
Values either correspond directly to parameter values, or to the com-
ponents that are part of the solution. Initially, no distinction was made
between the individual component and its type (e.g., in [8], the vari-
able battery corresponds to the one place for a battery that exists
in the car to be configured). Parts of the problem irrelevant to the
user could be "masked out" for efficiency in Dynamic Constraint-
Satisfaction Problem (DCSP) [8], which use a set of meta constraints
to constrain whether variables in the constraint network are active or
not. This corresponds directly to the property that, for example, con-
nection or attribute literals are only introduced when they are needed
in the configuration.

A DCSP still assumes that the set of components is specified in
advance. As already discussed in this paper, this is not generally
the case in real-world configuration domains, where configurations
may comprise thousands of components and multiple components of
a given type may exist, which can be assigned individual attribute
values and individually connected to others. Therefore, components
must be represented as individuals, and the existence of these indi-
viduals must be determined during the generation of valid configura-
tions, leading to the Generative CSP (GCSP) approach [I 3]. A GCSP
uses three meta-level extensions to operate with a variable number
of components. In the first-order logic formalism, we can express
them directly through predicates. First, in GCSPs, components play
a double role as variables (for type assignments) and values (for con-
nections). In consistency-based configuration, type assignments can
be made explicit via the type predicate, and the Skolem constants
which are used as component identifiers simply occur as arguments
in the type, conn, and val iiterals. Second, attribute values, which
are defined in a GCSP by use of activation constraints of the form
"if component variable is active and assigned a type, then the correct
port and attribute values for that type are active". Finally, the creation
of new components in GCSPs is either implicit (if a new component
must be generated so that a variable can be assigned a value) or ex-
plicit through the use of resource constraints, in both cases, this cot-

39

responds to the existence quantifiers which occur in our constraints,
e.g., in constraints C2 or C6.

In summary, the consistency-based configuration view provides a
convenient formal capstone and reference architecture to a represen-
tation based on extensions to conventional CSPs, while the imple-
mentation in terms of a GCSP also allows the use of efficient CSP al-
gorithms. Configuration strategies can be expressed in terms of value
and variable orderings, as is the case in the COCOS system.

9 Inheritance

Configuration knowledge is naturally suited to being represented in
an object-oriented manner. Components are described in terms of
their attributes and connections, and in the domains discussed in this
paper, also have individual existence and are created as needed. It
is therefore natural to think about arranging component types in an
inheritance hierarchy. In fact, Configuration knowledge is well suited
to an efficient use of inheritance.

First, the task of finding taxonomies in the problem domain is of-
ten trivial for at least part of a domain, as technical knowledge about
the parts catalog is typically already partitioned into subareas, at the
topmost layer based on the function and physical characteristics of
the parts represented, and at lower levels based on finer functional
distinctions, different attribute domains, and the availability of spe-
cific versions and subtypes of components.

Second, one common trait of the domain taxonomies is that they
are monotonic due to their technical origin. The components in a cat-
alog are not the result of a natural creation process but typically arose
as part of a design task that aimed at clearly structuring systems, so
they could be effectively handled and understood by sales,assembly,
and engineering personnel. The ability to use monotonic forms of
inheritance removes one of the more conceptually and computation-
ally complex aspects of inheritance hierarchies from consideration
without greatly reducing the applicability of a representation.

Third, as mentioned earlier, a parts catalog for configuration spec-
ifies the set of available parts completely. This means that individual
physical components will always correspond exactly to one of the
types in the inheritance hierarchy. As an illustration, consider that
where actual physical components are being configured, only com-
ponents that are actually physically manufactured will be available to
be inserted into a configuration. In certain cases, there can be further
simplifications, for example that only the leaves of the inheritance
hierarchy correspond to actual components, but these do not concern
us here. Therefore, in general, it is not necessary to provide a general
subsumption algorithm in a configuration reasoner, since particular
component merely have to be matched exactly to a given type.

A further conclusion that can be drawn from the monotonicity and
specificity properties is that in implementation terms, it is easy to
incorporate such a hierarchy in config.uration systems that are imple-
mented in object-oriented programming languages, since the inher-
itance hierarchies of OOPL’s, while generally more restrictive than
those of AI reasoning systems, will be largely able to represent con-
figuration type hierarchies directly in terms of class hierarchies of
the implementation language of the inference engine. This reduces
implementation effort and increases efficiency.

10 Conclusion
Based on our experience in developing knowledge-based configu-
ration tools, the goal of using the consistency-based approach for
describing configuration problems was to gain a simple, straightfor-
ward but reasonably expressive formal basis for discussing the prop-
erties of configuration representations. For example, the creation of
new components through Skolem constants corresponds to the cre-
ation of new constraint variables in Generative CSP’s and incorpo-
rates the Dynamic CSP capability.

This paper has presented a formal view of configuration as a close
relative of the the consistency-based diagnosis process. The system
description of model-based diagnosis corresponds to the domain de-
scription and type library of the configuration problem, and the ob-
servations of diagnosis correspond to the specification in configura-
tion. The correspondence extends to the possibility of directly adapt-
ing Reiter’s Ititting Set diagnosis algorithna, with conflict labeling

providing for the creation of the correct components, their types and
connections. This provides a straightforward and clear formal basis
for more research into the nature of configuration problems. In par-
ticular, it is a direct first order logic counterpart to the representation
of the COCOS/LAVA configuration tool.

REFERENCES
[I] R. Curtis, A. G~lnter, I. Syska, H. Bode, and H. Peters.

PLAKON - an approach to domain-independent construction.
In Proc. IEA/AIE Conf., Tennessee, 1989. UTSI.

[2] J. de Kleer. Focusing on probable diagnoses. In Proceedings
of the National Conference on Artificial Intelligence (AAAI),
pages 842-848, Anaheim, July 1991.

[3] E Frayman and S. Mittai. COSSACK: A constraint-based
¯ expert system for configuration tasks, in D. Sriram and

R. Adey, editors, Knowledge-Based Expert Systems in Engi-
neering, Planning. and Design, July 1987.

[4] E. Gelle and R. Weigel. Interactive configuration with con-
straint satisfaction. In Proceedings of the 2rUt International
Conference on Practical Applications of Constraint Technol-
ogy (PACT), Aug. 1996.

[5] R. Greiner, B. A. Smith, and R. W. Wilkerson. A correction to
the algorithm in Reiter’s theory of diagnosis. Artificial Intelli-
gence, 41(1):79-88, 1989.

[6] R. Klein, M. Buchheit, and W. Nutt. Configuration as model
construction: The constructive problem solving approach. In
Proceedings Artificial Intelligence in Design ’94, pages 201-
218. Kluwer, Aug. 1994.

[7] S. Marcus, J. Stout, and J. McDermott. VT: An expert elevator
designer that uses knowledge-based backtracking. A! Maga-
zine, 9(2):95-111, 1988.

[8] S. Mittai and B. Falkenhainer. Dynamic constraint satisfac-
tion problems. In Proceedings AAAI Conference, pages 25-32,
Aug. 1990.

[9] S. Mittal and E Frayman. Making partial choices in constraint
reasoning problems, in Proceedings AAAI, pages 631-636,
1987.

[10] R. Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57-95, 1987.

[11] E. Soioway, J. Bachant, and K. Jensen. Assessing the main-
tainability of XCON-IN-RIME: Coping with the problems of
a VERY large rule-base, in Proceedings AAAI, pages 824-829,
1987.

[! 2] M. Stumptner and G. Friedrich. Consistency-based configura-
tion. Technical Report DBAI-CSP-TR 99/01, Technical Uni-
versity of Vienna, Feb. 1999.

[13] M. Stumptner, G. Friedrieh, and A. Haselb6ck. Generative
constraint-based configuration of large technical systems. AI
EDAM, 12(4), Dec. 1998.

[14] J. R. Wright, E. S. Weixelbaum, K. Brown, G. T. Vesonder,
S. R. Palmer, J. I. Berman, and H. G. Moore. A Knowledge-
Based Configurator that Supports Sales, Engineering, and
Manufacturing at AT&T Network Systems. In Proceedings
of the 5th Conference on Innovative Applications of Al. AAAi
Press, 1993.

4O

