
Consistency-Based Configuration
Gerhard Friedrich and Markus Stumptner 1

Abstract. Research in automated configuration is a traditional core
application area for knowledge-based systems that is increasing in
commercial relevance, but there exists no generally agreed basic for-
mal representation scheme. Based on a small simplified example
taken out of the knowledge base of an deployed configuration appli-
cation, we describe a configuration knowledge based on an analogy
to the classic consistency based diagnosis approach. A configuration
problem is formally described in terms of a logic theory that depicts
a part library and set of requirements, and a configuration is a set
of components and connections that satisfy the library and require-
ments. We propose a ”reference algorithm” in analogy to the standard
HS-Dag diagnosis algorithm and show how CSP-based configuration
representations can be expressed in terms of the consistency-based
representation. The various parts of that representation possess direct
counterparts in the representation language used by the commercial
COCOS configuration tool.

1 Introduction

Since the beginnings of industrial use of expert systems, the auto-
mated configuration of technical systems has been an important ap-
plication area for knowledge-based approaches, and has remained
one of the staple applications for AI systems, with use in areas from
production planning (PPS) systems over integrated business pack-
ages, to material resource planning systems as well as sales support,
order processing, and sales force automation systems.

The main advantages of the knowledge-based approach can be
considered to lie in the reduced development cost of configurators,
the reduced maintenance costs after the configurator has been de-
ployed, higher throughput (because of less effort spent on individ-
ual cases), and improved configuration quality (due to the ability to
check the consistency of the knowledge). These advantages are the
result of a long development and research history. The XCON/R1
system, a configurator for VAX computers developed in 1981, was
one of the first classical rule-based expert system applications, but
exhibited the long-term maintenance problems and brittleness [11]
that were recognized as the main weaknesses of rule-based systems.
A number of schemes were developed in the past decade to provide
a high level representation for configuration problems.

A conceptual model for technical configuration was developed by
Mittal in the shape of thekey componentapproach [9], which lists key
components that satisfy a certain functionality (e.g., a loudspeaker),
and require connections to certain other components (e.g., an ampli-
fier) to function. This was later mapped to a constraint satisfaction
problem (CSP), but a pure CSP representation was found to be de-
ficient in expressive power, as it could not express the fact that the
existence of certain components could not be specified in advance.
This led to the development of Dynamic CSPs [8, 4] and finally to
generative CSPs [13], to represent the fact that multiple components
of a given type can exist and be generated from the catalog during
the configuration process. Other representations developed include
the hybrid ”structure-based” approach [1], representations based on

1 Authors' address: G. Friedrich: Universit¨at Klagenfurt, Institute for Infor-
mation Technology, Universit¨atsstraße 65-67, A-9020 Klagenfurt, Austria,
and Siemens Austria, Electronics Development Center, A-1030 Vienna. M.
Stumptner: Technische Universit¨at Wien, Institut für Informationssysteme,
Paniglgasse 16, A-1140 Vienna, Austria, Email: gerhard.friedrich@ifi.uni-
klu.ac.at, gerhard.e.friedrich@siemens.at, mst@dbai.tuwien.ac.at

Description Logics [14], and the Constructive Problem Solving ap-
proach [6]. In addition, there are a number of systems with highly
specific inference methods appropriate for specific domains, e.g., [7].
So far though, there is no model that is accepted as showing the basic
representational and computational assumptions that underlie these
different, sometimes highly complex and specialized representations.

At the same time, there are deep similarities between the configu-
ration and diagnosis domains. In both cases, systems are represented
in terms of connected components, with declarative knowledge de-
scribing the ”behavior” of the components (I/O behavior in the diag-
nosis case, connection behavior in the configuration case). The goal
of this paper is to show the similarities and dualities between the
two domains by expressing configuration along the lines of the quite
concise and elegant consistency-based diagnosis paradigm [10]. We
first define a simple example of a configuration problem, then pro-
vide a mapping to the consistency-based approach, and show that
this mapping can be carried through even to the definition of a basic
consistency-based configuration algorithm and its properties. Finally,
we show the relationship from the consistency-based configuration
representation to the language employed by the commercial COCOS
configuration tool. The main contribution of this paper therefore is
to show that it is possible, with a basic, simple and elegant suite of
mechanisms, that has been successfully used in another domain for a
long time, to provide a clear representational background for config-
uration.

2 An example configuration domain
In order to introduce our concepts we use a simplified configuration
problem from the area of telecommunications, but the basic proper-
ties of the example occur in a variety of related domains, from com-
puter systems to digital signal systems for railways. The example we
use is a small part of the domain of the EWSD telephone switching
system. We use a small part of the EWSD domain for presentation.
There are only two basic types of components, modules and frames.
Modules offer analog or digital transmission, and for digital switch-
ing modules we need controller modules. Components can possess
ports, which are employed to model the connections between compo-
nents. In our example, a frame possesses 8 ports (a real-world frame
has 32) whereas modules just have one port (by which they need to
be connected to a frame). In addition to ports,attributesare used to
model properties of components, e.g., each controller module has an
individual address. Each attribute is further characterized by its do-
main. In the exposition we limit ourselves to discrete, enumerable
domains.

We introduce the foundations of our approach in first order logic,
in order to facilitate a clear and precise presentation. Various reason-
ing methods can then be applied to implement configuration systems.
By this approach the reasoning methods can be adapted according to
the special properties of the problem domain on the one hand. On the
other hand the foundations are independent of certain applications
and general enough to hold in a wide range of configuration areas.
types(frame;analog module; digital module; control module):
Ports of these types are listed using the functionports:

ports(analog module) = fmounted ong:
ports(digital module) = fmounted ong:
ports(control module) = fmounted ong:
ports(frame) = fslot1; : : : ; slot8; contr1; contr2g:

March 15, 1999

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

attrs(digital module) = fsw vg:
dom(digital module; sw v) = f1; 2; 3g
attrs(control module) = faddress; sw vg:
dom(control module; sw v) = f2; 3g:
dom(control module; address) = f1; : : : ; 64g:

We use three predicates for associating types, connections, and
attributes with individual components. A typet is associated with
a componentc through a literaltype(c; t). A connection is repre-
sented by a literalconn(c1; p1; c2; p2) wherep1 (p2) is a port of
componentc1 (c2). An attribute valuev assigned to attributea of
componentc is represented by a literalval(c; a; v).

Attributes and connections between components must obey the
following application-specific constraints (some only given verbally
for space reasons):

C1 Digital modules must be bundled with software of version 1 or
2, controller modules with version 2 and 3.

8M : type(M;digital module)! val(M; sw v; 1) _ val(M; sw v; 2):
8M : type(M; control module)! val(M; sw v; 2) _ val(M; sw v; 3):

C2 A mounted on-port of a module must be connected to a slot of
a frame:

8M : type(M;analog module) _ type(M;digital module)_
type(M; control module)
! 9F;P : type(F; frame) ^ conn(M;mounted on; F;P):

C3 The mixing of analog and digital modules within a frame is not
allowed:
8F;P1; P2;M1;M2 : type(F; frame) ^ P1 2 ports(F) ^ P2 2
ports(F)
^conn(F;P1;M1;mounted on)^conn(F; P2;M2;mounted on)
^ type(M1; analog module) ^ type(M2; digital module)
! false:

C4 Connections are symmetric.
C5 A port can only be connected to one other port:
C6 If there exists a slot in a frame which is connected to a digital

module, then at least one of the slots contr1 and contr2 must also
be connected to a controlmodule and the control module must be
set to the appropriate address.

C7 Control modules and digital modules in a frame must have the
same software version.

A simple configuration task in this domain could be: configure a
system which includes the following modules: fourdigital module
and threeanalog module. This task can be easily represented with
the following facts

type(dm1; digital module): type(dm2; digital module):
type(dm3; digital module): type(dm4; digital module):
type(am1; analog module): type(am2; analog module):

type(am3; analog module):
which give requirements for valid configurations in one particular

problem instance.
Based on this domain and problem description there are numerous

valid configurations, where a valid configuration is one that satisfies
the set of logic sentences. A configurations with minimal number of
components is depicted below.

type(dm1; digital module): type(dm2; digital module):
type(dm3; digital module): type(dm4; digital module):
type(am1; analog module): type(am2; analog module):

type(am3; analog module):
type(f1; frame): type(cm1; control module):

conn(f1; slot1; dm1;mounted on): conn(f1; slot2; dm2;mounted on):
conn(f1; slot3; dm3;mounted on): conn(f1; slot4; dm4;mounted on):

conn(f1; contr1; cm1;mounted on):
type(f2; frame):

conn(f2; slot1; am1;mounted on): conn(f2; slot2; am2;mounted on):
conn(f2; slot3; am3;mounted on):

val(dm1; sw v; 2): val(dm2; sw v; 2):
val(dm3; sw v; 2): val(dm4; sw v; 2):

val(cm1; sw v; 2): val(cm1; address; 1):

Figure 1. A Configuration

All other cost optimal configurations use the same set of compo-
nents and are only permutations of the connections of the depicted
configuration.

In the following section we will provide a precise definition for
the notion of valid configuration.

3 Definition of Configuration
We first define the concept of a configuration problem, i.e., the spec-
ification for a particular system that is to be configured. The descrip-
tion consists of a generic part and a problem specific part.

Definition 3.1 (Configuration Problem) A Configuration problem
is defined as a pair of sets of logical sentences(DD; SRS), where
DD is the domain description andSRS is the specific requirements
which are application dependent.

In practice, configurations are built from a catalog of component
types that is is fixed for a given domain, e.g., a particular company's
product line of telephone exchanges or computers. This catalog spec-
ifies the basic properties and the set of logical or physical connections
that can be established between different components. Therefore the
domain descriptionDD must contain the definition of a settypes.

To define the properties and connections,DD must define func-
tionsports andattributes. ports maps each type to the set of con-
stants that represent the ports provided by components of that type,
i.e., the possible connections for each component type.attributes
defines the set of attributes, and the functiondom defines the domain
of an attribute for a particular type. The rest of the domain descrip-
tion describes valid value assignments to ports and other conditions.

An individual configuration consists of a set of components, their
attribute values, and the connections between them.

Definition 3.2 (Configuration) Let (DD; SRS) be
a configuration problem. A configuration is a triple
(COMPS;CONNS; ATTRS):
� COMPS is a set of ground literalstype(c; t) wheret 2 types

and c is a Skolem constant. The type assignment is unique for a
given component (we refer to this requirement asAX1).
� CONNS is a set of ground literalsconn(c1; p1; c2; p2) where
c1; c2 are components andp1; p2 are ports. The types of these
components and their ports must correspond toDD, and each
port can be part of a connection which must then be unique (AX2)
� ATTRS is a set of ground literals of the formval(c1; a1; v1)

wherec1 is a component,a1 is an attribute name, andv1 is the
value of the attribute. Attribute values must be unique (AX3)

The set of axiomsAX = fAX1; AX2; AX3g is assumed to be
included inDD. Note that there is no innate requirement that ports
haveto be connected to some component. This information is part of
individual domain descriptions.

Definition 3.3 (Consistent Configuration) Let (DD;
SRS) be a configuration problem. A configura-
tion (COMPS; CONNS; ATTRS) is consistent iff
DD[SRS [COMPS [CONNS [ATTRS is satisfiable.

This intuitive definition allows determining the validity of partial
configurations, but does not require the completeness of configura-
tions. For example, taking only one frame (e.g.,f2) and all its con-
nections from Figure 1 would also be consistent configuration. As we
see, for practical purposes, it is necessary that a configuration explic-
itly includes all needed components (as well as their connections and
attributes), in order to manufacture and assemble a correctly func-
tion system. We need to introduce an explicit formula to guarantee
this completeness property.

For ease of notation we writeComps(t; COMPS) for the
set of all components of typet mentioned inCOMPS, i.e.,
Comps(t; COMPS) = fcjtype(c; t) 2 COMPSg.

We describe the fact that a configuration uses not more than a
given set of componentsComps(t; COMPS) of a typet 2 types
by the literalcomplete(t; Comps(t; COMPS)) and the formula

complete(t;Comps(t; COMPS))$
(8C : type(C; t)! C 2 Comps(t; COMPS)):

2

We denote the fact thatCOMPS describes all allowedtype facts
by

(CL1)UCOMPS = fcomplete(t; Comps(t; COMPS))jt 2 typesg.

We will write dCOMPS to denoteCOMPS [UCOMPS.
Similar to the completion of thetype literals, we have to make

sure that allconn facts are included inCONNS. We use the name

(CL2) UCONNS = f8X; Y : :conn(c; p;X; Y)j
type(c; t) 2 COMPS ^ p 2 ports(t)^
conn(c; p; ;) 62 CONNS ^ conn(; ; c; p) 62 CONNSg

and write dCONNS to denoteCONNS [UCONNS. Finally, the
completion of attribute values is specified by

(CL3)UATTRS = f8V : :val(c; a; V)jtype(c; t) 2 COMPS^
a 2 attrs(t) ^ val(c; a;) 62 ATTRSg

We write dATTRS to denoteATTRS[UATTRS, and define
CL = fCL1; CL2; CL3g.

Given a particular configuration according to the above definition,
the most important requirement is that is satisfies the domain descrip-
tion and does not contain any components or components which are
not required by the domain description (note that this does not imply
that a valid configuration is unique or has to have minimum cost).

We will define CONF to refer to a configuration consisting
of componentsCOMPS, connectionsCONNS, and attributes
ATTRS, and
CONF = COMPS [CONNS [ATTRSdCONF = dCOMPS [dCONNS [dATTRS

Definition 3.4 (Valid and Irreducible Configuration) Let (DD;
SRS) be a configuration problem. A configurationCONF is valid

iff DD [SRS [dCONF is satisfiable. IfCONF is valid, we call
it irreducible if there exists no other valid configurationCONF 0

such thatCONF 0 � CONF .

Because we use Skolem constants as component identifiers (which
do not appear in the underlying theory) we have decoupled the set
COMPS, i.e., the individual component instances, from the prob-
lem description. Therefore the validity and irreducibility of configu-
rations is independent of a bijective renaming of these constants.

With the above definition we have defined a class of configurations
which are interesting from a practical point of view, since we are in-
terested in parsimonious configurations. In some tasks where no def-
inite costs function for configurations exists, it is necessary to con-
sider the generation of (all up to equality) valid configurations which
are irreducible, although they may not be cost optimal. In real world
settings such situations do sometimes occur, e.g., in some cases all
racks should look the same as much as possible even if this means
that this is not a cost optimal solution. However, in many applications
it is exactly the minimal cost configurations which are of interest.

Note that for a configuration problem(DD; SRS), a valid con-
figurationCONF exists iff DD [SRS [CL is satisfiable. Note
that up to now valid configurations would include those which use
infinitely many components. In practice,DD will of course be spec-
ified in such a way that if a valid configuration exists, it is finite.
E.g., using an upper bound on the term-depth for decidability rea-
sons ensures also the property that finite models exist (and therefore
finite configurations as well) if any model exists at all. In addition,
the configuration process can be aborted if a certain bound on the
number of components is exceeded.

4 A simple configuration language
Based on the problem definition above the important task in order
to achieve successful applications is to find a compromise between
expressive power and efficiency. In particular, purely rule-oriented
knowledge bases, whether based on OPS-style production rules or
horn clauses, tend to be brittle. First, even simple constraints have
to be expressed by multiple rules, second, reasoning strategies are
encoded in the rules, thus leading to maintenance problems.

Based on our experiences in various configuration domains it is
necessary to allow general clauses. (See, e.g., constraint C6 in our in-
troductory example.) Our example clauses are presented by using the
implication form as notation, made more compact by allowing both
^ and_ in the consequent and antecedent of the implication (which
can be can be translated to the usual implication form). In addition,
we demand that clauses are range restricted, i.e., every variable in the
consequence part of a clause occurs in the antecedent as well

In the clauses we allow the predicatestype, val, and conn
as well as interpreted predicates (e.g., tests for port and attribute
names, equality, inequality, and use use of the functionsports and
attributes), and interpreted functions. These are defined over the
specified ports, types, attributes, and attribute domains. Therefore,
no new symbols (e.g., types) can be introduced as a side effect and
no function symbols are allowed except for interpreted functions.

In practical configuration problems the number of components that
will make up the finished configuration is rarely known a priori. What
is needed is a mechanism that allows expressing information about
components that are not initially specified (e.g., inSRS), but are
added later as required by the domain description. We achieve this
by a local weakening of the range restrictedness condition through
allowing sorted existential quantification on components in the con-
sequence part of the clauses. All other existential quantifications in
the consequent (e.g., of ports) are only allowed if they can be trans-
lated into a disjunction by substituting individuals (e.g., individual
port names) for the variable, e.g., see constraintC2 above.

By introducing existential quantification the question regarding
decidability becomes an important issue. As we noted, existential
quantification is only allowed for components and therefore decid-
ability could be simply enforced by limiting the number of compo-
nents. The generation of valid configurations depends not only on
the content of the knowledge base but also on the search strategies.
In practical applications we have made the experience that it was
quite easy to ensure that for each possible customer requirement,
valid configurations are generated.

Another extension is the inclusion of aggregate operators. These
are used to express global conditions that require the testing of prop-
erties of a larger set of components, since, the enumeration of all
components on which such a global constraint must be evaluated
would be tedious, error-prone, or (in cases which refer to the ma-
jority of the components in the final configuration, such as a global
cost boundary), not possible beforehand, e.g., a constraint that states
that the maximum traffic load of all modules in a frame (which may
be up to 32 modules in a full configuration) must not exceed a certain
boundary. We use a macro operator to apply a condition over sets of
components and aggregate operators (such as�, max or average)
to evaluate the properties of these components in combination. For
space reasons we do not discuss these operators in more detail; they
can be found in the full version of this paper [12].

5 Consistency-based configuration vs. diagnosis
The definitions presented so far consider configuration as finding a
consistent theory that specifies a set of components, their types and
attribute values, and the connections between those components. Not
surprisingly, this task is related to other consistency-based reason-
ing tasks like consistency-based (model-based) diagnosis [10, 2]. In
model-based diagnosis we seek a consistent mode assignment where
each component of a fixed set of components is assumed to behave
correctly or abnormally according to a fault mode. This section ex-
amines the relationship between diagnosis and configuration from
the common viewpoint of consistency-based reasoning, to provide a
platform for analyzing similarities and differences between the two
problem area, and to examine what results and methods from diag-
nosis can be carried over to configuration.

We use the following definitions for model-based diagnosis [10]:
� A systemis a triple(SD; COMPONENTS; OBS) where:
� SD, the system description, is a set of first-order sentences;
� COMPONENTS, the system components, is a finite set of

constants;
� OBS, a set of observations, is a set of first-order sentences.

� Furthermore, we define anab-literal to be ab(c) or :ab(c)
for somec 2 COMPONENTS, andAB = fab(c)jc 2
COMPONENTSg.

3

� ForD � AB, � = D [f:ab(c)jab(c) 2 AB nDg is adiagno-
sis for (SD; COMPONENTS; OBS) iff SD[OBS [� is
consistent.

� Finally, aconflict CONFLof (SD; COMPONENTS; OBS)
is defined as a disjunction of ab-literals containing no comple-
mentary pair of ab-literals s.t.SD[OBS j= CONFL. A minimal
conflict is a conflict such that no proper subclause is a conflict.
Table 1 shows the correspondence between consistency-based di-

agnosis and consistency-based configuration.

Diagnosis Configuration
SD DD[CL
OBS SRS
AB UNIV
D CONF

Table 1.

The system descriptionSD and the domain descriptionDD de-
scribe the general properties of an application domain. Since the gen-
eral behavior of the diagnosis problem is completely defined through
the system description, when viewed from the diagnosis point of
view, the system description would consist of the domain descrip-
tion and the closure axiom setCL.

In contrast to these static items, the observationsOBS and the sys-
tem requirementsSRS depend on a specific problem instance. Since
the number of needed components in configuration is not known a
priori, the number of facts needed for the description of a configura-
tion is not known in advance (thus the introduction ofCL). A diag-
nosis solution is one-dimensional (oneab literal per component). In
configuration, there are three types of literals (type, conn, andval),
and there may be severalconn andval literals per component.

In addition, since the number of components is theoretically un-
bounded, so is the number of potential literals. This set of poten-
tial literals is what we call theuniverseof the configuration problem
(UNIV). Note thatUNIV , likeAB, only contains positive literals,
and in searching for an irreducible, valid, finite configuration (if one
exists), only finite subsets should ever be generated, i.e., those (ex-
clusively positive) literals which actually occur in partial solutions.
Therefore, the diagnosis� (specified extensionally) isequivalentto
dCONF (which consists of an extensionally specified part,CONF ,

and an intensional one,CL.
Despite these differences, the following theorems have a natural

correspondence to results in model-based diagnosis.

6 Conflicts and Configurations
For characterizing configurations and pruning the search space we
employ the concept of conflicts. If we find that a given configuration
is not valid, we have to conclude that at least one literal exists in the
configuration (or inCL) that must be negated to arrive at a state that
can be extended to a valid configuration.

Definition 6.1 (Conflict) A conflictC for a configuration problem
(DD; SRS) and a set of componentsCOMPS of a configuration
CONF is a disjunction (not necessarily ground) of literals:
� type(c; t) wheretype(c; t) 2 COMPS andt 2 types
� conn(c1; p1; c2; p2) where type(c1; t1) 2 COMPS,
type(c2; t2) 2 COMPS, p1 2 ports(t1), andp2 2 ports(t2)
� val(c1; a1; v1) where type(c1; t1) 2 COMPS, a1 2
attrs(t1),
� complete(t; Comps(t; COMPS)) wheret 2 types
� uconn(c; p) wheretype(c; t) 2 COMPS, p 2 ports(t).
� noval(c; a) wheretype(c; t) 2 COMPS, a 2 attrs(t).

such thatDD [SRS [CL j= C.

Stated conversely, the negation of a conflict is a conjunction of
assumptions about the type of components, their connections and at-
tributes, and the completeness of components s.t. this conjunction is
inconsistent withDD [SRS [CL.

The predicateuconn(c; p) holds if portp of componentc is not
connected to any other component, andnoval(c; a) likewise states
that attributea is not assigned a value. (Basically, they are shorthand
for expressing the absence of such assignments.)

A valid configuration can be described by the following theorem.

Theorem 6.1 Let(DD; SRS) be a configuration problem,CONF
a configuration, andCS the set of all conflicts of this configura-
tion problem and configuration.CONF is a valid configuration iff
CS [dCONF is satisfiable.

The concept of conflicts was introduced by [10] in order to detect
those assumptions which are inconsistent with a given theory. Given
an irreducible set of conflicting assumptions, at least one assumption
has to be negated in order to restore consistency.

Solving a configuration problem can be seen as assuming sets of
components for each component type as well as connections between
components such that these assumptions are consistent with the re-
quirements defined byDD andSRS. Conflicts provide the informa-
tion which sets of component types and connections are invalid. They
are used to prune the generation of assumptions and are re-used dur-
ing the search for valid configurations. Therefore, we are interested in
most general conflicts in order to maximize pruning and reusability.
For a configuration to be valid it is sufficient if it is consistent with
the most general conflicts. A conflictC1 is most generaliff there ex-
ists no other conflictC2 such thatC2 j= C1. This characterization
helps avoid useless search and assumption testing.

Example (continued) Consider our exam-
ple in Section 2 and the set of components
ftype(dm1; digital module); type(dm2; digital module);
type(am1; analog module); type(fr1; frame)g.

:conn(dm1; mounted on; fr1; slot1)_
:conn(am1; mounted on; fr1; slot2) _ :type(fr1; frame):

is a conflict since digital and analog modules may not be mixed in
one frame. It is not most general, since it is entailed by the conflict

8F; S1; S2 : :conn(dm1; mounted on; F; S1)_
:conn(am1; mounted on; F; S2) _ :type(F; frame):

7 Computing Configurations

For computing irreducible configurations we employ a search strat-
egy that is based on constructing an interpretation, i.e., we seek a
model for all conflicts. This approach is closely related to the con-
struction of prime implicants as described in [2, 5].

Since the set of irreducible configurations is often prohibitively
large, we employ a best first search algorithm for the construction
of the best irreducible valid configurations, e.g., valid configurations
within a certain distance from the cost optimal valid configuration.

Definition 7.1 (Configuration-Tree/C-Tree) Let CS be a set of
conflicts, for a given configuration problem(DD; SRS). All nodes
are labeled by a ground conflictL or by sat. For each noden, we
write c(n) for the label ofn.
� The edges are labeled by positive groundconn, type, or val

literals.
� For each noden that is not the root, we definePC(n) as the

union of edge labels that occur in the path from the root node to
n. If n is the root of the tree, then we definePC(n) = ;.
� Let CONNS, COMPS, and ATTRS be the set of

(positive) conn, type, and val literals in PC(n), re-
spectively, defining a configuration (withCONF =
COMPS [CONNS [ATTRS as usual).
� A noden is labeled bysat iff DD[SRS [dCONF is satisfi-

able, i.e., the node represents a valid configuration described by
PC(n).
� A noden is labeled byunsatiff DD[SRS [CONF is unsat-

isfiable, i.e.,PC(n) cannot be extended to a valid configuration.
Such a node has no successors, i.e., there are no edges leading
away from it.
� If c(n) 62 fsat, unsatg, then each edge leading away fromn is la-

beled byconn(c1; p1; c2; p2), val(c1; a1; v1), or type(c; t) lit-
eral l such thatl implies the conflictL and l is consistent withV
p2PC(n)

p.

4

We now define an algorithm that computes configurations based
on the definition of the C-Tree. LetCONF be the configuration
defined by a noden in the tree. For the algorithm, we assume the
existence of a theorem proverTP (CONF) which outputs
� sat if CONF is a valid configuration.
� unsat if DD [SRS [CONF is unsatisfiable. In this case
CONF cannot be extended to a valid configuration.

� c, a most general conflict of the conflict:c0 wherec0 is dCONF .
SinceCONF is not a valid configuration (otherwise the label
would besat instead ofc) and thereforeDD [SRS [dCONF
is unsatisfiable,:c0 is a conflict.
Various sophisticated techniques for implementingTP exist,

e.g., [2]. Note that previously found conflicts are re-used.
The following algorithm generates all or the best irreducible

configurations based on a cost function. We assume an admissi-
ble heuristic function which assigns a cost valuecosts(PC(n))
to each pathPC(n). Typically, costs will be associated with each
type and connection literal. The costs of a nodePC(n) areP

l2PC(n)
costs(l). The costs ofPC(root) are 0.

Algorithm 1
1. Initialize:

opennodes= frootg
minimal costs= +1

2. Choose the noden with minimum costscosts(PC(n)) from
opennodes

3. Mark noden by TP (PC(n))
Casec(n) is
� unsat: deleten from opennodes
� sat: deleten from opennodes

If costs(PC(n)) < minimal costs then minimal costs:=
costs(PC(n))

� c: Generate all possible edges leading away fromn.
Insert the remaining successor nodes inopennodes

4. If opennodes6= ; then go to 2.

Generating all possible edges:A noden is labeled by a general-
ized ground conflictc j= c0 where:c0 is a subset of dCONF . There-
fore, the conflictsc andc0 contain negativetype, conn, uconn, val,
and complete literals. The edges leading away from noden have
to be labeled with positive groundconn or type literals so they are
consistent withAX [PC(n) andAX together with edge the label
l(n) imply c, i.e., at least one literal of the conflict has to be implied.

There are several different types of literals in a conflictc returned
by TP for a noden:
� :type(c; t) 2 c: Since type(c; t) is contained inPC(n)

there is no labell(n) such thatl(n)[AX j= type(c; t) and
l(n)[AX [PC(n) is satisfiable.

� :conn(c1; p1; c2; p2): as in the previous case
conn(c1; p1; c2; p2) is contained inPC(n). Therefore there is
no edge labeling for this case.

� :val(c1; a1; v1): as in the previous caseval(c1; a1; v1) is con-
tained inPC(n).

� :complete(t; Comps(t; COMPS)): we have to extend the
components of typet. We generate an edge labeled withtype(c; t)
wherec is a Skolem constant.

� :uconn(c; p): the portp of componentc has to be connected to
some other port. For each port of a componentc0 mentioned in
COMPS and some portp0 of c0 not mentioned inCONNS, i.e.
not used, we generate an edge labeled byconn(c; p; c0; p0).
In addition there may exist a componentc0 not mentioned
in COMPS with port p0 to which port p is connected. We
generate for each typet 2 types a componenttype(c0; t).
Port p can be connected to each portp0 of these components.
For each possible connection we generate an edge with label
ftype(c0; t); conn(c; p; c0; p0)g:

� :noval(c; a): the attributea of componentc of type t has to be
assigned some attribute value. For each attribute of a component
c0 mentioned inCOMPS that does not occur inATTRS, we
generate an edge labeled byval(c; a; v), wherev 2 dom(c; t).
Note the role of the closure predicates in the labeling: whenever

one of the closure-related predicatesuconn and complete occurs

in the conflict, this means the partical configuration is unsatisfiable
unless extended (by a component or a connection, respectively). As
a relaxing condition onTP , [5] describes pruning techniques in the
case the conflicts returned beTP are not most general. The main rea-
son for presenting the technique was pointing out the way in which
the basic assumptions made in the representation interact during rea-
soning: Closing connections, finding attribute values, and adding
components.

8 From consistency-based to constraint satisfaction
So far, we have used first order logic for the description of configura-
tion problems. This provides a concise representation and solid basis
for examining the properties of the representation. However, for im-
plementation purposes, the formulas presented can be regarded as
instantiation schemes for a transformation to other representations,
e.g., propositional logic or constraint networks. In particular, the con-
tent of the previous chapters presents a high-level view of the lan-
guages developed and used in the COCOS configuration project [13],
which used as representation a constraint satisfaction scheme that can
be defined by a direct mapping from the consistency based semantics
of the previous sections.

Formally, a constraint satisfaction problem (CSP) is defined by
a set of variables, and a set of constraints. Each variable can be
assigned values from an associated domain. Each constraint is an
expression or relations that expresses legal combinations of vari-
able assignments. The fundamental reasoning task in CSPs is find-
ing an assignment to all variables in the CSP so that all constraints
are satisfied. It is clear that if a mapping can be constructed from
the logical representation of a configuration problem(DD; SRS)
to a CSP, finding a solution to the CSP will mean that a solution to
(DD; SRS) exists and that the assignment is also a model for the
configuration problem defined by(DD; SRS). Since many effec-
tive algorithms and heuristics for solving CSPs have been presented
in the literature, this provides an approach to efficient implementa-
tion of a configuration problem solver, while retaining the formal
properties of the first order representation.

Representing configuration as a CSP was first mentioned in [3].
Variables in the CSP correspond either to parameters in the config-
uration or to ”locations” where missing components can be placed.
Values either correspond directly to parameter values, or to the com-
ponents that are part of the solution. Initially, no distinction was made
between the individual component and its type (e.g., in [8], the vari-
able battery corresponds to the one place for a battery that exists
in the car to be configured). Parts of the problem irrelevant to the
user could be ”masked out” for efficiency in Dynamic Constraint-
Satisfaction Problem (DCSP) [8], which use a set of meta constraints
to constrain whether variables in the constraint network areactiveor
not. This corresponds directly to the property that, for example, con-
nection or attribute literals are only introduced when they are needed
in the configuration.

A DCSP still assumes that the set of components is specified in
advance. As already discussed in this paper, this is not generally
the case in real-world configuration domains, where configurations
may comprise thousands of components and multiple components of
a given type may exist, which can be assigned individual attribute
values and individually connected to others. Therefore, components
must be represented as individuals, and the existence of these indi-
viduals must be determined during the generation of valid configura-
tions, leading to the Generative CSP (GCSP) approach [13]. A GCSP
uses three meta-level extensions to operate with a variable number
of components. In the first-order logic formalism, we can express
them directly through predicates. First, in GCSPs, components play
a double role as variables (for type assignments) and values (for con-
nections). In consistency-based configuration, type assignments can
be made explicit via thetype predicate, and the Skolem constants
which are used as component identifiers simply occur as arguments
in the type, conn, andval literals. Second, attribute values, which
are defined in a GCSP by use of activation constraints of the form
”if component variable is active and assigned a type, then the correct
port and attribute values for that type are active”. Finally, the creation
of new components in GCSPs is either implicit (if a new component
must be generated so that a variable can be assigned a value) or ex-
plicit through the use of resource constraints. In both cases, this cor-

5

responds to the existence quantifiers which occur in our constraints,
e.g., in constraints C2 or C6.

In summary, the consistency-based configuration view provides a
convenient formal capstone and reference architecture to a represen-
tation based on extensions to conventional CSPs, while the imple-
mentation in terms of a GCSP also allows the use of efficient CSP al-
gorithms. Configuration strategies can be expressed in terms of value
and variable orderings, as is the case in the COCOS system.

9 Inheritance
Configuration knowledge is naturally suited to being represented in
an object-oriented manner. Components are described in terms of
their attributes and connections, and in the domains discussed in this
paper, also have individual existence and are created as needed. It
is therefore natural to think about arranging component types in an
inheritance hierarchy. In fact, Configuration knowledge is well suited
to an efficient use of inheritance.

First, the task of finding taxonomies in the problem domain is of-
ten trivial for at least part of a domain, as technical knowledge about
the parts catalog is typically already partitioned into subareas, at the
topmost layer based on the function and physical characteristics of
the parts represented, and at lower levels based on finer functional
distinctions, different attribute domains, and the availability of spe-
cific versions and subtypes of components.

Second, one common trait of the domain taxonomies is that they
are monotonic due to their technical origin. The components in a cat-
alog are not the result of a natural creation process but typically arose
as part of a design task that aimed at clearly structuring systems, so
they could be effectively handled and understood by sales,assembly,
and engineering personnel. The ability to use monotonic forms of
inheritance removes one of the more conceptually and computation-
ally complex aspects of inheritance hierarchies from consideration
without greatly reducing the applicability of a representation.

Third, as mentioned earlier, a parts catalog for configuration spec-
ifies the set of available partscompletely. This means that individual
physical components will always correspond exactly to one of the
types in the inheritance hierarchy. As an illustration, consider that
where actual physical components are being configured, only com-
ponents that are actually physically manufactured will be available to
be inserted into a configuration. In certain cases, there can be further
simplifications, for example that only the leaves of the inheritance
hierarchy correspond to actual components, but these do not concern
us here. Therefore, in general, it is not necessary to provide a general
subsumption algorithm in a configuration reasoner, since particular
component merely have to be matched exactly to a given type.

A further conclusion that can be drawn from the monotonicity and
specificity properties is that in implementation terms, it is easy to
incorporate such a hierarchy in configuration systems that are imple-
mented in object-oriented programming languages, since the inher-
itance hierarchies of OOPL's, while generally more restrictive than
those of AI reasoning systems, will be largely able to represent con-
figuration type hierarchies directly in terms of class hierarchies of
the implementation language of the inference engine. This reduces
implementation effort and increases efficiency.

10 Conclusion
Based on our experience in developing knowledge-based configu-
ration tools, the goal of using the consistency-based approach for
describing configuration problems was to gain a simple, straightfor-
ward but reasonably expressive formal basis for discussing the prop-
erties of configuration representations. For example, the creation of
new components through Skolem constants corresponds to the cre-
ation of new constraint variables in Generative CSP's and incorpo-
rates the Dynamic CSP capability.

This paper has presented a formal view of configuration as a close
relative of the the consistency-based diagnosis process. The system
description of model-based diagnosis corresponds to the domain de-
scription and type library of the configuration problem, and the ob-
servations of diagnosis correspond to the specification in configura-
tion. The correspondence extends to the possibility of directly adapt-
ing Reiter's Hitting Set diagnosis algorithm, with conflict labeling

providing for the creation of the correct components, their types and
connections. This provides a straightforward and clear formal basis
for more research into the nature of configuration problems. In par-
ticular, it is a direct first order logic counterpart to the representation
of the COCOS/LAVA configuration tool.

REFERENCES
[1] R. Cunis, A. Günter, I. Syska, H. Bode, and H. Peters.

PLAKON – an approach to domain-independent construction.
In Proc. IEA/AIE Conf., Tennessee, 1989. UTSI.

[2] J. de Kleer. Focusing on probable diagnoses. InProceedings
of the National Conference on Artificial Intelligence (AAAI),
pages 842–848, Anaheim, July 1991.

[3] F. Frayman and S. Mittal. COSSACK: A constraint-based
expert system for configuration tasks. In D. Sriram and
R. Adey, editors,Knowledge-Based Expert Systems in Engi-
neering, Planning, and Design, July 1987.

[4] E. Gelle and R. Weigel. Interactive configuration with con-
straint satisfaction. InProceedings of the 2nd International
Conference on Practical Applications of Constraint Technol-
ogy (PACT), Aug. 1996.

[5] R. Greiner, B. A. Smith, and R. W. Wilkerson. A correction to
the algorithm in Reiter's theory of diagnosis.Artificial Intelli-
gence, 41(1):79–88, 1989.

[6] R. Klein, M. Buchheit, and W. Nutt. Configuration as model
construction: The constructive problem solving approach. In
Proceedings Artificial Intelligence in Design '94, pages 201–
218. Kluwer, Aug. 1994.

[7] S. Marcus, J. Stout, and J. McDermott. VT: An expert elevator
designer that uses knowledge-based backtracking.AI Maga-
zine, 9(2):95–111, 1988.

[8] S. Mittal and B. Falkenhainer. Dynamic constraint satisfac-
tion problems. InProceedings AAAI Conference, pages 25–32,
Aug. 1990.

[9] S. Mittal and F. Frayman. Making partial choices in constraint
reasoning problems. InProceedings AAAI, pages 631–636,
1987.

[10] R. Reiter. A theory of diagnosis from first principles.Artificial
Intelligence, 32(1):57–95, 1987.

[11] E. Soloway, J. Bachant, and K. Jensen. Assessing the main-
tainability of XCON-IN-RIME: Coping with the problems of
a VERY large rule-base. InProceedings AAAI, pages 824–829,
1987.

[12] M. Stumptner and G. Friedrich. Consistency-based configura-
tion. Technical Report DBAI-CSP-TR 99/01, Technical Uni-
versity of Vienna, Feb. 1999.

[13] M. Stumptner, G. Friedrich, and A. Haselb¨ock. Generative
constraint-based configuration of large technical systems.AI
EDAM, 12(4), Dec. 1998.

[14] J. R. Wright, E. S. Weixelbaum, K. Brown, G. T. Vesonder,
S. R. Palmer, J. I. Berman, and H. G. Moore. A Knowledge-
Based Configurator that Supports Sales, Engineering, and
Manufacturing at AT&T Network Systems. InProceedings
of the 5th Conference on Innovative Applications of AI. AAAI
Press, 1993.

6

