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$EVWUDFW
Configuration problems are a driving application area for
declarative knowledge representation that experiences a
constant increase in size and complexity of knowledge bases.
Automated support of  the debugging of such knowledge
bases is a necessary prerequisite for effective development of
configurators. We show that this task can be achieved by
consistency based diagnosis techniques. Based on the formal
definition of consistency based configuration we develop a
framework suitable for diagnosing configuration knowledge
bases. During the test phase of configurators, valid and
invalid examples are used to test the correctness of the
system. In case such examples lead to unintended results,
debugging of the knowledge base is initiated. The examples
used for testing are combined to identify faulty chunks of
knowledge. Starting from a clear definition of diagnosis in the
configuration domain we develop an algorithm based on
conflicts and exploit the properties of positive examples to
reduce consistency checks. Our framework is general enough
for its straightforward adaptation to diagnosing customer
requirements.  Given a validated knowledge base our
approach can then be used to identify unachievable conditions
during configuration sessions.

,QWURGXFWLRQ
Knowledge-based configuration systems have a long history
as a successful AI application area and today form the
foundation for a thriving industry.  Comparable to the switch
from rule-based to model-based diagnosis as the state of the
art since the mid-1980s, configuration systems have likewise
progressed from their successful rule-based origins [BO89] to
the use of higher level representations such as various forms
of constraint satisfaction [SH+98], description logics [MW98],
or functional reasoning [RBB94], due to the significant

advantages offered: more concise representation, higher
maintainability, and more flexible reasoning.

The increased use of knowledge-based configurators as well
as the increasingly complex tasks tackled by such systems
ultimately lead to both the knowledge bases and the resulting
configurations becoming larger (i.e., comprising more
component types) and more complex constraints (i.e.,
representing more involved component behavior).  As a
result, the user of a configuration tool, whether an engineer
working on maintaining the knowledge base, or an end user
producing actual configurations, is increasingly challenged,
when the configuration system does not behave as expected,
to find out what is actually wrong.  For example, the
configuration process could be aborted with a message that
some inconsistency has arisen, i.e., it is not possible to
produce a finished, working configuration. The configurator
may find that all attempts to find a solution end with a
constraint violation, or that a finished configuration leaves
some parts unaccounted for.  Ultimately, the inconsistency
has to be caused either by an incorrect knowledge base or by
unachievable requirements.  In this paper, we will focus
primarily on the engineer working on the maintenance of a
large configuration knowledge base, searching for failures
performing test configurations.

The focus on checking the knowledge base is reasonable since
after the specification of knowledge bases, one of the most
important steps for real world applications is (analog to
traditional software development) the validation phase.  It will
also be necessary to validate the knowledge base, which may
contain hundreds of component types and be used for
problems with thousands of components, again later in its
lifecycle whenever it is updated to meet new or altered
application requirements (e.g., new component types or new
regulations).
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Using a declarative approach we have the possibility to test
our configuration system with positive and negative
examples. This means that positive configuration examples
should be accepted by the configurator whereas negative
examples should be rejected. Note that the examples can be
partial configurations, i.e., it may be that a complete
configuration has to be computed to determine whether the
example is consistent with the knowledge base or not.  The
examples therefore play a role much like what is called a test
case in software engineering: they provide an input so the
generated output can be compared to the tester’s expectations.
For simplicity, we will still refer to them as examples
throughout this paper.

Our general notion of support for the validating engineer is
that, once a test has failed, diagnosis can be used to locate the
parts of the knowledge base responsible for the failure.  Given
the usual nature of configuration knowledge, such parts will
typically be constraints that specify legal connections between
components, or domain declarations that limit legal
assignments to attributes.  These constraints and declarations,
written as logical sentences, will serve as diagnosis
components when we map the problem to the model-based
diagnosis approach.

A second type of situation where diagnosis can be used for
configuring that we will briefly discuss later is the support of
the actual end user. This support is necessary where a
configuration problem is specified that, even though the
knowledge base is correct, is unsolvable, e.g., because she/he
placed unrealistic restrictions on the system to be configured.

The rest of the paper is organized as follows.  We first present
an example to introduce the problem domain and the
configuration terminology used in the rest of the paper.  We
then formalize configuration in terms of a domain theory and
system  and use the formalization to express the notion of
model-based diagnosis as it applies to the configuration
domain.  (Proofs are omitted for space reasons.)  We give an
algorithm for computing diagnoses based on positive and
negative example sets, and explore the influence of different
types of examples.  Finally, we examine the “reverse“ use of
diagnosis for identifying faults in requirements.

$�&RQILJXUDWLRQ�([DPSOH
For the introduction of our concepts we use a small part of a
configuration knowledge base from the area of
telecommunications, in particular telephone switching
systems. We will insert a typical failure in this knowledge
base and show how this failure can be diagnosed. As a
representation language we employ first order logic in order
to facilitate a clear and precise presentation.

The most numerous components in such systems are
switching modules which implement flexible connections of
input and output lines.  Modules are inserted into frames,
which provide a higher (physical and functional) level of
organization.  The physical insertion of a module into a frame,
as well as any other kind of connection between components,
are modelled via SRUWV.  In our example, a frame possesses 4
ports whereas modules just have one port. In addition to ports,

attributes are used to model properties of components, e.g.,
each controller module has a version number. Each attribute is
further characterized by its domain. In this exposition we limit
ourselves to discrete, enumerable domains.

We distinguish between the following component types:

W\SHV� �^IUDPH��GLJLWDOBPRGXOHBYHUVLRQ��
GLJLWDOBPRGXOHBYHUVLRQ���FRQWUROBPRGXOHBYHUVLRQ��
FRQWUROBPRGXOHBYHUVLRQ�`�

Each of the types above possesses a set of ports, which are
listed using the function SRUWV:

SRUWV�IUDPH�� �^FRQWURO��VORW���VORW���VORW�`�
SRUWV�GLJLWDOBPRGXOHBYHUVLRQ��� �^PRXQWHGBRQ`�
SRUWV�GLJLWDOBPRGXOHBYHUVLRQ��� �^PRXQWHGBRQ`�
SRUWV�FRQWUROBPRGXOHBYHUVLRQ��� �^PRXQWHGBRQ`�
SRUWV�FRQWUROBPRGXOHBYHUVLRQ��� �^PRXQWHGBRQ`�

We use three predicates for associating types, connections,
and attributes with individual components. A type W� is
associated with a component F� by a literal W\SH�F�W��� A
connection is represented by a literal FRQQ�F��S��F��S�� where
S�� �S�� is a port of component F�� �F��. An attribute value Y
assigned to attribute D of component F is represented by a
literal YDO�F�D�Y���In addition, the predicate XQFRQQ�F�S� is used
as a shorthand to express that port S of component F is not
connected to any other port.

Attributes and connections between components must obey
the following application specific constraints:

If there is a digital module of YHUVLRQ�� connected to a frame
then a control module of YHUVLRQ� �� RU� YHUVLRQ� � must be
connected to the control port.

&RQVWUDLQW�&��
∀��0�)��W\SH�0��GLJLWDOBPRGXOHBYHUVLRQ���∧
FRQQ�0�PRXQWHGBRQ�)�B��∧�W\SH�)�IUDPH�
⇒�∃�&�FRQQ�&�PRXQWHGBRQ�)�FRQWURO��∧
�W\SH�&�FRQWUROBPRGXOHBYHUVLRQ���∨
W\SH�&�FRQWUROBPRGXOHBYHUVLRQ����

If there is a digital module of YHUVLRQ�� connected to a frame
then a control module of YHUVLRQ�� must be connected to the
control port.

&RQVWUDLQW�&��
∀��0�)��W\SH�0��GLJLWDOBPRGXOHBYHUVLRQ���∧
FRQQ�0�PRXQWHGBRQ�)�B��∧�W\SH�)�IUDPH�
⇒�∃�&��FRQQ�&�PRXQWHGBRQ�)�FRQWURO��∧
W\SH�&�FRQWUROBPRGXOHBYHUVLRQ���

The control port of a frame can only be connected to a control
module of version1.

Constraint C3:
∀  F,C: type(F,frame) ∧ conn(F,control,C,_)
⇒ type(C,control_module_version1).

As it turns out, this constraint is faulty because it is too
strong. This constellation could have come about, because
digital modules of version 2 were newly introduced to the
knowledge base, and &� was not altered to accommodate
them. The correct version of this constraint would also permit



control modules of version2 as allowed connections to the
control port of a frame, i.e.,

&RQVWUDLQW�&�RN�
�∀��)�&��W\SH�)�IUDPH�∧�FRQQ�)�FRQWURO�&�B�
⇒�W\SH�&�FRQWUROBPRGXOHBYHUVLRQ���∨
W\SH�&�FRQWUROBPRGXOHBYHUVLRQ���

In the following we denote the faulty knowledge base by
.%IDXOW\ = {&���&���&�} and the correct one by .%FRUUHFt= {&��
&���&�RN}

In addition, we have to model some application independent
configuration constraints specifying that connections are
symmetric,

&RQVWUDLQW�&��
∀�&���&���3���3����FRQQ�&��3��&��3���⇒
FRQQ�&��3��&��3���

that a port can only be connected to one other port:

&RQVWUDLQW�&��
∀�&���&���&���3���3���3����FRQQ�&��3��&��3���∧
FRQQ�&��3��&��3���⇒�&� &��∧�3� 3��
and that components have a unique type:

&RQVWUDLQW�&��
∀�&��7���7����W\SH�&�7���∧�W\SH�&�7���⇒�7� 7��

We denote these constraints by &&RQQ� �^&��&��&�` and
employ the unique name assumption.

In our application domain, we define in addition that every
attribute of a component has a unique value.

As described in the introduction, the typical situation
envisioned for using diagnosis on this knowledge base is that
of validation.  First, having the correct configuration model in
mind, the test engineer provides a positive example,  a frame
with two digital modules plugged in where one digital module
has version 1 and the other version 2. We denote such a
positive example as H+. More formally,

e+={∃ )�'��'�: W\SH()�IUDPH).
W\SH('��GLJLWDOBPRGXOHBYHUVLRQ�).
W\SH('��GLJLWDOBPRGXOH�YHUVLRQ�).
FRQQ()�VORW��'��PRXQWHGBRQ).
FRQQ()�VORW��'��PRXQWHGBRQ).}

Note that examples can be either partial or complete
configurations.  The example above is a partial one, as more
components and connections must be added to arrive at a
finished configuration.

A negative example would be a frame where two digital
modules are plugged in with version 1 and 2 as it was the case
in e+ but in addition a control module of version 1 is also
connected to the frame. We denote such a negative example
as e−, where such an example should be inconsistent with the
configuration knowledge base.

e− ={∃ )�'��'��&�: W\SH()�IUDPH).
W\SH('��GLJLWDOBPRGXOHBYHUVLRQ�).
W\SH('��GLJLWDOBPRGXOH�YHUVLRQ�).
W\SH(&��FRQWUROBPRGXOHBYHUVLRQ�).
FRQQ()�VORW��'��PRXQWHGBRQ).

FRQQ()�VORW��'��PRXQWHGBRQ).
FRQQ()�FRQWURO�&��PRXQWHGBRQ).}

Testing the knowledge base with e- results in the expected
contradiction, i.e., .%IDXOW\ ∪ H− ∪ &&RQQ is inconsistent.
However, .%IDXOW\ ∪ H+ ∪ &&RQQ is also inconsistent which is
not intended. The question is which of the application specific
constraints {&��&��&�} are faulty.

As we will see the question can be answered by adopting a
consistency-based diagnosis formalism. The constraints &�,
&�, and &� are then viewed as components and the problem
can be reduced to the task of finding those constraints which,
if canceled, restore consistency.

Note that {&��&�} ∪ H+ ∪ &&RQQ is contradictory. It follows
that &� or &� has to be canceled in order to restore
consistency, i.e., {&��� &�} ∪ H+ ∪ &&RQQ is consistent and
{&���&�} ∪ H+ ∪ &&RQQ is consistent. However, if we employ
the negative example we recognize that {&��� &�} ∪ H− ∪
&&RQQ is also consistent which has to be avoided. Therefore, in
order to repair the knowledge-base {&��� &�} has to be
extended for restoring LQFRQVLVWHQF\ with H−. For accepting
“&� is faulty” as a diagnosis we have to investigate whether
such an extension (; can exist. To check this, we start from
the property that {&��� &�} ∪ H− ∪ (;� ∪ &&RQQ must be
inconsistent (note that {&��� &�} ∪ (;� ∪ &&RQQ must be
consistent) and therefore {&���&�} ∪ (;�∪ &&RQQ _=�¬ H−, i.e.,
the knowledge-base has to imply the negation of the negative
example. In addition, this knowledge base has also to be
consistent with the positive example: {&���&�} ∪ (; ∪ H+ ∪
&&RQQ is consistent. Therefore, it must hold that {&���&�} ∪
(; ∪ H+ ∪ ¬ H−�∪ &&RQQ is consistent which is not the case for
our example: H+ ∪ ¬ H− implies that there must not be a
control_module_version1 connected to the control slot of a
frame whereas {&��� &�} ∪ H+ ∪ &&RQQ requires that this
control slot must be connected to a control_module_version1.
Consequently, the diagnosis “&��is faulty” must be rejected.

Note that the case in which we removed &��� the knowledge-
base� {&���&�} is inconsistent with H− as desired, i.e., “&�� is
faulty” can be accepted as a diagnosis. Therefore, “&�� is
faulty” is the only single fault diagnosis for our example.

These concepts will be defined and generalized in the
following sections. In particular, we will formally describe the
configuration task and the mapping from configuration test
cases to diagnosis problems.  Using the consistency-based
diagnosis framework will also give us the ability to identify
faults given sets of multiple examples (negative and positive)
and diagnose knowledge bases with multiple faults.

'HILQLQJ�&RQILJXUDWLRQ�DQG�'LDJQRVLV
In practice, configurations are built from a catalog of
component types. This catalog (which in industrial
applications often corresponds to an actual catalog of
available component types), is fixed for a given class of
problems, e.g., it contains frames and modules for our
previous example, offices, passageways, and stairwells when
configuring buildings, or motherboards, controllers, and
memory for configuring computers.



The catalog specifies the basic properties and the set of
logical or physical connections that can be established
between different components. We therefore assume the
existence of a domain description '' that contains the
definition of a set of types.

To define the properties and connections associated with the
types in the catalog, '' must describe functions SRUWV�
DWWULEXWHV��and GRP. The function SRUWV maps each type to the
set of constants that represent the ports provided by
components of that type, i.e., the possible connections for
each component type. Examples for both were given in the
introductory example.  The function DWWULEXWHV defines the set
of attributes, and the function GRP defines the domain of an
attribute for a particular type. The rest of the domain
description specifies the behavior of components, e.g., its
sentences describe valid value assignments to ports as well as
any other conditions that influence the correctness of the
configuration.

In addition to the catalog and its domain specific restrictions,
an individual configuration problem usually has to be solved
according to some set of user requirements. The requirements
are not restricted syntactically; they can consist of special
cases, describe initial partial configurations, legacy
components that should be incorporated, in fact generally any
desired functionality.

An individual configuration consists of a set of components, a
listing of the connections between the components, and their
attribute values.

'HILQLWLRQ� Configuration Problem

In general we assume a configuration problem is described by
two sets of logical sentences: '', the domain description, and
656, the particular system requirements which specify an
individual configuration problem instance. A configuration
then is a triple� �&2036�&2116�$7756� of components,
connections, and attributes. &2036 is a set of ground literals
W\SH�F�W� , &2116 is a set of ground literals FRQQ�F��S��F��S��
where F��F� are components and S��S� are ports, and $7756
is a set of ground literals of the form YDO�F�D�Y��where F is a
component, D is an attribute name, and Y is the value of the
attribute. q

([DPSOH: In the domain described in the previous section, ''
is given by the union of the specification of types and ports
with the set of constraints {&��&��&�RN} ∪ &&RQQ�  and the set
e+ is a particular set of system requirements.  (Note that
although this example is strongly simplified, it does often
occur in practice that a system is specified by explicitly listing
the set of required key components.)  A configuration for this
problem would be given by &21)�� = (&2036�� �� &2116��
$7756�), where

&2036�={W\SH(I�IUDPH). W\SH(G��GLJLWDOBPRGXOHBYHUVLRQ�).
W\SH(G��GLJLWDOBPRGXOH�YHUVLRQ�)
W\SH(F��FRQWUROBPRGXOHBYHUVLRQ�).},
&2116�={FRQQ(I�VORW��G��PRXQWHGBRQ),
FRQQ(I�VORW��G��PRXQWHGBRQ),
FRQQ(I�FRQWURO�F��PRXQWHGBRQ).},
$7756�={}.  q

Note that the above configuration &21)� is consistent with
656 ∪ ''.  In general, we are interested only in such
consistent configurations.

'HILQLWLRQ� Consistent Configuration

Given a configuration problem �''�� 656�, a configuration
�&2036�&2116�$7756� is consistent iff ''� ∪� 656� ∪
&2036�∪�&2116�∪�$7756 is satisfiable.  q

This intuitive definition allows determining the validity of
partial configurations, but does not require the completeness
of configurations.  For example, &21)� above�constitutes a
consistent configuration, but so would H+ alone if we view the
existential quantification as Skolem constants.

As we see, for practical purposes, it is necessary that a
configuration explicitly includes all needed components (as
well as their connections and attribute values), in order to
manufacture and assemble a correctly functioning system.
We need to introduce an explicit formula to guarantee this
completeness property.  In order to stay within first order
logic, we model the property by first order formulae.
However, other approaches, e.g., based on logics with
nonstandard semantics, are possible.

For ease of notation we write &RPSV(W�&2036) for the set of
all components of type W mentioned in &2036, i.e.,
&RPSV(W�&2036)={F� | W\SH(F�W) ∈ &2036} and
7\SHV(&2036)� for the set of all types W mentioned in
&2036, i.e., 7\SHV�&2036)={W�| W\SH(F�W) ∈ &2036}.

We describe the fact that a configuration uses not more than a
given set of components &RPSV(W�&2036) of a type W� ∈
7\SHV�&2036� by the literal FRPSOHWH(&2036) and the
addition of

FRPSOHWH(&2036) ⇔ (∀ &�7�� W\SH(&�7) ⇒ 7 ∈
7\SHV(&2036)�∧�&�∈�&RPSV(7�&2036)).

We will write &2036FRPS to denote &2036 ∪
{FRPSOHWH(&2036)}.

Similar to the completion of the type literals, we have to make
sure that all conn facts are included in &2116. We use the
name

&&2116 = {∀ ;�<: ¬ FRQQ(F�S�;�<) | W\SH(F�W) ∈ &2036 ∧ S
∈ SRUWV(W) ∧ FRQQ(F�S,_,_) ∉ &2116 ∧ FRQQ(_,_,F�S) ∉
&2116}

and write &2116FRPS to denote &2116 ∪ &&2116.

Given a particular configuration according to the above
definition, the most important requirement is that it satisfies
the domain description, and if so, then, in concordance with
the criteria specified in the example section, we do not want it
to contain any components or connections which are not
required by the domain description.  Note that this merely
means that there are no spurious parts in the solution; it does
not imply that a valid configuration is unique or has to have
minimum cost.

For the sake of brevity, we will define &21) to refer to a
configuration consisting of components &2036, connections
&2116, and attributes $7756, and



&21)� �&2036�∪�&2116�∪�$7756
&21)FRPS� �&2036FRPS�∪�&2116FRPS�∪�$7756FRPS

where $7756FRPS is the assumption made in the previous
section that the value assignment for attributes is both
required (depending on the type) and unique for each
component, i.e.,

∀�&�7�$���W\SH(&�7)�∈�&2036�∧�$�∈�DWWULEXWHV(7)
⇒�∃�9���9�∈�GRP(7�$)�∧�YDO(&�$�9��

∀�&��$��9��9����YDO(&��$��9�)�∧�YDO(&��$��9�)
⇒�(∃�7���W\SH(&��7)�∈�&2036�∧�$��∈�DWWULEXWHV(7))�∧
(9� 9�)�

'HILQLWLRQ� Valid and Irreducible Configuration

Let (''��656) be a configuration problem.  A configuration
&21) is valid iff '' ∪ 656 ∪  &21)FRPS is satisfiable.
&21) is irreducible if there exists no other valid
configuration &21)VXE such that &21)VXE ⊂ &21). q

Having finished our definition of the configuration task, it is
now relatively easy to express our goal, finding the sources
for inconsistencies in configurations, in terms of model-based
diagnosis (MBD) terminology.  Generally speaking, the MBD
framework assumes the existence of a set of components
(whose incorrectness can be used to explain the error), and a
set of observations that specify how the system actually
behaves.  Following the exposition given in the introduction,
the role of components is played by the elements of DD,
while the observations are provided in terms of (positive or
negative) configuration examples.

'HILQLWLRQ� CKB-Diagnosis Problem

A &.%�'LDJQRVLV� 3UREOHP (Diagnosis Problem for a
Configuration Knowledge Base) is a triple (''�� (��� (−)
where '' is a configuration knowledge base, (�� is a set of
positive and (− of negative examples.   The examples are
given as sets of logical sentences.  We assume that each
example on its own is consistent.  q

The two example sets serve complementary purposes.  The
goal of the positive examples in (� is to check that the
knowledge base will accept correct configurations; if it does
not, i.e., a particular positive example H� leads to an
inconsistency, we know that the knowledge base as currently
formulated is too restrictive.  Conversely, a negative example
serves to check the restrictiveness of the knowledge base;
negative examples correspond to real-world cases that are
configured incorrectly, and therefore a negative example that
is accepted means that a relevant condition is missing from
the knowledge base.

Typically, the examples will of course consist mostly of sets
of W\SH, FRQQ, and YDO literals. In case these examples are
complete special completeness axioms can be added.  If an
example is supposed to be a complete configuration,
diagnoses will not only help to analyze cases where incorrect
components or connections are produced in configurations,
but also cases where the knowledge base requires the
generation of superfluous components or connections.  The
reason why it is important to give partial configurations as
examples is that if a test case can be described as a partial

configuration, a drastically shorter description may suffice
compared to specifying the complete example that, in larger
domains, may require thousands of components to be listed
with all their connections [FFH+98].

In the line of consistency-based diagnosis, an inconsistency
between '' and the positive examples means that a diagnosis
corresponds to the removal of possibly faulty sentences from
'' such that the consistency is restored.  Conversely, if that
removal leads to a negative example H� becoming consistent
with the knowledge base, we have to find an extension that,
when added to '', restores the inconsistency for all such H−.

'HILQLWLRQ� CKB-Diagnosis

A CKB-GLDJQRVLV is a set 6 ⊆ '' of sentences such that there
exists an extension (;, where (; is a set of logical sentences,
such that

'' - 6 ∪ (; ∪ H� consistent ∀ H��∈ (+

'' - 6 ∪ (; ∪ H− inconsistent ∀ H��∈ (−   q

A diagnosis will always exist under the (reasonable) condition
that the positive and negative examples do not interfere with
each other.

3URSRVLWLRQ� Given a CKB-Diagnosis Problem (''�(��(−), a
diagnosis 6 for (''�(��(−) exists iff ∀ H��∈�(���H��∪�∧H�∈(�
�¬�H−��is consistent.
From here on, we refer to the conjunction of all negated
negative examples as 1(, i.e., 1( = ∧H�∈(���¬�H−�

In principle, the definition of CKB-diagnosis 6 is based on
finding an extension (; of the knowledge base that fulfills the
consistency and the inconsistency property of the definition
for the given example sets.  However, the proposition above
helps us insofar as it gives us a way to characterize diagnoses
without requiring the explicit specification of the extension
(;.

&RUROODU\� 6 is a diagnosis iff ∀ �H�∈�(���''−6�∪ H��∪ 1(
is consistent.

&RPSXWLQJ�'LDJQRVHV
The above definitions allow us to employ the standard
algorithms available for consistency-based diagnosis, with
appropriate extensions for the domain.  In particular, we use
Reiter’s Hitting Set algorithm [Rei87] which is based on the
concept of conflict sets for focusing purposes.

'HILQLWLRQ� Conflict Set
A FRQIOLFW�VHW &6 for (''�(��(-) is a set of elements of ''
such that ∃�H��∈�(���&6�∪�H��∪ 1(� is inconsistent.  We say
that, if H��∈�(���&6�∪�H��∪ 1(� is inconsistent, that H�

LQGXFHV &6.  q

In the algorithm we employ a labeling that corresponds to the
labeling of the original HS-DAG [Rei87, GSW89], i.e., a
node Q is labeled by a conflict &6(Q), edges leading away
from Q are labeled by logical sentences V ∈ &6(Q). The set of
edge labels on the path leading from the root to Q is referred
to as +(Q).  In addition, each node is labeled by the set of



positive examples &((Q) that have been found to be consistent
with ''�+(Q)�∪ 1(�during the DAG-generation.  The reason
for introducing the label &((Q) is the fact that any H� that is
consistent with a particular ''�+(Q) ∪ 1(� is obviously
consistent with any +(Q)’ such that +(Q) ⊆ +(Q)’.  Therefore
any H� that has been found consistent in step 1.(a) below does
not need to be checked again in any nodes below Q.

Since we generate a DAG, a node Q may have multiple direct
predecessors (we refer to that set as SUHGV(Q) from here on),
and we will have to combine the sets &( for all direct
predecessors of Q.  The consistent examples for a set of nodes
1 (written &((1)) are defined as the union of the &((Q) for all
Q ∈ 1.

$OJRULWKP��VFKHPD�

Input: ''��(���(−

Output: a set of diagnoses 6

1.  Use the Hitting Set algorithm to generate a pruned HS-
DAG ' for the collection F of conflict sets for (''�(��(-

).  The DAG is generated in a breadth-first manner since
we are interested in generating diagnoses in order of their
cardinality.

(a) Every theorem prover call TP(''−+(Q),� (�−
&((SUHGV(Q))�(−) at a node Q corresponds to a test of
whether there exists an�H��∈�(�−�&((SUHGV(Q))�such that
''−+(Q) ∪� H�� ∪ 1( is inconsistent.  In this case it
returns a conflict set &6 ⊆ ''−+(Q), otherwise it returns
RN.  Let (&216 ⊆ (�−�&((SUHGV(Q))�be the set of all H� that
have been found to be consistent in the call to TP.

 (b) Set &((Q) := (&216 ∪ &((SUHGV(Q)).

2.  Return {+(Q) | Q is a node of ' labeled by RN}

Note that, in the case that e+ is a partial configuration, each
call to TP (since it involves checking the consistency of ∀H�
∈�(���''−+(Q) ∪�H��∪ 1() corresponds to the extension of
H� to a complete configuration.

In order to guide the breadth first search, we have to define a
preference criterion between diagnoses.  Obviously, we will
prefer those diagnoses which result in minimal changes for
the existing knowledge base.  The removal of parts of the
knowledge base is given by the diagnosis itself, but this does
not tell us anything about the size of the extension.  Since we
avoid to compute the extension itself here, we need a different
measure.  It is natural to use the negative examples for this
purpose, since maintaining the inconsistency with the
negative examples was the reason for introducing the notion
of extensions in the first place.

'HILQLWLRQ� Ordering among diagnoses

A diagnosis 6 is preferred to 6¶ (6���6¶) iff |6| < |6¶| or, if |6| =
|6¶| then the diagnosis is preferred where the number of
negative examples�H−�∈�(−� � that are consistent with ''−6 is
minimized.  q

Note that this preference criterion is one among many that
could in principle be chosen.  It is selected here because of its
simplicity and effective computability and because of its
direct correspondence to the application context, namely,

those diagnoses are preferred where the smaller number of
clauses are regarded as faulty. More complex criteria cannot
be discussed here for space reasons.

&RPSOHWH�DQG�3DUWLDO�([DPSOHV
As mentioned before, examples (negative and positive) can be
complete or partial.  Previously we stated that complete
examples are in principle preferable for diagnosis (neglecting
the effort needed for specification) since they are more
effective.  We will now show that this is so because, under
certain assumptions for the language used in the domain
description, diagnosing a complete example will always result
in only singleton conflicts.

3URSRVLWLRQ�� Given an example H�� (consisting of a
configuration and the corresponding completeness axioms)
from a set of positive examples (� for a CKB-diagnosis
problem ('',(�,(−) such that '' uses only W\SH, FRQQ, and
YDO predicates, then any minimal conflict set induced by H� for
('',(�,(−) is a singleton.

The practical implications of this result are that for any given
complete positive example, we can limit ourselves to
checking the consistency of the elements V of '' with H� ∪
1(� individually, because any V found to be inconsistent
constitutes a conflict.  Conversely, any V found to be
consistent is not in the induced minimal conflict sets of H�.

'LDJQRVLQJ�5HTXLUHPHQWV
Even once the knowledge base has been tested and found
correct, diagnosis can still play a significant role in the
configuration process, but the scenario has changed.  Instead
of an engineer testing an altered (extended or updated)
knowledge base, we are now dealing with an end user (e.g.,
customer or sales rep) who is using the tested (and assumed
correct) knowledge base for configuring actual systems.
During their sessions, such users frequently face the problem
of requirements being inconsistent because they exceed the
feasible capabilities of the system to be configured.  In such a
situation, the diagnosis approach presented here can now
support the user in finding which of his/her requirements
produces the inconsistency.

Formally, the altered situation can be easily accommodated
by swapping requirements and domain description in the
definition of CKB-Diagnosis.  Formerly, we were interested
in finding particular sentences from '' that contradicted the
set of examples.  Now we have the user’s system requirements
656, which contradict the domain description.  The domain
description is used in the role of an all-encompassing partial
example for correct configurations (although it does not, of
course, fit our earlier characterization of examples as
consisting mostly just of W\SH, FRQQ, and YDO literals).

'HILQLWLRQ� CREQ-Diagnosis Problem

A configuration requirements diagnosis (CREQ-Diagnosis)
problem is a tuple (656�''), where 656� is a set of system
requirements and ''�a configuration domain description.  A
CREQ Diagnosis is a subset 6 ⊆ 656 such that 656���6 ∪ ''
is consistent.  q



5HPDUN� 6 is a CREQ diagnosis for (656�'') iff 6 is a CKB
diagnosis for (656,{''},{}).

5HODWHG�:RUN
[CFT+93] develop a frame work for model-based diagnosis of
logic programs using expected and unexpected query results
to identify incorrect clauses, a line of work later continued by
Bond [Bon96].  Their framework is similar to ours, but differs
in using queries instead of checking consistency as we do for
configurations, and their use of horn clauses (as is usual in
logic programming) versus our use of general clauses.
[Bond96] embedded the diagnosis of logic programs and the
concept of Algorithmic Program Debugging [Sha83] in a
common underlying framework.  Work is currently underway
to extend the use of model-based diagnosis to other types of
software, in particular those with non-declarative semantics
(i.e., imperative languages) [SW98].

In [BDTW93], model-based diagnosis is used for finding
solutions for overconstrained constraint satisfaction problems.
Search is controlled by explicitly assigning weights to the
constraints in the knowledge base that provide an external
ordering on the desirability of constraints, an assumption that
is generally too strong for our domain.

A model-based scheme for repairing relational database
consistency violations is given in [GL95].  Integrity
constraints, though expressed in relational calculus,
effectively are general clauses using the relations in the
database as base predicates.  The interpretation of the
constraints in diagnosis terms uses two fault models for each
relation, DEGHO and DELQV, expressing that a particular tuple must
either be removed or inserted into the database to satisfy the
constraint.  Individual violated constraints are used to directly
derive conflict sets for the diagnosis process. Given that the
goal of the approach is the alteration of the database, the best
correspondence is with what we consider requirements
diagnosis (and like our definition of CREQ-diagnosis, Gertz
and Lipeck do not use negative examples).  The database
diagnosis approach, however, involves an implicit closure
assumption on the database (reasoning about the abnormality
of tuples not contained in the relations), whereas it would
make no sense to include completeness axioms concerning the
set SRS in DOO CREQ-diagnoses, since SRS would not be
expected to completely enumerate all needed components and
connections. In addition, the repair actions on a tuple level
(which corresponds to adding components, connections, or
attribute values to a system requirement specification) have
no corresponding application scenario in our domain.

&RQFOXVLRQ
With the growing relevance and complexity of AI-based
applications in the configuration area, the usefulness of other
knowledge-based techniques for supporting the development
of these systems is likewise growing.  In particular, due to its
conceptual similarity to configuration [FS98], model-based
diagnosis is a highly suitable technique to aid in the
debugging of configurators.  We have developed a framework
for localizing faults in configuration knowledge bases, based

on a precise definition of configuration problems.  This
definition enables us to clearly identify the causes (diagnoses)
that explain a misbehavior of the configurator, and express
their properties.  Positive and negative examples, commonly
used in testing configurators, are exploited to identify possible
sets of faulty clauses in the knowledge base.  Building on the
analogy between the formal models of configuration and
diagnosis, we have given an algorithm for computing
diagnoses in the consistency-based diagnosis framework.
Finally, we have examined how our method can be used for a
different task in the same context: identifying conflicting
customer or user requirements, that prevent the construction
of valid configurations, support the user during configuration
sessions.
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