
Reconfiguration of Technical Products Using ConBaCon

U. John and U. Geske

Research Institute for Computer Architecture
and Software Technology, GMD FIRST

Rudower Chaussee 5, D-12489 Berlin, Germany

{ john, geske}~f irst. grad. de

Abstract

When we consider large/expensive technical prod-
ucts/systems, it is often the case (after some time) that
repair is required to replace modules that are not work-
ing and no longer commercially available or the func-
tionality of the system needs improving. The problem
is to make these changes at minimal cost.
In this paper, we outline a reconfiguration approach
within our constraint-based model for the configu-
ration of technical systems, and look at some as-
pects of its prototypical implementation ConBaCon
(Constraint Based Configuration). The integration of
a constraint-hierarchy transformer, allowing the com-
putation of improvement instructions and preferences,
provides a sound basis for an inexpensive reconfigura-
tion/reconditioning of existing industrial products, in-
cluding the problem of versioning of technical modules.

Introduction

The computer-assisted development of industrial prod-
ucts is still under intensive research. The reasons for
this are relatively long development times, the costs
these entail, the resulting competitive disadvantages
and the error-proneness (cf. (Sabin 1996), (Axling 1996)
or (Tiihonen et al. 1996)) of the development processes.

Since 1981, with the introduction of the well-known
rule-based configuration system XCON for configuring
DEC computers, different approaches have been pro-
posed and investigated for the knowledge-based config-
uration of products and technical systems. These in-
clude various rule-based, case-based, and recently more
and more constraint-based approaches. Overviews of
different approaches and systems are given in (Tiiho-
nen et al. 1996), (Stumptner 1997) and (Sabin
Weigel 1998). If approaches from research as well as
commercial systemsI are considered, the following gen-
eral deficits are found:
¯ The problem specification is nondeclarative and often

in the shape of a decision tree (hard to maintain).
¯ The sequence of interactions during the configuration

process is fixed in the problem specification. Thus, a
flexible configuration process, as supported by Con-
BaCon, is impossible.

ICeBIT’98 fa!r, Hannover/Germany

¯ The simulation of different effects, resulting from al-
ternative interactive decisions, is rare.

¯ Support of good reconfigurations, which is needed by
industry, is insu1~icient or nonexistent.

¯ It is impossible to find optimal or near-optimal con-
figurations.

¯ Sometimes the underlying algorithms fail to termi-
nate, etc.

.~.
It is a generally accepted fact that high-quality con-
figuration systems can be realized, especially by using
of constraint programming (cf. (Van Hentenryck and
Saraswat 1997), (Axling and Haridi 1996), (Gelle
Weigel 1996), (Faltings and Weigel 1994), (Sabin
Freuder 1996)). Successful commercial configuration
systems are always dubbed "constraint-based", but this
is mostly misleading because these systems do not use
integrated constraint solvers to reduce the search space;
they merely process a constraint-based problem speci-
fication by simple checking of constraints (cf. (Axling
1996)). Regarding genuine constraint-based configura-
tion systems or research prototypes, it may be said that
relevant publications on these approaches are often of
a very general nature or exhibit limitations with re-
gard to the quality of search-space reduction and the
problem class they can handle. Especially paramet-
ric components - such as are needed, for instance, by
industrial control systems - are seldom mentioned in
configuration-related publications (cf. (Tiihonen et al.
1996)).

Our prototypical configuration system ConBaCon,
based on the CLP language2 CHIP, attempts to over-
come the above deficits. For the most part, it
was a product of the VERMEIL3 project, which
was concerned with developing concepts to support
the knowledge-based development of reliable control
systems. Our industrial project partner ELPRO
Prozessindustrie GmbH, which is a typical producer of
energy-supply and process-control systems, served as a
reference enterprise.

The next section outlines the corresponding specifi-

2CLP=Constraint Logic Programming
3Funded by the German Federal Ministry for Education,

Science, Research and Technology

.. 48

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

cation language ConBaConL, which was extended by
constructs for documenting modifications of the speci-
fication/product taxonomy. Section 3 introduces some
key aspects of our configuration model and its realiza-
tion ConBaCon, which allow the configuration of indus-
trial products/technical systems.

The reconfiguration model based on the presented
problem-solution model is treated in Section 4. The
paper closes with a conclusion and some remarks on
possible future extensions.

ConBaConL

By analyzing the results of design problems for indus-
trial control systems, we developed a formal problem
model and, based on this the largely declarative speci-
fication language ConBaConL, which allows the specifi-
cation of relevant configuration problems. These speci-
fications are composed of three parts:

¯ specification of the object hierarchy,
¯ specification of context-independent constraints,
¯ specification of context constraints

Every technical object that can play a part in the con-
figuration problem must be specified in terms of its
structure in the object hierarchy. An object can consist
of several components in the sense of the consist_of-
relation, where components may be optional, or the
object has some specializations in the sense of the is_a-
relation. In addition, all attributes of the technical ob-
jects are specified. If the attribute values of a technical
object are explicitly known, they will be enumerated.

A correct context-independent representation of the
configuration problem is created from tile object-
hierarchy specification by adding the specification of
the constraints concerning, on the one hand, different
attribute value sets, and on the other, the existence or
nonexistence of technical objects in the problem solu-
tion.

If context constraints exist (e.g., customer-specific
demands or resource-oriented constraints), we have to
specify them as problem-specific constraints in Con-
BaConL. The distinction between problem-specific and
context-independent constraints is useful because the
technical correctness of the problem solution is ensured
if all context-independent constraints are fulfilled.

The constraint elements of ConBaConL can be di-
vided into Simple Constraints, Compositional Con-
straints and Conditional Constraints. Most of them are
introduced below.

Simple Constraints

Attribute Value Constraints and Existence Con-
straints [o, Attr, VS]/not([o, Attr, VS]) the at -
tribute Attr of object o must/must not take a value
from VS,

exist(Objectlist)/noexist(Objectlist) al l objects con-
tained in Objectlist must/must not be part of the so-
lution.

Relational Constraints Between Attribute Value
Sets ~ Table Constraints eq(T1,T2), neq(T1,T2),
lt(TI,T2), let(T1,T2), gt(T1,T2), get(T1,T2). Further,
it is possible to specify equations over attributes.

In practice, coherences between solution parts are of-
ten specified in the form of tables (decision table).
avoid a manual, error-prone translation of the table into
other kinds of ConBaConL constraints, the table con-
straint was introduced.
table(Tablehead, Tablebody)
Tablehead specifies table columns which can be assigned
to object attributes or objects. In Tablebody, the table
lines are collected, while attribute values are assigned to
attribute columns and existence/nonexistence demands
are assigned to object columns. The table co~traint de-
mands that the tabular coherences between attributes
and objects of the Tablehead be fulfilled. This means
that at least one line of the table must be valid.

Compositional Constraints

Compositional Constraints are, besides the above-
mentioned Simple Constraints, compositions of compo-
sitional constraints: and([Consl,...,Cons,*]),
or([Consl,... ,Consn]), xor([Consl,... ,Cons,,]),

at_least(ICons1,... ,Cons,~],N) at_most([Cons, , . . .
Consn],N) / exact(ICons, , . . . ,Cons,],N)
- at_least/at_most/exactly N of the listed constraints
are valid4.

Conditional Constraints

[if(Comp_Consl), then(Comp_ConsT)]
If the compositional constraint Comp_Consi is fulfilled,
the compositional constraint Comp_ConsT must also
be fulfilled.
[iff(Comp_Consl), then(Comp_Cons2)]
If and only if the compositional constraint Comp_Consl
is fulfilled, the compositional constraint Comp_Cons2
must be fulfilled.

Preferences

There are two ways of describing and processing pref-
erences. One is to try encoding the existing pref-
erences as preference rules in the labeling heuristics
(see below) within the problem-solution model. An-
other is to specify weak constraints. So far, specify-
ing weak simple constraints has been supported. They
have the shape weak(Simp_Cons, Level), level being a
measure of the weakness of Simp_Cons. In the fu-
ture, it would be useful to extend ConBaConL and the
corresponding problem-solution model by adding weak
compositional constraints (weak(Comp_Cons, Level))
and weak conditional constraints ([if(Comp_Consl),
then(weak(Comp_ConsT, Level))]).

4So far, the processing of or-, xor, at_least, at.most,
exact-constraints concerning the existence and nonexistence
demands of objects has been realized in ConBaCon.

49

Modification of Product Taxonomies

In practice, the specification of product taxono-
mies/component catalogs has high modification rates.
For instance, about 40°~ of the 30,000 component types
of DEC computers used in R1/XCON were updated
annually (cf. (Freuder 1998)). There are several
sons for the necessity of changing the product tax-
onomies/problem specifications. The most common one
is the fact that new technical modules become avail-
able or rid ones are withdrawn. A special case of this
is so called versioning. A third reason is tim changing
of context-independent constraints, caused for instance
by changes in laws or government policy. In order to
allow subsequent reconfigurations, obsolete information
should not be deleted in the specification. Instead, ob-
solete modules and constraints should be labeled with
the keyword obsolete in the specification/product tax-
onomy.

New modules and constraints can easily be added
to the specifications/product taxonomies (Figure 1).
There are two cases in which a new module/object
new_o is integrated as an alternative to an already spec-
ified module ox. In the first case (I.), oz is a special-
ization of an object o. In the second case (II.), o~
a module of o, whereby a notional object h must be
introduced at the position of oz, which gets the special-
izations new_o and ox.

Figure 1: Integration of New Modules

A typical specification of ground rectifiers for large
electric motors5 - together with the problem solution
using ConBaCon - is outlined in (John 1998b).

Modeling & Implementation
When transforming a problem specification, our goal
is to obtain a problem-solution model that allows an
efficient problem solution. The model should also sup-
port the option of high-quality interactions with the
user. The model of a constraint-logic system over fi-
nite domains is taken as a basis for the solution model
outlined below. Thus, the model can also be seen as a
global constraint for structural configuration.

5On the basis of data provided by our industrial partner.

Objects

Each specified object (representing a technical module)
that is not marked as obsolete will be transformed into
a module object of the problem-solution model6. More-
over, each attribute of a specified object will be trans-
formed into an attribute object, i.e., a specified object
with n attributes will be represented by n + 1 objects in
the problem-solution model (Figure 2). In contrast

%.
"~

conlponents componenblisi -"~o~

Ex Var 0.1

¯ ~ optJyp
attr_pointerjist

"~o~

~ attr;:: vil, ... vn~l) ~ ~-t~ attr1(o)
... value_children_list!
atlrj,:; Vnt, ..., Vnr(n) j ~ ~ atgrN(o)

value_children_list~,

\

Figure 2: Transformation of Objects

our approach, parameterized modules are only rarely
considered in configuration-related literature (cf. (Ti-
ihonen et al. 1996)).

Objects of the problem-solution space acquire
certain model-specific attributes. The attribute
componentdist of object o contains identifiers of the
object components (structure_typ = and-node) and of
the specializations (structure_typ = or-node) of o, re-
spectively. The constraint variable Ex_Var determines
whether or not the object is contained in the solution. If
the value of Ex_Var is zero, o is not part of the solution.
If the value is one, o is part of the solution7. opt_typ
contains information about whether o is optional or not.
Links to the corresponding attribute objects are given
by attr_pointerdist. Each attribute object stores pos-
sible attribute values in value_children_lists and in the
domain of a corresponding constraint variable. More-
over, identifiers of the value-related children-nodes are
stored if the object o contains specializations. In this
case, the attribute value sets of o are the set unification
of the corresponding attribute value sets of the special-
ization objects.

Besides the model objects, constraints are needed in
the problem-solution model to ensure the coherences
between the objects of the model so that the correctness
of the solution and the completeness of the solution pro-
cess are guaranteed with respect to the problem specifi-
cation. These constraints we call consistency-ensuring

6 Some constellations require the introduction of auxiliary
module objects. These are not considered in the present
paper.

7Restriction to the values zero and one is a simplification
of t:he realized model. There are actually more values that
reflect the existence of different technical identifiers of one
technical object, these depending, for instance, on the fixed
parameter values.

5O

constraints (CE-constraints).

CE-Constraints ¯

Consistency-Ensuring Constraints are realized as log-
ical coherences between values of Ex_Var-attri-
butes/attribute value sets of different attribute objects.
The most important CE-constraints are schematized in
Figure 3. If it becomes obvious that an object can-

Figure 3: Consistency-Ensuring Constraints

not occur in the solution, it must be inferred that all
components/specializations of it cannot occur in the so-
lution (I). If it becomes obvious that an object is part
of the solution (Ex_Var = 1), it must be ensured that
all nonoptional components of the object are part of
the solution, too (II). The existence of an object in
solution implies in each case the existence of its parent
object (III). Further, if a nonoptional component of
object o cannot occur in any solution, the parent ob-
ject o cannot occur in any solution either (IV). If the
specialization of an object o is part of the solution, no
other specialization of o can be part of the solution (V).
If it becomes obvious that all specializations of an ob-
ject o cannot occur in any solution, it must be inferred
that o cannot occur in the solution either (VI).

Attribute value sets are kept consistent by a spe-
cial class of CE-constraints. In the case that a value
is deleted in the attribute value set of a specialization
of an object o, the value has to be deleted in the cor-
responding attribute value set of o, except if there is
another specialization of o that contains the deleted
value in the corresponding attribute value sets. If an
attribute value is deleted in an attribute value set of an
object o possessing specializations, the same value has
to be deleted in all corresponding attribute value sets
of the specializations of o. If an attribute value set of
an object o becomes empty, the nonexistence of o will
be inferred by a special CE-constraint.

By integrating the introduced CE-constraints in the
problem-solution model, the structural coherences be-
tween objects of the solution model are ensured with re-
spect to the existence, nonexistence and attribute value

STo avoid intensive checking, the attribute value_chil-
dren_list of the corresponding attribute object is checked
and updated after each deletion of an attribute value.

sets. Moreover, the constraints formulated in the prob-
lem specification must be transformed into constraints
of the problem*solution model.

Specified Constraints

Attribute value constraints and existence constraints re-
sult in the deletion of attribute values in the problem-
solution model or in the setting of Ex_Var-attributes.
Relational constraints between attribute value sets re-
sult in the deletion of attribute values, which become in-
valid because of the specified relation. If there are other
value tuples that do not fulfill the relation, some appro-
priate daemons have to be generated which control the
relational constraints after each altering of the attribute
value sets in question. Table constraints define connec-
tions between the attribute value sets in question and
existence information (Ex_Var) on the objects listed
in the table head. Altering the attribute value sets or
existence values results in invalidity-marking of corre-
sponding table lines. If all table lines are marked as in-
valid, the table constraint is not satisfied. Conversely, it
is ensured that the attribute value sets in question con-
tain only values that are registered in valid table lines.
Compositional Constraints are normally realized in the
solution model by equations and unequations over cor-
responding Ex_Var-attributes. For each nonexistence
statement of an object, the term "1 - Ex_Var" is used
instead of Ex_Var in the equation/inequation. Con-
ditional Constraints are transformed into conditional
transitions of the problem-solution model, which en-
sure the specified logical coherences within the problem-
solution model. In order to substantially reduce the
problem space within the problem-solution model, the
contrapositions of the specified conditional constraints
are also transformed into elements of the problem-
solution model.

Implementation

Based on the outlined problem-solution model, a flexi-
ble and efficient problem-solution process was realized
within tile prototypical configuration system ConBa-
Con, using the CLP language CHIP. In particular, the
object-based data management and the existence of
Conditional Propagation Rules9 in CHIP facilitated the
implementation.

The specified configuration problem is transformed
into objects of the problem-solution model. This means
that the objects of the solution model are generated,
corresponding CE-constraints are inferred and set, and
the specified constraints are transformed into corre-
sponding constraints of the problem-solution model.
The value one is assigned to the Ex_Var-attribute of
the target object because the target object must exist
in each solution. Thanks to the generated model with
the model-specific CE-constraints, a substantial reduc-
tion of the search space is guaranteed. We call the set

9Similar language elements exist in other CLP languages,
e.g., Constraint-Handling Rules in ECLIPSE.

51

of the currently active module objects of the problem-
solution model Configuration Space. Now, interactive
user constraints can be given (one by one) relating
the existence or nonexistence of objects of the config-
uration space or to the shape of the corresponding at-
tribute value sets. The freedom of the user to decide
which object or attribute value set of the configura-
tion space should be restricted by an interactively given
user constraint is an outstanding feature compared with
most otimr configuration models/tools. Governed by
the constraints of the problem-solution model, this re-
sults in a new configuration space. Thus, a new cycle
can start. Users can either give a new interactive con-
straint or they can delete previously given interactive
user constraints. This allows the simulation of several
user decisions, which is the precondition for a highly
flexible configuration process. The simulation aspect of
configuration processes is discussed in (John 1997).
no further interactive constraints are required, the gen-
eration of a solution can be started. This is done by
labeling the Ex_Var-attributes of the (still) active ob-
jects of the problem-solution model. Such labeling can
be controlled by heuristics. This allows us to take into
account preferences in the form of preference rules for
controlling the labeling process. If the solution found is
not suitable or fails to pass the solution quality check,
further solutions can be created by backtracking. If a
partial improvement of the solution suffices, a specific
solution improvement can be started by specification
and processing of a constraint hierarchy, i.e., the con-
straints that must be satisfied unconditionally will be
specified as hard constraints, and the solution parts that
should, if possible, be in the new solution or desired at-
tribute values will be fixed as weak constraints. The
weak constraints can be marked with several weights.
The specified constraint hierarchy will be processed in
an error-minimization process, which results in the gen-
eration of a set of equivalent (hard) constraints of the
problem-solution model (CH Transformer). Informa-
tion about the realization and application of constraint
hierarchies in ConBaCon for partial improvement can
be found in (Schiemann et al. 1997). At second sight,
becomes obvious that the improvement process using a
constraint-hierarchy transformer provides a sound ba-
sis for reconfiguration. This is discussed in the next
section.

Reconfiguration
There are two possible reasons for reconfiguring existing
systems/products. On the one hand, parts/components
sometimes break down and have to be replaced, re-
pair is not possible without affecting other modules
of the system. On the other hand, there may be the
wish to realize a new/modified functionality of the ex-
isting system, which can result in extentions and re-
placements. Several additional objectives for the re-
configuration process are conceivable. Thus, it might
be useful to keep the number of necessary replace-
ments/changes to a minimum. This can be seen as a

substitution goal to minimize costs. Another objective
might be to make as few changes to existing parame-
ter values as possible1°. Owing to space limitations, we
will confine ourselves here to the goal of minimal re-
placements/changes. Extensions - including the treat-
ment of resource-accentuated modules - can be made
quite easily. Figure 4 shows the reconfiguration process
for a system s. The exact specification of the exist-

of Sys~ln s y ~, of System S ’

’EXact Spec~calio~ o~ $

Reconfiguratlon Prode¢cl Modvl of x ~] Deduction of the R¢cae~Ctlfu~ton \

a~e~o~,~e,,! co,,s~,,~ ~ ~~fof~, Mop!,,!¢ ~~

Exqcl Sp¢clflcallon of ~, ̄ :..’".’":’ ,, ..

desired propcrflc~

Figure 4: Reconfiguration of a Technical System

ing system s has to be merged with the current prod-
uct model of s in the following way. Starting with the
current product model, all technical modules/objects of
the system s which are not out of order and which do not
need replacing to meet explicit reconfiguration demands
should be now marked as valid if they were labeled as
obsolete before. They are available because they are
already integrated in s. Specified context-independent
constraints were processed in a similar way. For each
technical module of s that is not out of order and that
does not need replacing to meet explicit reconfiguration
demands, a weak existence constraint is generated. For
each optional object of the resulting product model that
is not part of s and whose existence is not explicitly
demanded by reconfiguration demands a weak nonex-
istence constraint is deduced. The resulting reconfig-
uration product model, which also contains the recon-
figuration demands (ConBaConL-specified constraints)
and the generated weak constraints, is the new problem
specification. After transforming the specification into
an adequate problem-solution model as described.in the
previous section, the weak nonexistence constraints and
existence constraints are transformed to the sum over
the’ existence variables Ex_Var of the objects in ques-
tion or the terms "1 - Ex_Var" for the weak existence
constraints. The resulting sum is minimized by "re-
stricted forward labeling" of the existence variables in
question. After backjumping, the value of the (non la-
beled) sum term is set to the determined minimum.
Thus, a configuration space is given that can be further
reduced as described above. For each solution, the min-
imal number of replacements is ensured with respect to

1°For instance, in the field of safety control engineering, a
large number of parameter value changes would necessitate
expensive field simulations.

52

the system s, the current product model and the recon-
figuration demands.

Conclusion / Future Work
We have introduced a reconfiguration approact~ based
on our constraint-based problem-solution model for the
configuration of technical systems/industrial products.
An idea of the complexity of the configuration prob-
lems that can be tackled by the solution model has
been given by describing the main elements of the cor-
responding specification language ConBaConL. So far,
the prototypica.1 realization of the presented problem-
solution model ConBaCon, in the CLP language CHIP,
has proved successful in the field of industrial control
systems for the configuration of power-supply systems
for large electric motors. By substantially reducing the
search space, the problem-solution model - together
with the underlying CLP system - allows an efficient
configuration process that can be flexibly controlled by
user interactions. I~ is ensured that each solution found
is correct with respect to the problem specification and
the underlying constraint solver. In addition, the com-
pleteness of the solution process is guaranteed.

The integration of a constraint-hierarchy transformer
allows the computation of improvement instructions
and preferences and provides a sound basis for the out-
lined reconfiguration approach.

By integrating a graphical problem editor into Con-
BaCon, the system supports innovative design pro-
cesses, which is essential in many practical design
problems (see (John 1998a)). One important exten-
sion of the existing problem-solution model is distri-
bution, which is motivated by two concerns. On the
one hand, it is useful for ttle near-optimal solution
of large complex problems to develop DPS-oriented
approaches11. More specifically, we have to develop
proper problem-decomposition methods and models of
corresponding agent systems. On the other hand, it
is useful to support existing team structures in config-
uration related companies. Some work in this direc-
tion is documented in (Gupta, Chionglo, and Fox 1996;
Van Parunak et al. 1997).

Interesting approaches for solving large configuration
problems can be found in (Sabin and Freuder 1996)
and (Fleischanderl et al. 1998). These provide ideas
for dynamizing our problem-solution model.

References
T. Axling: Collaborative Interactive Design in Virtual
Environments. www.sics.se/,~axling/3dobelics.html.
T. Axling, S. Haridi: A Tool for Developing Interactive
Configuration Applications. J. of Logic Progr., 1996.

Th. Christaller, D. Schuett (Eds.): Foundations and
Applications of AI (In German). Springer. 1993.

E. Gelle: Preliminary Bridge Design.
liawww.epfi.ch/,~gelle/bridge-design.html. 1997.

11DPS = Distributed Problem Solving

E. Gelle, R. Weigel: Interactive Configuration using
Constraint Satisfaction Techniques. Proc. of PACT’96.

Boi Faltings, Rainer Weigel: Constraint-Based Knowl-
edge Representation for Configuration Systems. Tech-
nical Report TR-94/59 des EPFL, 1994.

G. Fleischanderl, G. Friedrich, A. HaselbSck, M.
Stumptner: Configuring Large Systems Using Gener-
ative Constraint Satisfaction. IEEE- Int. Systems 4/
1998.
Eugene C. Freuder: The Role of Configuration Knowl-
edge in Business Process. IEEE- Int. Systems 4/1998.

A. Giinter: Models for Configuration (In German).
(Christaller and Schuett 1993).
L. Gupta, J.F. Chionglo, Mark S. Fox: A Constraint
Based Model of Coordination in Concurrent De-
sign Projects. www.ie.utoronto.ca/EIL/DITL/WET-
ICE96/ProjectCoordination/. 1996.

P. van Hentenryck, V. Saraswat: Constraint Program-
ming: Strategic Directions. J. of Constraints, 2/1997.
U. John: Constraint-Based Simulation of Configura-
tion Processes. Proc. of IMACS’97, August 1997.
U. John: Constraint-Based Design of Reliable Indus-
trial Control Systems. In "Advances in Systems, Sig-
nals, Control and Computers (V. Bajic, Ed.)". IAAM-
SAD. Durban, South Africa. September 1998.
U. John: Model and Implementation for Constraint-
Based Configuration. Proc. of INAP’98.

Van Parunak et ah Distributed Component-Centered
Design as Agent-Based Distributed Constraint Op-
timization. Proc. of WS Constraints and Agents on
AAAI’97.
D. Sabin: www.cs.unh.edu/ccc/config. 1996.
D. Sabin, E.C. Freuder: Configuration as Composite
Constraint Satisfaction. Proc. of AAAI’96.

D. Sabin, R. Weigeh Product Configuration Frame-
works - A Survey. IEEE Int. Systems 4/ 1998.
A. Schiemaun, U. John, U. Geske, D. Boulanger: Real-
ization and Application of Constraint Hierarchies for
Configuration of Technical Systems with ConBaCon
(In German). Proc. of 12th Workshop Logic Program-
ming (WLP’97). Munich 1997.

M. Stumptner: An Overview of Know!edge-Based
Conf.. AI Communications. Vol. 10 No. 2, 1997.
J. Tiihonen, T. Soininen, T. M~innistS, R. Sulo-
nen: State-of-the-Practice in Product Configuration
- A Survey of 10 Cases in the Finnish Industry. In
(Tomiyama, M~intyl~i, and Finger), 1996.

T. Tomiyama, M. M~intyl~, S. Finger (Eds.): Knowl-
edge Intensive CAD. Capman & Hall, 1996.

