
Knowledge Growing Old in Reconfiguration Context

Ingo Kreuz
DaimlerChrysler AG

Research and Technology
HPC T721

D-70546 Stuttgart, Germany
ingo.kreuz @ daimlerchrysler.com

Dieter Roller
University of Stuttgart

Graphical Engineering Systems Dept.
Breitwiesenstrage 20-22

D-70565 Stuttgart, Germany
roller @ informatik.uni-stuttgart.de

Abstract:
A long time span often lies between the production (initial
configuration) and the reconfiguration of a technical system.
During that time new components are invented and related
knowledge changes. The goal of this examination is to use
the same knowledge base over years. One common way to
solve this problem is to integrate a versioning system into
the knowledge base. This article however examines a more
natural and "dynamic" way of knowledge growing old. This
mechanism will be integrated into a reconfiguring system
for electronic systems in cars, making their extensions or
repair more individual, more flexible and more actual thus
increasing quality.

Introduction

Electronic systems of current cars consist of a vast amount
of hard- and software modules with multiple dependencies.
One function is typically spread over multiple software
modules residing in multiple hardware units. In automobile
context these hardware units are called ECUs (Electronic
Control Units). They are interconnected through
communication-buses and are responsible for executing the
software modules which control all sensors and actuators
connected to the ECU. To give an example, imagine
pressing a button located at the driver’s door to adjust the
outer mirror located on the passenger’s side. The button is
connected to the ECU next to it, i.e. the ECU located inside
the driver’s door. This ECU initiates the command to start
the appropriate actuator to the ECU located next to the
outer mirror on the co-driver’s side over a communication
bus. At least two software modules are involved: One for
reading the sensor inside the driver’s side ECU and one for
starting the motor residing in the co-driver’s side ECU.

Copyright © 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

The following two scenarios underline the need for a
reconfiguring system:

If a faulty module is to be replaced and an identical
spare part is currently not or no longer available, a
substitute has to be found. This substitute must meet all
dependencies of the given system. A reconfiguring system
can help finding an appropriate part even if subsequent
changes are necessary. In the above example the mirror on
the passenger’s side could have been mechanically
damaged. The smallest changeable part is the whole mirror
unit consisting of motors and position sensors together with
the mirror itself. The only available part in this example is
a mechanically identical unit including a newer version of
the position sensors, let’s say with a higher resolution.
Today this spare could not have been used because the
software inside the ECU does not fit the signals from the
sensors. The reconfiguring system instead would identify
the software module responsible for position control to be
changed as a subsequent step and possibly other necessary
subsequent changes.

The second scenario deals with upgrades of systems. If
the owner of a system wants a new functionality added,
some new modules (hard- and software) have to be added
or other have to be changed. To meet all dependencies

ksubsequent changes are likely. As an example, a customer
wishes to have the mirrors turned automatically to see the
ground as he or she switches to reverse gear like in the new
S-Class of Mercedes/DaimlerChrysler. Even if this
function was not invented when the car was produced the
wanted function might be added using a reconfiguring
system identifying all necessary changes.

Note: Current methods for complex non-predestined
changes include telling the customer to buy a new car
including the wanted functionality.

However laws exist in many countries, which state a lot
of expensive tests need to be performed subsequent to

54

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

changes in a car. Only after these laws are relaxed, the
approach described below can be used for individual cars.
But ~ervice departments can use the mechanism at least for
building repair- or upgrade-packages certified once.

Reconfiguring System

The reconfiguring system basically consists of two parts. A
knowledge base holds all the necessary knowledge about

¯ available components together with their possible
parameters (hard- and software)

¯ dependencies between components
¯ strategies to exchange parts successfully
¯ what modules are actually on stock
We plan to use an object oriented approach to model the
knowledge, like this has be done with KONWERK in the
PROKON project (see [Gtinter et al. 1995]).

The second part is formed by an inference machine
dealing with the knowledge. At this time we use the
KONWERK - kernel because it provides good possibilities
to add own strategies. On the other hand a pure resource
based strategy is appropriate because the above mentioned
dependencies mainly have their origins in the given
resources of the modules and can therefore be modelled in
a very adequate way (see [Heinrich et al. 1996]).

Exact configuration Onboard

To reconfigure a system, knowledge is needed about the
modules currently built into the system. We have defined
the structure and contents of an XML-document holding
the necessary informat.ion. It will be stored inside the car
and we call it the Exact Configuration Onboard (ECO, see
[Kreuz et al. 1999]).

Starting the Reconfiguring Process

In [Crow et al. 1994] reconfiguration is used to obtain a
FDIR’ system. For this reason they tried to combine
diagnosis and reconfiguration in systems containing
standby spares. We do not presume standby spares and do
not restrict ourselves to changing parts only after diagnosis,
but want to use the reconfiguring system also for additions
to a system.

The following starting points for reconfiguration have to
be considered in our context:

First point is a part that needs to be changed (for
example as the last step in a FDIR process chain). The user
of the system identifies the part and the reconfiguring

I FDIR: Fault Detection, Identification and

Reconfiguration

system removes it from the actual configuration derived
from the ECO. The configuring system now detects that
the system is no more complete. Completeness in this
context means that the system meets the specification given
by the set of functions previously included in the system
and that all dependencies are valid.

The second starting point leads to the same situation: If a
new function shall be added, the system is also no more
complete. The incompleteness now is a consequence from
an altered specification, i.e. the set of functions previously
included in the system plus the newly wanted function.

In both cases the reconfiguring system tries to add a
component providing the missing functionality as a
composition step. It might even select the same sort of part
the user has removed before, if it is still available and has
not to be ordered. But it may also "decide" to select a
newer version of the part or a totally different part that is
currently on stock depending on the strategy and
optimization rules actually used. To insure all
dependencies the use of subsequent reconfiguration (see
next section) is likely.

A very interesting third situation arises, if "rules"
(dependencies) for the system have changed. This might
happen for example because new dependencies were
detected and added to the knowledge base by development
departments afterwards. Also moving the system to another
country having different laws might be the reason. In this
case the reconfiguring system can help by determining if
all dependencies are still valid and initiate subsequent
reconfiguration if not.

Subsequent Reconfiguration

There are several possibilities for the reconfiguration
process. In [Crow et. al. 1994] reconfiguration is modeled
as an analogy to the model based diagnosis paradigm
formalized by Reiter [Reiter 1987].

This article however is focused on a mechanism that
tries to use as much as possible from the well researched
"classical" configuration paradigm. This mechanism
consists of adding components to obtain a wanted
functionality and decomposes the system if a conflict pair
is detected. This is very similar to the basic configuration
method with backtracking in configuring systems like those
described in [Giinter et al. 1995] or [Heinrich et al. 1996].
The difference to normal backtracking is, that not only
those parts that were previously added by the algorithm can
be removed but also those, that were built into the system
before the algorithm started. This is similar to "repair"

described in [Giinter et al. 1995].
Tyro phases can be distinguished as parts of the

algorithm:

55

1. composition phase
The system tries to find a component that provides at
least one of the wanted functionality. If more than one
wanted functionality is missing, the reconfigurator has to
decide which component is to be added next. This might
be the component providing the highest number of
missing functions or the component causing the least
number of conflict pairs for example. This phase ends
when conflict pairs occur or when the system is

complete, relative to a given specification.

2. "backtracking" or decomposition phase
The system removes one components that is part of a
conflict pair or group. The addition of one component in
phase one can cause multiple conflicts, so this phase
basically consists of a loop

¯ identifying the components that are part of at least
one conflict pair or group

¯ choosing the next component to be removed, hence
meeting some optimization criteria (strategy). For
example it might be useful to remove those
components first, that are involved in the most
conflict pairs.

¯ removing the identified component
This phase ends when there are no more conflict pairs.

Phase 1 and 2 are applied in a loop that ends when the
system is complete relative to a given specification after
phase 1.

The Role of Versions

As mentioned in the beginning, there is one thing to be
remarked in technical systems, if they are to be serviced
over a longer iime span: Due to proceedings in
development new components are invented, normally
having some advantages compared to those built into an
older system. If a component of the older system is to be
changed, it may be the case, that only newer versions of the
part exist as spares. Normally a newer version replaces an
older version completely and often holding all old versions
as spares is more expensive for a company than accepting
some subsequent changes using the new version in older
technical systems, too. In many cases this is even cheaper
for a company if the subsequent changes are made cost
transparent to customers, because storing spares is that
expensive.

The reconfiguring system described above can help to
manage versions of components in two ways:

First off it can test if any conflicts occur using the newer
version and also it helps to solve the conflicts by finding
alternative components providing the same functionality.

Socondly it can identify all parts that should be replaced
by a new version (maybe even if they still work) if

constraint is added to the knowledge base saying that the
older versioned part is a conflict by itself.

These two aspects are fulfilled without any extra
programming by the algorithm described in the above
section. The component of the new version is to be added
to the knowledge base as an available part and the older
version has to either be removed from the knowledge base
or be marked as unavailable.

Age coming into Play

Versions of components are not the only thing that change
over years. Knowledge about dependencies or (re-)
configuration strategies change, too.

From a standpoint based on human experience it is often
good to prefer things and knowledge that are new and
therefore up to date. As a result human brain is able to
forget things "automatically" if they were not used for a
long time. For the same reason more recent knowledge is
preferred to old fashioned experiences by humans.

For our reconfiguration process having aged knowledge
can also be an improvement (see below). Additionally
would be more natural, if both components and knowledge
would continuously and automatically change instead of
releasing a new version for the item at one time.

Improving the Knowledge Base

One advantage of having aged knowledge is that very old
knowledge that was not used for a certain time can be
removed from the knowledge base automatically. This
keeps the knowledge base small and the configuration
engine fast as a consequence. This process is analogous to
the behavior of human brain mentioned above.

Of course there might occur special situations when old
knowledge is needed. For example if one tries to rebuild an
old-timer car with original old parts. For this reason it is
useful to simply use backups of the knowledge base
enabling to go back to whatever date is wanted.

Improving the Configuration Process

A second and maybe more important issue for having
knowledge growing old is to speed up the configuration
process. Learning from the behaviour of human brain, it
seems very probable that knowledge, that helped very often
to find a solution and knowledge that is very much up to
date, helps best to solve an actual problem. As a
consequence it is very near at hand to use this kind of
knowledge first. Knowledge from that quality is

furthermore called actual.
In detail this means for the (re-) configuration that

56

¯ actual components are preferred
¯ actual strategies are preferred
¯ actual dependencies are tested first

to speed up the process.
If a case based paradigm is used, determining actuality

also helps to find solutions that are not as conservative as
they would be following the original paradigm. The
problem of being conservative is described in [Cunis et al.
1991] as a result of having the main reason for decisions
that something has be done before in a similar way.

Actuality/Age of Knowledge

At this time the following suggestion is given to determine
the actuality of knowledge. It is derived from the above
thoughts about knowledge growing old in human brain and
is consistent to every day experience:

#useful
actuality - --

age

where
#useful is the number of times, when the knowledge

have led to a solution or a component has been
part of a solution

age stands for the number of time units used for the
system (for example hours, days, weeks or
years) since the knowledge / component was
stored into the knowledge base originally

Without any limitations we can initialize the value of
actuality for an item with 1 by initializing #useful as well
as age with 1.

For the reason that only knowledge of the same kind is
to be compared by actuality, no constants are required in
the above formula as long as the same measurement is used
for something’s age: Actuality is a relative number which
increases based on how often the knowledge has been
useful and it decreases with age as expected. If an item is
not used for a long time span, actuality of this item
approaches 0 and can be removed.

Nevertheless it seems practical to allow weights for
#useful relative to the age of an item. The following
definition for actuality allows to influence the significance
of age relative to #useful by introducing a constant c:

where

c ~]0,1]
ce [1,,~[

#usefulc
actuality = --age

to increase the significance of age

to increase the significance of #useful

Note: c is the exponent because if c was a multiplier, there
would be no effect to the weight of #useful relative to age.

To be able to calculate the actuality, #useful and the date
of birth are to be stored for all knowledge and components
residing in a knowledge base.

The constant c can be varied by the user for each class of
items in a knowledge base. The actuality of items is only
comparable, if the same constant e was used for all of
them.
The following three figures show actuality for different
values for constant c.

actuality
40- ’"

30-

10-

0~
80

0

0 10

figure 1 actuality calculated for c=l

2500- /"

actuality \
2000 - . /

1500-

1000. "~ \x~ ’, ’" , ." ",

500. :, .:,

#useful 2o~~;;;~ 4 age
0 10

figure 2 actuality calculated for e=2

57

figure 3 actuality calculated for c--0.5

Summary and Conclusion

This paper described the use of a reconfiguring system for
electronic systems of vehicles in consequence to
supplementing new functions to or exchanging components
of a vehicle. An algorithm for reconfiguration using
techniques of well researched configuration was presented,
age/actuality of knowledge was introduced and
improvements resulting from having age/actuality for
knowledge were discussed.

As a next step it is planned to implement a prototype
using these mechanisms proving the mentioned advantages.
This prototype will also enable fine tuning for the use of
"actuality" by finding appropriate values for the mentioned
constant c.

References

ICrow et al. 19941 Judy Crow and John Rushby:
Model-Based Reconfiguration: Diagnosis and
Recovery, Computer Science Laboratory, SRI
International 333 Ravenswood Avenue, Menlo Park,
CA 94025 USA, NASA Contractor Report 4596,
May 1994

[Cunis et al. 19911 Roman Cunis, Andreas Oiinter,
Helmut Strecker: Da~ Plakon-Buch. Ein
Expertensystemkern fitr Planungs- und
Konfigurierungsaufgaben in technischen Domanen.
Springer-Verlag, Berlin Heidelberg, 1991, pp. 131

lGilnter 19951 Andreas Giinter (ed.):
Wissensbasiertes Konfigurieren. Ergebnisse aus dem
Projekt PROKON. Infix-Verlag, Sankt Augustin,
1995.

[Heinrich et al. 1996] Michael Heinrich, Ernst J0ngst:
The Resource-Based Paradigm: Configuring
Technical Systemsfrom Modular Components in
AAAI-96 Fall Sympos. Series: Configuration. MIT,
Cambridge, MA, November 9-11, 1996, p. 19-27.

[Kreuz et al. 19981 Ingo Kreuz, Thomas Forchert,
Dieter Roller: ICON. Intelligent Configuring System
in Dieter Roller (ed.) Proceedings of the 31th ISATA,
Volume "Automotive Electronics and New
Products", Diisseldorf Trade Fair, Croydon, England,
1998, p. 219ff..

[Kreuz et al. 1999] Ingo Kreuz, Ulrike Bremer: Exact
Configuration Onboard. Onboard Documentation of
Electrical and Electronical Systems consisting of
ECUs, Data Buses and Software, ERA conference
1999, Coventry. To Appear, p. 5.2.1 ff

[Reiter 19871 Raymond Reiter: A theory of
diagnosis from first principles. Artificial Intelligence,
32(1): 57-95, April 1987.

58

