
The Goldilocks Problem*

Tudor Hulubei and Eugene C. Freuder
Department of Computer Science

University of New Hampshire
Durham, NH, 03824, USA

tudor,ecf@cs.unh.edu

Abstract

A lot of work in Constraint Satisfaction has been fo-
cused on finding solutions to difficult problems. Many
real life problems however, while not extremely compli-
cated, have a huge number of solutions, few of which
are acceptable from a practical standpoint. In this pa-
per we will present a heuristic that attempts to guide
the search towards solutions that are acceptable given
a set of metrics. In practice, this new heuristic can
be used to suggest upgrades to existing configurations
(upselling) and indeed that was the initial motivation
of our work.

Introduction

"So away upstairs she went to the bedroom, and there
she saw three beds. There was a very big bed for Father
bear, but it was far too high. The middle-sized bed for
Mother bear was better, but too soft. She went to the
teeny, weeny bed of Baby bear and it was just right." -
Goldilocks and the Three Bears.

Many practical problems have search spaces so huge
that searching them exhaustively is impossible in prac-
tice. We have a lot more options to consider than
Goldilocks did, and since we don’t know if any of them
will be exactly right, we are willing to be somewhat flex-
ible about our interpretation of "just right", and stop
our testing when we find one that is "close enough".
When solutions can be ranked along a certain dimen-
sion, we may want to look for solutions at a desired
point along that scale. There may not be a solution at
that exact point, or it may be too costly to search until
we find an exact match, so we are willing to specify a
tolerance range around that point in which to search.
We will present an algorithm that is good at finding a
solution within such a range.

Most search algorithms use heuristics to guide the
search towards those regions of the search space that are
believed to contain solutions. The most common types
of heuristics are variable and value ordering heuris-
tics. When solving a particular class of problem, in

This material is based on work supported by Oracle
Corporation and by the National Science Foundation under
Grant No. IRI-9504316.

Figure 1: Small example (weights are given in italics):
v1={0=0.2,1=0.8},
v2={1=0.1,2=0.7},
v3={-1=0.8,4=0.9},
c12={(0,1)=0.1,(1,1)=0.7,(1,2)=0.9},
c13-= { (0,-1)=0.2,(0,4)=0.3,(1,-1)-=0.5

addition to relying on general purpose heuristics (like
rain-domain), class-specific heuristics can be used in or-
der to take advantage of the structure of tile class at
hand. In this paper we will describe a heuristic that
can be used for a particular class of binary constraint
satisfaction problems where each value in the domain of
a variable and each allowed pair of values in a constraint
has an associated weight(Bistarelli et al. 1996):

Example

The following example will give a short preview of the
things that are going to be discussed in the next sec-
tions. Consider a small problem consisting of three
variables and two constraints (Fig.l). Both the val-
ues in the domain of a variable, and the pairs of values
in a constraint have an associated weight, because the
goodness of a solution is usually influenced by both the
quality of the components and the way they are inter-
connected.

The weight of a solution to this problem is defined
as the sum of the weights of all the values and pairs of
values involved in the solution. We can easily see that
v1={1}, v2={1} and va={-1} is a solution to our prob-
lem, and its weight is (0.8+0.1+0.8)+(0.7+0.5)=2.9.

We can compute lower and upper bounds for the so-

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

example, tile lower and upper bounds are:
MinSW=(0.2+0.1+0.8)+(0.1+0.2)= 1.4,
MaxSW=(0.8+0.7+0.9)+(0.9+0.5)---3.8. That is,
solution weight can be smaller than MinSW or greater
than MaxSW.

Definitions
Let P = {V, C} be a constraint satisfaction problem
with a set of variables V -- {vilvi a variable involved
in P}, and a set of constraints C = {cijlclj a con-
straint between vi and vj }. For each vi E V we define
domain(vi) = {XiklXik is a value that can be assigned
to vi, with 1 < k < Idomain(vi)l}. Each value xik has
an associated weight VWik E [0, 1].

Each constraint cij defines a set of pairs of values
that are allowed by the constraint. That is, cij =
{(xim,xjn)lxim E domain(vi),xjn E domain(vj), and
(Xim,Xjn) is allowed by the constraint}. We associate
a weight pwij (xim, xjn) [0, 1] with each pair of values
(xim,xjn) E cij t. If a pair (Xlm,Xjn) q~ cij then that
pair is not allowed by the constraint. Finally, if Cpq ~ C,
then all the possible pairs of values from vp and Vq are
implicitly allowed, but their weights are undefined.

A solution to the problem P is a set of values
S = {Xlal,X2~2,...,Xlvl~lvl} s.t. Vi,j <_ IVI 3cij E
C ~ (Xial, Xja~) E Cij. A partial solution consists
of a set of values {Xa~bt,Xa2b2,..,Xa~b~} s.t. k < IVI,
and Vm, n < kSca,~a, E C ~ (Xambm,Xanbn) Camb,.
We define t-Ira weight of a solution as the sum~ (over
all the variables and constraints) of the weights of all
the values and pairs of values involved~. Formally,
sw(S) = ~v, ev v.wik)- ~c,~ecPWij(Xiai,Xja i) with
xi~, x~, xj~j e S, and (xi~,, Xjaj) E cij. Tim weight of
a partial solution is defined similarly, with the excep-
tion that only variables included in the partial solution
and the constraints among them are’taken into account.

For each variable vi we can compute the range of
possible weights by simply taking the minimum and
maximum weights among all the values in the domain
of that variable. For all k s.t. 1 ~ k ~_ Idomain(vi)l,
and x~k E domain(vi):

MinVW (vi) = min(vwik
iaxVW (vi) = max(vwik

Similarly, for each constraint cij we can compute
the range of possible weights by taking the minimum
and maximum weights among all the pairs of values
allowed by the constraint. For all a, b s.t. 1 _< a <_
Idomain(vi)hl <_ b <_ Idomain(vj)[, and (Xia,T, jb)
Cij:

1 Exactly how the weights are selected is outside of the
scope of this paper. See (von Winterfeldt ~z Edwards 1986)
for details.

2See (Bistarelli et al. 1996) for a discussion on egalitari-
anism versus utilitarianism.

3Clearly, there will be only one such value per variable,
and only one such pair of values per constraint.

Lower and upper bounds for the weight of a solution
to P are computed as:

MinSW(P)
Y~mev MinVW(vi) ~]~c,j~c MinCW(cij)

MinSW(P)

~,ev MinVW(vi) ~, ~ec MinCW(cij).
Note that there might be no solutions with these

extreme weights, all we are saying here is that
VS, MinSW(P) <_ sw(S) <_ MaxSW(P). In order
to compute the exact minimum and maximum solution
weights we would have to look at all the solutions.

The "acceptable-weight" Heuristic
One way of looking for solutions with weights in a given
range is to simply use a general purpose search algo-
rithm (like MAC (Sabin & Freuder 1994)) and every
time a solution is found check whether or not its weight
is within the acceptable range. However, unaware of
the importance of the solution weight, such an algo-
rithm will look for any solution, leaving to chance the
discovery of an acceptable one.

The acceptable-weight heuristic is an attempt to do
better than that by guiding the search towards areas
of the search space that are likely to contain solutions
with acceptable weights.

Consider a constraint satisfaction problem P and two
positive real numbers, MinASW and MaxASW, rep-
resenting the minimum and maximum acceptable solu-
tion weights, with

MinSW(P) <_ MinASW <_ MaxASW
MaxSW(P).

A solution S is acceptable if:
MinASW < sw(S) <_ MaxASW.

Given the range of acceptable solution weights
[MinASW, MaxASW], we consider the ideal solution
weight (IdealSW) as being at the center of that range4.

During the search, a constraint that involves at least
one variable that has not been instantiated (i.e. as-
signed a value) is considered active, while a constraint
that involves only instantiated variables is considered
inactive. This distinction is useful when computing the
weight of a partial solution, since only instantiated vari-
ables and inactive constraints can be considered. For
brevity, we define the weight of an instantiated variable
as the weight of the value that has been assigned to it,
and the weight of an inactive constraint as the weight
of the pair of values assigned to the variables involved
in that constraint.

The idea behind acceptable-weight is to keep track
of the weight of the current partial solution S’ and at-
tempt to obtain a solution for the rest of the problem

aActually, this can be viewed in two ways: either start
with a [MinASW, MaxASW] range and consider the mid-
point as an useful point to head for, or start with a "target"
weight and define a tolerance around it. Our algorithm will
work both ways.

66

"~ c46 @

Figure 2: The instantiation of the current variable:
vx={l=0.1 },
v2={6=0.2},
v3={4=0.4 },
v4={1=o.4, 5=o.s},
c14={(1,1)=0.1, (1,5)=0.2},
c24={(6,1)=0.8, (6.5)=0.9},
c34={(4,1)=-0.6, (4,5)--0.7}

whose weight, combined with the first one, will bring
the global solution weight as close to IdealSW as possi-
ble. Based on p, the number of currently uninstantiated
variables, and q, the number of currently active con-
straints in the problem, acceptable-weight computes
the average of the individual weights (AIW) that these
variables and constraints would contribute to the global
solution weight sw(S), should it equal IdealSW:

AIW = ISW - sw(S’).p+q
When the heuristic attempts to suggest a value for

a variable, it considers the subproblem P" = {V", C" }
with V" C V containing the current variable and the
past variables with which it is connected by constraints,
and C" C C containing all the constraints between the
current variable and past variables. The ideal weight of
a solution S" to P" would be:

IdealSW" = ~-]v, ev" VWik + AIW + IC"I ¯ AIW,

with Xik e domain(vi) and Xik e S’.

The acceptable-weight heuristic will select the value
that will minimize the absolute difference between
sw(S") and IdealSW". The following example will il-
lustrate a typical situation.

The values in the domain of each variable and the
pairs of allowed values in each constraint are given be-
tween parenthesis. The" number printed in italics rep-
resents the corresponding weight. Future variables are
depicted, but not considered - this might be the subject
of further improvements.

In this example the search is at the point of instanti-
ating v4. The POssible values are 1 (whose weight is 0.4)
and 5 (whose weight is 0.7), and the acceptable-weight
heuristic is supposed to suggest one of them. Let us
take a look at the implications of selecting each value,
assuming that AIW = 0.4 at this point in the search..

(O.l+0.2+0.4)+0.4+(oa+o.s+0.6i= 2.a.
If we choose 5, then sw(S’") = (0.1 + 0.2 + 0.4) + 0.8
(0.2 + 0.9 + 0.7) = 3.3. After computing IdealSW" =
(0.1 + 0.2 + 0.4) AIW + 3. AIW= 2. 3, we see
that selecting tim value 1 will yield a better weight for
S" (closer to IdeaISW"). After the assignment of v4,
acceptable-weight recomputes the AIW, to compen-
sate for the amount we were off.

The strategy behind the heuristic described is two-
fold. Locally, we try to make. sure that each small
subproblem centered around the current variable has
a weight that is in line with the global IdealSW. Glob-
ally, by constantly adjusting the AIW we try to control
the overall deviation of the solution weight. This strat-
egy appears to work well in practice, as we will see in
the next section.

Experimental Results
We have performed some experimental tests on prob-
lems that have been randomly generated (weights
included) using a random parameter value model.
Our tests compare the performance of MAC5 with
MACTaceeptable-weight. The algorithms were used
to find acceptable solutions to problems with 100 vari-
ables, each variable having 5 values in its domain. The
constraint density and tightness ~ were used to vary
the difficulty of the generated problems and study the
changes in the behavior of acceptable-we£ght. In the
following tests we will compare the time required by the
two algorithms to find an acceptable solution. Both al-
gorithms will look for solutions in ranges of a given size
(0.05 and 0.1 in the examples below) centered around
the solution weight on tile X axis, which has been
translated and scaled from [MinSW(P), MaxSW(P)]
to [0, 1]. We arbitrarily set a timeout limit at 5 seconds.

Before going any further, we need to briefly explain
the behavior of MAC. Without going into details, we
will just say that, probabilistically speaking, there are
many solutions with weights around 0.5 and very few
solutions with extreme weights (close to 0 or 1). MAC
doesn’t take weights into account, and thus from its
point of view the solutions are uniformly distributed
throughout the search space. However, since most so-
lutions have weights around 0.5, MAC will tend to find
those pretty quickly.

The first test we did was with density = 0 and
tightness = 0. Fig.3 shows the performance differ-
ence between the two algorithms. While MAC can
only find solutions with weights in the 0.455-0.54 range,

5To be exact, in all the tests we have used MAC-
3+min-domain.

6Constraint density is defined as the fraction of the possi-
ble constraints beyond the minimum n-l, that the problem
has. Constraint tightness is defined as the fraction of all
possible pairs of values from the domains of two variables
that are not allowed by the constraint.

67

6000

5000

4oo5

3000

2000

1000

0
0

....... ""?i r- rrTl

!

i.
I "[................... ’[................... I

0.2 0.4 0.6 0.8
Solution Weight

Figure 3: Range=0.05, Density=0, Tightness=0

7000

6OO0

5OO0

4OO0

3000

2OO0

1000

0
0

.............. rri

0.2 0.4 0.6
Solution Weight

MAC+a~cceptable-weight --
MAC

I

0.8

Figure 4: Range=0.05, Density=0, Tightness=0.25

6OOO

5O00

8 4oo0

E 3000

I= 2000

1000

l

"i

i r.--L l"i I

0.2 0.4 0.6 0.8
Solution Weight

F ": =c T "- ~ 1"

Figure 5: Range=0.1, Density=0, Tightness=0.25

7000

6OO0

5OO0

°o 4000

g 3000
QI

1000

0.2

MAC+acceptable-weight ---
MAC

7"]

0.4 0.6 0.8
Solution Weight

Figure 6: Range=0.1, Density=0.055, Tightness=0.25

MAC+acceptable-weight is capable of finding solu-
tions with weights in the 0.226-0.79 range. More-
over, in most of the cases the very first solution that
MAC+acceptable-weight finds is within the acceptable
range.

The interval in which MAC combined with the
acceptable-weight heuristic quickly finds acceptable so-
lutions narrows as the density and/or tightness increase.

The test in Fig.4 was similar to the one in Fig.3,
except that the constraint tightness has been in-
creased to 0.25. As a result, the range in which
MAC+acceptable-weight can find acceptable solutions
decreases to 0.244-0.752. The range in which MAC finds
acceptable solution.s also changes a little: 0.469-0.560.

In terms of weights, the density of the solutions is
given by a normal distribution. The reason for the per-
formance degradation is that as density and/or tight-
ness increase, the number of solutions decreases, and
the areas affected the most are those at the sides of
the normal distribution curve, which contain a very
small number of solutiqn~ to begin with. Gradually, the
range covered by MAC+acceptable-weight will shrink
to a range comparable to that covered by MAC alone

(Fig.6), because there will be virtually no solution out-
side a small range around 0.5 and MAC will be able to
find those just as fast.

The first two results presented were performed with
ranges of size 0.05. That is, any solution with a weight
that differs in absolute value by at most ’0.025 from the
weight on the X axis was considered acceptable. As we
widen the acceptable range, the interval in which both
algorithms quickly find solutions widens. In the test
pictured in Fig.5, MAC was capable of finding accept-
able solutions with weights in the 0.444-0.584 range.
MAC+acceptable-weight performed much better, cov-
ering the 0.216-0.798 range (also note that this com-
pares better with the 0.244-0.752 range in Fig.4).

Finally, in our fourth test (Fig.6), MAC alone covered
the 0.447-0.569 range, while MAC+acceptable-weight
covered the 0.415-0.568 range (the spike around 0.601
marks a small region where MAC+acceptable-weight
found acceptable solutions - with a longer time limit it
would have covered the 0.568-0.601 range as well).

For the problem tested here (100 variables, domain
size 5), the difficulty peak for tightness=0.25 is around
density=0.0651 (Fig.7). As the problem gets harder

68

8

.ge
E

UUUUU

50000

40.000

30000

20000

10000

0

-I0000
0.05

i
i

0.055 0.06 0.065 0.07 0.075
Density

Figure 7: The difficulty peak for tightness--0.25

and harder, the impact of acceptable-weight becomes
less noticeable. Intuitively, as the problem gets harder,
the number of solutions gets smaller, and if an accept-
able one exists, chances are that MAC alone will find
it pretty quickly by just looking for any solution, not
necessarily an acceptable one.

It should be noted however that we are not target-
ing hard problems with this heuristic. Configuration
problems for instance are relatively easy - there are lots
of solutions, the real challenge is to find one that is
acceptable. For problems around the difficulty peak,
a standard algorithm would have similar performance
characteristics.

Future Work

One way to improve the performance of the heuris-
tic might be by trying to detect situations where the
search gets stuck in a given range. There are situa-
tions where MAC+acceptable-weight obtains a partial
solution, but there is no way of extending it to a com-
plete solution with an acceptable weight. It is clear
that in those situations the heuristic has made a few
mistakes, and it might be interesting to see if the over-
all performance can be improved by refusing to listen
to the heuristic’s suggestions until the range of solution
weights obtained changes. Somewhat related ideas can
be found in (Harvey & Ginsberg 1995).

Another idea would be to avoid searching in subtrees
where there is no way of extending the current par-
tial solution to a complete solution with an acceptable
weight. Rough estimates of the potential contribution
of the unsolved part of the problem can be obtained by
computing its minimum and maximum solution weights
(MinSW and MaxSW).

Finally we plan to look at ways of obtaining better
weight evaluations for the small subproblems centered
around the current variable. Taking future variables
into account is on top of our list of potential improve-
ments.

Applications for this algorithm can range from sug-

initial solution by a matchmaker (Freuder & Wallace
1997) or deep-interview strategy, then the vendor sug-
gests successive upgrades. The upgrades can be com-
puted by looking for solutions with weights within a
range that is close to (but not centered in7) the weight
of the original solution.

Conclusions
Goldilocks learned a very important lesson. There are
things in life that are not of the "right size" for every-
one. It is often the case that there is a wide range of
choices to pick from, and we have to determine which
one is "too big", "too small", or "just right". Worst yet,
sometimes we have to relax our notion of "just right",
to get something that is "good enough".

The acceptable-weight heuristic presented here is de-
signed to ,guide the search towards solutions with ac-
ceptable weights, when solutions can be ranked along a
given dimension. Although.we believe there are avenues
for improvement, experiments with random problems
showed that this heuristic, combined with MAC, can
find acceptable solutions very quickly.

References

Bistarelli, S.; Fargier, H.; Montanari, U.; Rossi, F.;
Schiex, T.; and Verfaillie, G. 1996. Semiring-based
csps and valued csps: Basic properties and compari-
son. In Jampel, M.; Freuder, E., and Maher, M., eds.,
Over-Constrained Systems (LNCS 1106, Selected Pa-
pers from the Workshop on Over-Constrained Systems
at CP#5.).
Freuder, E., and Wallace, R. 1997. Suggestion strate-
gies for constraint-based matchmaker agents. AAAI
Workshop on Constraints and Agents.

Harvey, W., and Ginsberg, M. 1995. Limited dis-
crepany search. In Proceedings of the Fourteenth In-
ternational Joint Conference on Artificial Intelligence.
Sabin, D., and Freuder, E. 1994. Contradicting con-
ventional wisdom in constraint satisfation. In 11th
European Conference on Artificial Intelligence.

yon Winterfeldt, D., and Edwards, W. 1986. Deci-
sion Analysis and Behavioral Research. Cambridge:
Cambridge University Press. chapter 8, 259-313.

7As pointed out before, acceptable-weight attempts to
guide the search towards the center of the range.

69

