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Abstract

Conventional constraint satisfaction problem (CSP)
formulations are static. There is a given set of con-
straints and variables, and the structure of the con-
straint graph does not change. For a lot of search
problems, though, it is not clear in advance what a
solution’s constraint graph will look like.
To overcome these deficiencies, we introduce the con-
cept of structural constraints, which are restrictions on
admissible constraint graphs. The construction of con-
straint graphs’ is based on the concept of graph gram-
mars. This allows us to formulate and solve struc-
tural constraint satisfaction problems (SCSPs), han-
dling combinatorial search problems without explicitly
giving the solution’s structure.

Introduction
Constraint programming has become a fast-growing
and successful discipline addressing the solution of com-
binatorial search problems. However, expressiveness
can still be substantially extended.

A CSP consists of a set of variables x = {xl,..., xn},
where each variable is associated with a domain
dl ..... dn, and a set of constraints c = (cl, ..., Cm} over
these variables. The domains can be symbols as well
as numbers, continuous or discrete (e.g., "door", "13",
"6.5"). Constraints are relations between variables (e.g.
"xa is a friend of Xb", "xa < Xb X Xc") that restrict the
possible value assignments. As domains can be inter-
preted as unary constraints, they are not considered
here. Constraint satisfaction is the search for a variable
assignment that satisfies the given constraints.

A lot of problems cannot be stated this way. Often,
it is not only a question of a satisfying variable assign-
ment, but also of the graph structure itself.

Consider the problem of configuration. There may be
endless possible numbers and kinds of components and
relations. For example, the decision to use a hundred
antennas for a cell phone network instead of fifty makes
a great difference to the net’s other components and
structure (hand-over components, spatial distribution,
possible frequencies, etc).

The approach of considering maximal structures,
where substructures can be deactivated if they are su-

perfluous (e.g., by a transformation with 0-1 variables
(Nareyek & Geske 1996)), is suitable for problems with
few variations only. Bigger problems call for mecha-
nisms to adapt the underlying constraint graph itself.

The SCSP should not be confused with the dynamic
constraint satisfaction problem (see (Verfaillie & Schiex
1994) for a brief survey). Dynamic constraint satisfac-
tion tries to revise a variable assignment with given
changes to the constraint graph and does not include
structural changes as part of the search.

Composite CSPs (Sabin 8z Freuder 1996) aim at a
similar extension of the conventional constraint satisfac-
tion paradigm as SCSPs. A comp6site CSP expresses
subgraph alternatives in a hierarchical way. This al-
lows optimized search guidance, but requires manual
preprocessing to build the hierarchy. The creation of
the hierarchy it is often problematic, as completeness
and appropriate structure are not always obvious.

Generation by a Graph Grammar

We must have a mechanism for describing the search
space, such as the Cartesian product of all variables’
domains in conventional CSPs. This can be achieved
by the concept of algebraic graph grammars.

We continuously expand an empty start graph to-
ward a possible constraint graph by the application of
specific rules (productions). These productions have to
ensure completeness. The decisions about which pro-
duction rule to apply and where to apply it on the graph
are similar to conventional CSPs’ variable- and value-
ordering decisions.

Graph Grammars

This section provides a fairly informal introduction
to algebraic graph grammars (see (Ehrig, Pfender
& Schneider 1973; Habel, Heckel & Taentzer 1996;
Rozenberg 1997) for a detailed overview).

Algebraic graph grammars are a generalization of
Chomsky grammars. A graph signature GSig consists
of the sorts of vertices V, edges E, and a label alphabet
L. The operations of GSig provide source and target
vertices for every edge, s, t : E-~ V, and map a label
to every vertex and edge, Iv : V --4 L and le : E -4 L.
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A match m of graph gl to graph g2 is a partial graph
morphism that maps the vertices and edges of gl to
g2 such that the graphical structure and the labels are
preserved. We use injective matches only.

A production P is a partial morphism between a
left-hand side Pl and a right-hand side Pr, which pro-
vides information about which elements are preserved,
deleted and created in the case of an application of the
production. The identity of objects is marked by ap-
pended identifiers like :1 (e.g., in the production in
Figure 7). A production is applicable to a graph g, if
there is a match of Pl to g.

A derivation g2 from gl is the so-called push-out
graph of an application of an applicable production P.
The new graph g2 is similar to gl, but the elements of
Pr that are not in Pt are added, and elements of/~ that
are not in/Jr are deleted.

The application of a production may require ap-
plication conditions in addition. A negative applica-
tion condition (NAC) is a morphism PI -+ n that 
satisfied if there is no morphism n --} g such that
Pl -+ n --~ g = Pl -+ g- An NAC is represented by
a convex dark area (e.g., in production PLe,s in Figure
6). For multiple NACs, such as in production PMouse~
in Figure 8, the conjunction of the conditions must hold.
A positive application condition (PAC) is a morphism
/~ -+ p that is satisfied if there is a morphism p -+ g
such that Pt --4 P’-+ 9 = Pt -4 g. A PAC is repre-
sented by a convex light area (e.g., in the left-hand side
of Figure 11).

Graph Elements for SCSPs

A variable of the CSP is represented by a vertex with
tile label Variable. It is graphically depicted by a
circular vertex." Constraints could be represented by
edges, but there are constraint types that allow a vari-
able number of variables to be included. These con-
straint types will be called extensible constraints (Ce)
in contrast to nonextensible constraints (Cn), such that
c~uc.=c.

As the number of variables incorporated for extensi-
ble constraints may "vary throughout the search, there
must be a simple mechanism to include/exclude vari-
ables for constraints. Hence, a constraint is also repre-
sented by a vertex, new edges to variables being added
in order to incorporate them. A constraint vertex’s la-
bel corresponds to the type of the constraint. A con-
straint is graphically depicted by a rectangular vertex.

An SCSP allows the existence of so-called object con-
straints. These constraints do not restrict the variables’
values, but provide structural context information. For
example, it must be known which two variables together
form a two-dimensional coordinate object. Otherwise, a
LiNE constraint to check if the included coordinates are
all on one line might consider any pairs of variables for
the check. Object constraints act as a kind of structural
broker between variables and conventional constraints.
They are represented by a rectangular vertex with a
dashed outline. Object constraints can be nonextensi-

ble as well as extensible, Oe t.J On = O, C fq 0 = 0.
Constraints of C can be connected to variables and ob-
ject constraints, whereas object constraints can be con-
nected to constraints of C as well.

Edges are used to connect vertex elements. The
role/position of a variable (or constraint when speaking
about objects) within a constraint is often very impor-
tant. Thus, an edge’s label and direction can be used
to express its role/p0sition1. An edge’s direction is in-
dicated by an arrow and the label is displayed in the
edge’s middle (NoLabel if omitted).

Figure 1 shows an example graph with two nonex-
tensible TRANSMISSION STREAM object constraints, an
extensible SUM constraint that restricts the sum of (o--~
[])-connected variables to equal a ([2-+ o)-connected

variable, and a nonextensible LESS constraint that re-
stricts the (o-~ O)-connected variable to be less than
the ([::] ~ o)-connected variable. The extensible NON-
OVERLAP constraint is redundant, as the other con-
straints already forbid the streams’ overlap.

Offset Bandwidth Offset Bandwidth

Figure 1: An Example Graph

Variables are always terminal symbols because the
graph is merely expanded. This is also true for nonex-
tensible constraints. However, extensible constraints
may still be extended, and the final meaning of an
extensible constraint is unclear until its expansion has
ended. For the time being extensible, extensible con-
straints are represented by double-framed rectangular
vertices that are nonterminal symbols. Edges cannot
be extended and are always terminal.

Note that the distinction between nonterminal and
terminal symbols is included as label information and is
not realized by different vertex types. This allows gen-
eralized matches and the preservation of structural re-
lations for productions that exchange nonterminal with
terminal vertices.

A general vertex (terminal or nonterminal; variable,
conventional constraint, or object constraint) is graph-
ically depicted by a flat ellipse (see the right-hand side
of Figure 11).

Structural Constraints
Structural constraints could be freely defined automata
to test graphs for specific properties. However, to en-
hance computability, we use a stricter convention here.

1An edge’s label could just as well be expressed by a
special object constraint in between.
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A conventional CSP’s constraint correlates domain
values. In contrast, a structural constraint correlates
subgraphs. A conventional constraint’s application
point is defined by the problem formulation, whereas a
structural constraint’s application point is not clear in
advance. Thus, a structural constraint needs a matcil-
ing part that is equal to ttle left-hand side of a produc-
tion rule (docking part Sd).

A conventional constraint is true as long as there is at
least one tuple of possible variable assignments. There
may be a few possible structures to be accepted by
a structural constraint as well. Thus, structural con-
straints do not have only one right-hand side, like a
production, but a set of alternatives (testing part St).
These alternatives have a testing nature and are not
used for pushouts like the production’s right-hand side.
Because of this, there may be application conditions not
only for the docking part, but also for the testing part’s
alternatives.

Structural constraints are expressed by terminal sym-
bols, but apply to any substitution with the correspond-
ing nonterminal symbols as well. Figure 2 shows an
example of the restriction that the frequencies of two
base stations’ antennas are different or that the sta-
tions’ spatial coverages do not overlap.

Testing Part. Alternative I

Base Station

Figure 2: An Example of a Structural Constraint

A graph g is structurally consistent, if there exists a
morphism a -+ g, a E St for every structural constraint
S and every possible match Sd -+ g such that Sd
a--~g=Sd--+g.

(Heckel & Wagner 1995) introduce so-called con-
sistency conditions that are equal to structural con-
straints, with a testing part consisting of one alternative
only. Ttlese can be directly transformed into semanti-
cally equivalent application conditions of productions.

Structural Constraint Satisfaction
Problems

A structural constraint satisfaction problem SCSP =
(CT), 8) consists of a tuple of sets of constraint descrip-
tions C79 = (Cn, Ce, On, Oe) and a set of structural con-
straints S. The constraint descriptions of Cn and On
are pairs (¢,Pbase) with a nonextensible conventional
(or object) constraint c and its embedding graph Phase.
The constraint descriptions of Ce and Oe are quadru-
ple (c, Phase, E, Pma=) with an extensible conventional
(or object) constraint c, its minimal embedding graph
Pbase, a set of extension graphs E, and the constraint’s
maximal embedding graph Pm~.

An embedding graph shows the constraint with all
its directly connected neighbor vertices. If an extensi-
ble constraint has no maximal embedding, Pma= is the
empty graph. An extension graph shows the constraint
connected to the vertices that can be added in one step.
Figure 3 shows some components of an example SCSP.

i Less (nonextensible conventional constraint)

P ba.~ Less ~, ~ ,~

P basc Sum

Sum (extensible conventional constraint)

P extcnskm Sum =

Mouse (extensible object constraint)

P base Mouse =

P max Mouse

Figure 3: Some Components of an Example SCSP
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There are some requirements that are induced by the
construction of the search space in the following section:

¯ Nonextensible constraints are not allowed to appear
in graphs of other constraints.

¯ Constraint-usage cycles are not allowed for the base
embedding graphs of extensible constraints, e.g., that
PbaseA includes a B constraint and Pbase~ includes the
A constraint.

¯ If the Pmax graph of an extensible constraint is
nonempty, no sequence of extensions that is applied
to the constraint’s Pb,se graph can produce a graph
that includes the Pma~ graph without first producing
the Pmax graph.

Generating the Search Tree

This section describes how generic productions can be
created using an SCSP formulation. These productions
span the structural search tree. Figure 4 shows an ex-
ample of a search tree.

Figure 4: An Example of a Search Tree

We can, on the one hand, span a large general
search tree and exclude invalid graphs by structural
constraints; and on the other, we can create the pro-
ductions in such a way that less invalid graphs are
produced, thereby implicitly satisfying some structural
constraints. This section provides automatically de-
ducible produc.tions that implicitly satisfy the struc-
tural constraints induced by the SCSP’s embedding and
extension graphs. Then, only the structural constraints
of ,9 must be taken into account during the search pro-
cess.

Apart from improvements that are automatically de-
ducible, numerous domain-specific improvements are
possible for a spec!fic SCSP. But according to conven-
tional constraint satisfaction, we wish to have a declara-
tive framework that does not rely on manually tailored
improvements.

The following construction rules require that all ter-
minal vertices be replaced by their nonterminal counter-

parts when speaking of embedding or extension graphs
of extensible constraints.

¯ One production ensures that it is always possible to
add further variables. The production is shown in
Figure 5.

Figure 5: Addition of Variables

¯ There must be one addition production per nonexten-
sible constraint, which is constructed in the following
way:

Construction Pnonextensible: The right-hand
side of the addition production is equal to the
constraint’s embedding graph Pbase.’ The left-
hand side of the production contains the vertices
of the right-hand side without the constraint it-
self, and an NAC that contains the right-hand
side without tile vertices that are connected to
the constraint.

Production PLess in Figure 6 shows the production
for the LEss constraint.

Figure 6: Addition of a Nonextensible LEss Constraint

¯ Extensible constraints cannot be added in one step
like the nonextensible constraints. Only the exten-
sible constraint’s Phase graph can be added at once,
as this is the minimal structure. Thus, the addition
production for an extensible constraint is similar to
the one for nonextensible constraints:

Construction Pextensible: The right-hand side
of the addition production is equal to the con-
straint’s embedding graph Pbase. The left-hand
side of the production contains the vertices of
the right-hand side without the constraint itself.

Production Psumb in Figure 7 shows an example of
the SUM constraint.

I~ Ps,,m

Figure 7: Addition of an Extensible SUM Constraint

¯ For the extensions of extensible constraints, there
must be one production for every possible extension
of an extensible constraint:
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Construction Pextensiblee : The right-hand side
of the production is an extension graph of E.
The left-hand side is created by the vertices of
the right-hand side, an NAC for eacil edge of
the right-hand side, and, if Pmax is not empty,
a NAC consisting of the constraint’s maximal
embedding graph Pmax such that the constraint
is unified with the constraint of the right-hand
side (NAC without the constraint itself). The
same step to prevent a given maximum being
exceeded must be taken for all other constraint
vertices of the extension graph.

Production PMo~,seo in Figure 8 shows an example of
an extension of the Mouse object constraint.

PMouse

Figure 8: Extension of an Extensible Mouse Con-
straint

¯ Every extensible constraint vertex must be turned
into a terminal symbol at some time. There must
be one production per extensible constraint, which is
constructed in the following way:

Construction Pextensible, : The left-hand side
consists of the nonterminal constraint vertex.
The right-hand side shows the left-hand side’s
vertex as a terminal symbol.

Production PZumt in Figure 9 shows an example of
the finalization of the SUM constraint.

Figure 9: Finalization of an Extensible SUM Constraint

We can now span the search space with all graphs
that can be produced by a sequence of production ap-
plications and that consist of terminal symbols only.
The start graph is the empty graph.

Application of Structural Constraints
If the graph is changed by a production, the graph’s
consistency must be verified again. It would be very
costly to test each time for all matches of possible struc-
tural constraints. Instead of this, instances of struc-
tural constraint types are memorized. These instances
stay matched to a certain part of the constraint graph.
Then, a re-verification of the graph must only be done
with respect to the changes. A constraint instance is
called

¯ satisfied if at least one of the test alternatives
matches the graph and has no negative application
condition

¯ s-pending if at least one of the test alternatives
matches the graph and has negative application con-
ditions that are satisfied

¯ u-pending if no test alternative matches the graph,
but at least one of the test alternatives has no neg-
ative application condition that cannot be satisfied
anymore

¯ unsatisfied if each alternative of the testing part has
a negative application condition that cannot be sat-
isfied anymore

See also Figure 10.

After further
At present productions

i.:i ,: ,i.ii:i i:i:::. ¯

Va,d
structure :i::: :.:::~’~:! S~pendlng i~i :i~: ::

Invalid : :::!i: :., :::!i : i::: :.: : ....
structure: :: ::,:::::::~sat~sf~ :::~::~:: ::; :

Figure 10: Properties of Structural Constraints

During search, the graph structure is continuously
expanded. Whenever new elements are added by a
production, there must be new structural constraint
instances for all possible constraint matches that in-
clude the new elements. Since there might be negative
application conditions in the docking parts of existing
structural constraints, those with an unsatisfied nega-
tive application condition due to the new elements must
be excluded.

After this addition and deletion of structural con-
straints, the remaining testing parts of relevant s- and
u-pending structural constraints have to be checked.
Alternatives with an unsatisfied negative application
condition are excluded. If a structural constraint be-
comes unsatisfied and it has no NAC in its docking
part, the search has reached a dead end. A solution is
found if all constraints are s-pending or satisfied and
there are terminal symbols only.

It is useful to integrate the conventional constraint
satisfaction directly into the structural constraint sat-
isfaction. As soon as a constraint of C is set as a
terminal symbol and all connected object constraints
(also via other object constraints in between) are set 
terminal symbols as well, the constraint can be estab-
lished for tim conventional constraint satisfaction. The
role/position of the constraint’s variables is determined
by the object constraints in between and the edges’ la-
bels and directions. The variables that do not already
exist are created as well.
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By the integration of conventional constraint satisfac-
tion, consistency mechanisms like AC-4 (Mohr & Hen-
derson 1986) can support the exclusion of inconsistent
search paths as early as possible. The labeling of vari-
ables can start as soon as a solution to the structural
problem is found. If the structural solution turns out
to be inconsistent, the structural search has reached a
dead end.

The branching factor of the search is very high, and
pure backtracking does not work because of potentially
infinite production sequences (breadth-first search is
the only valid alternative for a complete search). In
addition, structural constraints will rarely become un-
satisfied, because it may often be possible to satisfy
them by the inclusion of further elements. Conse-
quently, search branches will be cut less often. Thus,
we need powerful techniques and heuristics to support
and guide the search. One of these techniques is the
reduction of symmetry, such that similar structures are
matched/transformed just once and not their equiv-
alents again. On the other hand, there are numer-
ous options for constructing heuristics, e.g., choosing
productions such that u-pending constraints become s-
pending.

Avoiding Redundancy
The addition of nonextensible constraints prevents re-
dundant constraints by means of a corresponding NAC
in Puone~tenslbte-productions. This avoidance of redun-
dancy is not ensured for extensible constraints. Spe-
cific S-Constraints can overcome this problem. There
must be an S-Constraint Sext~sibte for each extensible
constraint type, docking at each pair of potentially re-
dundant constraints, and having all possible distinctive
features as test alternatives.

Potentially redundant constraints are two constraints
of the same type that are connected to the same ele-
ments according to the base graph Phase:

Construction Sextensible -- docking part: The
docking part of the structural constraint is cre-
ated by two Phase graphs, where the correspond-
ing vertices (without the constraints themselves)
are unified. To avoid multiple redundant structural
constraint instances per potentially redundant con-
straint pair, all but the constraints themselves are
a PAC.

Possible distinctive features are vertices that are con-
nected to one constraint but not (in the same way) 
the other:

Construction Sextensible -- testing part: There
are two alternatives per unique edge (label; direc-
tion with respect to the constraint -- toward it or
away from it) that is included in the constraint’s
extension graphs. Each of the two alternatives con-
sists of a graph with the two constraints of the
docking part and an additional general vertex. Be-
tween each constraint and the general vertex is an
edge corresponding to the unique edge. In the one

alternative, the edge to the first constraint is an
NAC; in the other alternative, the edge to the sec-
ond constraint is an NAC.

Figure 11 shows an example of a SUBSET constraint
that forces the set of (o-+[:])-connected variables to 
a subset of the set of (D~o)-connected variables. The
Phase graph of a SUBSET constraint includes two vari-
ables (o-+[::]-¢o), and there are two possible extensions
corresponding to the two possible variable connections.

Figure 11: Avoidanc6 of Redundant SUBSET Con-
straints

Conclusion
Combining conventional constraint satisfaction with
structural requirements enables us to formulate and
solve combinatorial search problems without explicitly
giving the solution’s structure. The SCSP approach fol-
lows the declarative constraint programming paradigm
by stating only requirements for the solution without
including information on solution generation.

The concept of structural constraint satisfaction con-
trasts with previous approaches that try to overcome
the problem by considering maximal structures with
deactivatable elements. The use of maximal structures
is useful in the case of only slightly variable structures
and a known maximum. A formulation by an SCSP
does not have these restrictions.

The work done here based on the concept of alge-
braic graph grammars. The SCSP’s description is used
to generically produce productions and structural con-
straints, which are used to generate valid constraint
graphs.

Further research topics include the introduction of
more expressive structural constraints (such as the pre-
vention of nonconnected graphs) and the combination
of structural and conventional constraints. Another is-
sue is the application of local search methods, which can
usually conduct the search much faster and also provide
approximate solutions before reaching a real solution.
For conventional CSPs, one can argue in favor of refine-
ment search as it can provide completeness and the ver-
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ification of inconsistent problem descriptions. SCSPs,
however, are undecidable, and we can neither achieve
completeness nor verify inconsistency in finite time.
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