From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Detecting and Resolving Inconsistency and Redundancy in Conditional
Constraint Satisfaction Problems

Mihaela Sabin and Eugene C. Freuder
Department of Computer Science
University of New Hampshire
Durham, NH 03824

mcs,ecf@cs,unh.edu

Abstract

Model debugging is an important component of assist-
ing modelers with constraint-based problem formula-
tion. This paper is built around a case study in mod-
eling a special class of CSPs, which represent problems
that change when certain conditions are met (Mittal
& Falkenhainer 1990). The control of changing the
problem, by activating or deactivating variables, is part
of the problem representation and is modeled through
special constraints, called activity constraints. The
activity constraints may interact with the other con-
straints and generate inconsistencies or redundancies.
We present initial examples of these two types of iter-
actions, and we derive more general forms of inconsis-
tency and redundancy. We believe this work can lead
to methods for automatic model debugging, which de-
tect and resolve problems with existing models.

Introduction

Constraint Satisfaction Problems (CSPs) are simple,
natural, and expressive representations of very diverse
problems that may arise in many domains and can be
solved effectively. However, it is indispensable first to
cast these problems into CSPs in order to utilize high-
performance CSP engines. Although CSP modeling is
the necessary step preceding CSP solving, little work
has been done on assisting modelers with constraint-
based problem formulation, in particular CSP model
debugging (Freuder & Huard 1993), (Keirouz, Kramer,
& Pabon 1995), (Sqalli & Freuder 1998). This paper is
built around a case study in modeling a special class of
.CSPs, known as Dynamic Constraint Satisfaction Prob-
lems (DCSPs) (Mittal & Falkenhainer 1990). The DC-
SPs are used to represent problems that change when
certain conditions are met. The change consists in ex-
plicitly adding or removing variables, with the implicit
effect of adding or removing constrains involving those
variables. The case study contains initial examples of
two themes: inconsistency and redundancy. From this
case study we identify general forms of inconsistency
and redundancy. We believe this work can lead to meth-
ods for automatic model “debugging”, which detect and
resolve problems with existing models. Ultimately, we
are interested in reformulating consistent and concise
models that support more efficient solution.

90

The paper is organized as follows. First, we introduce
the concept of DCSP as defined by Mittal and Falken-
hainer, and we present their DCSP formulation for a
car configuration example. Although small and sim-
ple, the car configuration model has “bugs”: conflicting
constrains and superfluous constraints. In the next two
sections we describe these two categories of problems
with the DCSP models, inconsistency and redundancy,
and we propose methods for automatic detection and
resolution. In the last section, we conclude with a brief
summary, and outline some directions for future work.

Background

Dynamic Constraint Satisfaction Problems

DCSPs represent problems that change dynamically
during search as new variables are added to or removed
from the search space. Mittal and Falkenhainer in-
troduced the concept of active variables for the newly
added variables, to differentiate them from the variables
which are not yet part of the problem. The control of
changing the problem, by activating variables, is part
of the problem representation and is modeled through
special constraints. These constraints are called activ-
ity constraints and specify conditions under which the
problem changes. The conditions add or remove vari-
ables if either some variables are already active, or spe-
cific value assignments hold.

Modeling problem change into the problem distin-
guishes dynamic CSPs as formalized by Mittal and
Falkenhainer from another class of dynamic CSPs, as
first introduced in (Dechter & Dechter 1988). In the
latter category of DCSPs, change occurs independently
of the initial problem statement. The main focus in
those DCSPs for which change conditions are not part
of the original problem is on avoiding replication of work
for solving the changed problem when the solution to
the initial problem is known. The more integrated ap-
proach of Mittal and Falkenhainer provides additional
support for reasoning about problem change. We pro-
pose to rename the DCSPs class defined in (Mittal &
Falkenhainer 1990) to Conditional Constraint Satisfac-
tion Problems (CSPs). This way we highlight the na-
ture of the mechanism that changes the problem, i.e.,



Initially active variables

Engine
CmatD

medium

large

" require-var ———pm
require-not

always-require-var.

T

always-require-not

compatibility con
P mt;uywmw

Activity Constraints

Ar.
A2,
As.
Ag.
As.
As.
Az,
Ag.
Ag.
Ajo.
A

Ais.

Package=1luxury — Sunroof
Package=1luxury — AirConditioner
Package=deluxe — Sunroof
Sunroof=sr2 — Opener
Sunroof=sr1 — AirConditioner
Sunroof — Glass

Engine — Battery

Opener — Sunroof

Glass — Sunroof

Sunroof=sr1 - Opener

Frame=convertible - Sunroof

Battery=small & . ..

Engine=small -» AirConditioner
Compatibility Constraints

Ci3. Package=standard = AirConditioner # ac2

Ch4. Package=1luxury = AirConditioner # acl

C15. Package=standard => Frame # convertible

Cis. (Opener=auto, AirConditioner=ac1) => Battery=medium

C17. (Opener=auto, AirConditioner=ac2) => Battery=large
C1s. (Sunroof=sri, AirConditioner=ac2) = Glass # tinted

Figure 1: DCSP formulation for the car configuration
example

those conditions that trigger change through the activ-
ity constraints.

Example

Our case study is based on an example from (Mit-
tal & Falkenhainer 1990) that illustrates a very sim-
ple car configuration task. It consists-of eight variables
(Package, Frame, Engine, Sunroof, AirConditioner, Bat-
tery, Glass, and Opener), 12 activity constraints (A4; to

%1

Aj3), and six compatibility constraints (Cis to Cis).
Figure 1 shows the constraint network where both the
activity control and variable compatibility are repre-
sented as edges (or hyperedges in case of constraints of
arity greater than 2), and variables with their values
domains are represented as nodes.

For example, variable Package has
{luxury, deluxe, standard} as values, and ac-
tivates variable Sunroof if instantiated: to the value
deluxe (according to As), and both Sunroof and
AirConditioner variables if instantiated to the value
luxury (according to A; and As). A require-not-
variable constraint is A;;, which shows that Sunroof
can not be part of a solution in which Frame takes
the value convertible. Another type of activity
constraint, always-require-variable, is exemplified by
A7, which makes Battery active whenever Engine is
active, independent of the value assigned to Engine.
A last example is the binary compatibility constraint
Ci3. It is defined on Package and Frame, and allows
standard at Package while disallowing convertible
at Frame.

The notational conventions in the statement of the
activity constraints (as written to the left of the con-
straint network in Figure 1) are: single arrow —
used for require-variable (RV) constraints and always-
require-variable (ARV) constraints. A crossed single ar-
row - indicates a require-not (RN) or always-require-
not (ARN) constraint. The compatibility constraints
in Mittal and Falkenhainer’s example are formulated as
logical implications, and we use the double arrow =
for them. The constraint network in Figure 1 has at-
tached the description of the graphical conventions for
drawing the different types of edges or hyperedges that
represent the problem constraints. The dotted box at
the top of the constraint network marks the variables
Package, Frame, and Engine as the only initially active
variables.

Inconsistency
The Problem

Inconsistency may occur when both activation and de-
activation of the same variable are part of the CCSP
specification. The condition of the activity constraint
that dictates the activation of some variable cannot hold
true at the same time with the condition of another ac-
tivity constraint that deactivates the same variable.

Detection
Consider the following two conflicting activity con-

straints:

Ai(X): X=a—1Z

AY): Y=b=»Z
The detection of this type of inconsistency is linear in
the number of activity constraints. As each activity
constraint is inspected, the activated/deactivated vari-
able is marked with the type of activity imposed on it.
If conflicting activation decisions are recorded at some



variable, the detection procedure returns the activity
constraints causing the inconsistency.

Resolution

One way to resolve the inconsistency problem is to in-
fer a redundant compatibility constraint that explicitly
rules out the value assignments of the two conditions,
i.e.,, Cx,y = (ab). If such a constraint is not present,
then the search procedure should detect the inconsis-
tency, otherwise the inconsistency problem persists and
accounts for an incorrect CCSP solution.

We illustrate the proposed resolution method using
the car configuration example in Section . In our ex-
ample, the activity constraints

A, (Package) : Package = luxury — Sunroof
Ay;(Frame) : Frame = convertible -» Sunroof

introduce an inconsistency between Package and Frame,
i.e., the (Luxury convertible) value assignment. In
addition, the activity constraints:

Aj(Package) : Package = deluxe — Sunroof
Ay (Frame) : Frame = convertible - Sunroof

introduce another inconsistency between the same vari-
ables, i.e., the (deluxe convertible) value assign-
ment. The following redundant compatibility con-
straint enforces the detection of the conflicting activity
constraints at search time. It expresses the disallowed
value pairs for variables Package and Frame:

C%%(Package, Frame) =
{(Luxury convertible) (deluxe convertible)}

The car example already contains a compatibility con-
straint between Package and Frame:

Ci5(Package, Frame) :
Package = standard => Frame # convertible

This constraint excludes - the
(standard convertible) for
and, therefore, is equivalent with:

value assignment
{Frame Package},

C%*(Package, Frame) = {(standard convertible)}

Extending this constraint with the tuples of the redun-
dant constraint that eliminates the activity control con-
flict, we obtain:

C{is(Package, Frame) = {(standard convertible)
(Luxury convertible)

(deluxe convertible)}

= Dompaciage % {convertible}

We see that value convertible for Frame is inconsistent
with all possible values in the domain of the variable
Package.

Two fixes to this problem are: (1) either value
convertible is eliminated from Frame, or (2) variable
Package is deactivated when Frame is convertible. In
the first case convertible can not participate in any
solution to the problem. The question then is whether

92

the modeler intends to throw away this value. In a con-
figuration task there is no use in listing a configuration
feature that is forbidden to the user. In the second case
a convertible Frame is incompatible with any Package
option. This contradicts the status of always active of
the variable Package. Thus, neither of the immediate
corrections to the inconsistency problem is acceptable.
Resolving the inconsistency by explicitly maintain-
ing tuples that disallow both activating and deactivat-
ing the same variable is straightforward. However, in
some cases constraining the CSP further may lead to
throwing away features or combinations. of features in
which the user might be interested. Apart from indi-
cating that convertible feature can not be used in any
configuration, or that there is no Package for this fea-
ture, how one can change the model to accommodate
the user’s requirement for convertible, in the presence
of some Package option? One solution would be to add
a special “luxury” feature, such as convertibleLX, as a
new value for Package that goes with convertible for
Frame. The challenge here is not to detect and resolve,
but to correct the inconsistency problems in such a way
that the model does not restrict the user selections.

Redundancy
The Problem

Redundant constraints are not always saving search ef-
fort. For example, if a constraint allows all the possible
value assignments of the variables on which it is defined,
none of the constraint tuples has to be checked. The
absence of such constraint, in fact, eliminates unneces-
sary checking and saves storage space. Moreover, model
maintenance and solution explanation should become
easier. This particular type of redundant constraints is
of no interest for the standard CSPs. It makes, however,
an interesting theme in the CCSP framework.

CCSPs change during search by varying the set of
active variables. Consequently, not all variables in the
CCSP statement are part of the solution space. Also, at
any moment during search only the compatibility con-
straints which are defined on currently active variables
are checked. If some of the variables involved in a com-
patibility constraint are not active then the constraint
is trivially true. The issue here is whether the CCSP
has compatibility constraints which always hold, that
is, they involve variables which can not be active along
the same search path.

An example of a redundant constraint in the car ex-
ample in Figure 1 is the C3 compatibility constraint:

C13(Package, AirConditioner) :
Package = standard = AirConditioner # ac2

This constraint restricts the value assignments of the
variables Package and AirConditioner, and can be rewrit-
ten as:

C?%*(Package, AirConditioner) = {(standard, ac2)}

However, if Package = standard then AirConditioner
cannot be activated. Only for the other two values



luxury and deluxe at Package, variable AirConditioner
can be either directly (Az)or indirectly (As, As) acti-
vated. That is, either

Ay (Package) : Packége = luxury — AirConditioner
Asz(Package) : Package = deluxe — Sunroof
Ags(Sunroof) : Sunroof = sr1 — AirConditioner

Thus, (Cdisallowed(pyckage, AirConditioner) is trivially
satisfied since AirConditioner cannot be activated. Elim-
inating the only disallowed pair for this constraint, ren-
ders Cy3 unnecessary.

Resolution

A compatibility constraint turns superfluous if it in-
volves variables which cannot be active at the same
time regardless of their instantiations. Also, a compati-
bility constraint tuple becomes unnecessary if its values
do not belong to any of the search instantiation paths.
If all the tuples in a compatibility constraint are su-
perfluous then the constraint itself is unnecessary. Ci3
falls in the latter category. Instantiating Package with
standard, only Frame, Engine, and Battery become part
of the search space. All the other variables are not ac-
tive for any of the instantiation paths branching out
from Package bound to standard.

Once detected, the unnecessary tuples of the com-
patibility constraints can be simply eliminated. Entire
compatibility constraints can be thrown away in this
manner. The resolution procedure is straightforward
and is called each time the detection procedure finds
redundant tuples. Therefore, our focus is on how this
type of “noisy” redundancy can be detected.

Detection

A direct way to detect the superfluous tuples of the
compatibility constraints is through search. For con-
figuration tasks that use the CCSP framework, search
is performed as many times as customers request spe-
cific configuration variants. Therefore, it is worthwhile
“learning” from finding all solutions to configuring a
product in order to reformulate the CCSP model and
save search effort for subsequent configuration requests.

The detection procedure based on searching for all so-
lutions marks all tuples of the compatibility constraints
which participate in satisfying or violating those con-
straints. A tuple is left unmarked if its checking does
not amount for either the true or false return value of
the constraint to which the tuple belongs. This means
that none of the search paths contains the tuple value
assignment, and thus some of the tuple variables, if
not all, are inactive for all tuple instantiations during
search. The tuples whose variables can not be simulta-
neously active can be eliminated.

Conclusion

In this paper we addressed model “debugging” of a spe-
cial class of CSPs, formalized by Mittal and Falken-
hainer and known as Dynamic CSPs. These DCSPs

93

change dynamically as search progresses based on the
activity control defined for the problem variables. The
problem change is encoded in the DCSP statement
through specialized constraints, which describe condi-
tions that can trigger variable activation or deactiva-
tion. Since other DCSP frameworks do not incorpo-
rate problem change into the CSP model, we decided
to make this distinction clear, and renamed Mittal and
Falkenhainer’s DCSP to Conditional CSP.

We proposed to detect and resolve two types of prob-
lems with CCSP modeling: inconsistency and redun-
dancy. Inconsistency problems occur when a variable
is both activated and deactivated along a search path.
Detection in this case records the conflicting activity
constraints. The resolution procedure infers compati-
bility constraints that rule out value assignments that
lead to inconsistent variable activity. Note that the
inferred compatibility constraints save search effort by
signaling the inconsistencies prior to checking all the
activity constraints.

. The inferred constraints that solve activation incon-
sistency add “positive” redundancy to the CCSP for-
mulation. There are, however, other redundant con-
straints, unnecessary or superfluous, that do not affect
positively the search effort. These constraints create a
“noisy” redundancy, with which we associated the sec-
ond source of problems with CCSP maddeling. Unnec-
essary compaitibility constraints involve variables which
cannot be all active for any of their variable instantia-
tions. Other compatibility constraints can be partially
superfluous. This is the situation where some of the
constraint tuples define value assignments for which the
involved variables cannot be simultaneously active. The
resolution procedure simply eliminates the unnecessary
tuples and constraints. The detection mechanism we
outlined in this paper is an add-on to searching for all
solutions. We are interested to find out if model parsing
is enough for the redundancy detection task.

There are several interesting directions emerging
from this work that need further investigation. In par-
ticular, the interaction between the activity and com-
patibility constraints should be examined more care-
fully. Are there other types of inconsistency and noisy
redundancy apart from the ones discussed in this pa-
per? Some answers are based on the special set of al-
ways active variables. For example, deactivating such a
variable, either directly or indirectly leads to an incon-
sistency, while activating it adds noise to the activity
control. Unnecessary redundancy occurs also if deac-
tivating a variable is doubled by constraining incom-
patibility with that variable through compatibility con-
straints. Finally, understanding the “tension” between
the activity and compatibility constraints is of particu-
lar interest when proposing static CSP-based reformu-
lations for the CCSPs. These reformulations benefit
indeed from the extensive work on static CSP search
and inference. Yet they may hide useful information in
the original CCSP.



Acknowledgments
This material is based on work supported by Trilogy
and the National Science Foundation under Grant No.
IRI-9504316, and it was presented at the CP’98 Work-
shop on Constraint Problem Reformulation, October
1998, Pisa, Italy.

References
Dechter, R., and Dechter, A. 1988. Belief mainte-
nance in dynamic constraint networks. In Proceedings
of AAAI-88, 37-42.
Freuder, E., and Huard, S. 1993. A debugging as-
sistant for incompletely specified constraint network
knowledge bases. International Journal of Fxpert Sys-
tems: Research and Applications 419-446.
Keirouz, W.; Kramer, G.; and Pabon, J. 1995. Prin-
ciples and Practice of Constraint Programming. Cam-
bridge, MA: The MIT Press. chapter Exploiting Con-
straint Dependency Information for Debugging and
Explanation, 183-196.
Mittal, S., and Falkenhainer, B. 1990. Dynamic con-
straint satisfaction problems. In Proceedings of the 8th
AAAI), 25-32.

Sqalli, M., and Freuder, E. 1998. Integration of csp
and cbr to compensate for incompleteness and incor-
rectness of models. In AAAI-98 Spring Symposium on
Multimodal Reasoning.

94





