
Requirements for Configurer Tests:
A Position Statement

David C. Brown
Artificial Intelligence in Design Research Group

Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA 01609, USA
E-mail: dcb@cs.wpi.edu Web: http://www.wpi.edu/~dcb/

Abstract

The purpose of the paper is to discuss the requirements
for a general set of tests that would both test any Config-
urer, and allow different Configurers to be compared.

Introduction

It would be nice if there was a good, general way to com-
pare different configurers according to different criteria.

The obvious approach is to produce a test suite, in some
chosen domain or domains, in some ’neutral’ representation
language. Each configurer could then be tested by convert-
ing the test suite into the input format required by each sys-
tem. The performance of different systems could then be
compared.

For this paper, the main issues that are raised by this idea
are:

¯ What should the test suite "test"?
¯ What is it that one might want to compare?

Hence the general question, what are the requirements for
configurer tests ?

Not all configurers view configuring in the same way. Some
assume the availability of a template of key components, or
a high-level functional description. Some consider the con-
figuring to be a Constraint Satisfaction Problem. A test
suite would have to adequately test and compare systems
however they view confguring.

As not all configurers use the same AI techniques to imple-
ment their problem-solving (e.g., using a search vs. arc con-
sistency given a CSP view) then this too needs to be taken
into account by a test suite.

As not all configurers are implemented equally well, we
would like to isolate the effects of the implementation if
possible. So, while we’d like to know that the code was fast,
we’d also like to know when that speed was being produced
by a better algorithm.

The Approach

We are proposing that the requirements for a configurer test
should separate out the different issues that might be tested.
The qualities of a configurer that should be tested can be
divided into a hierarchy of views.

From most general, to most specific, the views are:

¯ The Software view;
¯ The Algorithm view;

¯ The Search view;
¯ The Configuration Problem-Solving Method (PSM)

view;
¯ AI Techniques and Implementation Methods

subview.
¯ The Domain view;
¯ The Particular Problem view.

The qualities introduced at higher levels can be inherited
and specialized at lower levels. For example, the "absolute
speed" quality is an issue however we view the configura-
tion process. However, at lower levels we can ask much
more specific speed questions, about portions of the pro-
cess, such as the time it takes to retrieve a component
description from a database.

By using different views, the intent is to try to produce tests
that work to reveal the functionality of the system, and not
just surface aspects that are tied more to implementation.

In general, we require a test of configurers, to provide,
reveal or be responsive to all the issues from all views.

Software

As configurcrs arc software, then their quality can be mea-
sured and compared by using measures that have been
developed for software in general. CMU’s Software Engi-
neering Institute’s "Quality Measures Taxonomy" (CMU
1997) provide an excellent set of measures for evaluating
software. The measures include:

107

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



¯ Needs Satisfaction: including correctness, and effec-
tiveness.

"oPerformance: including reliability, capacity, and
throughput.

¯ Maintenance: including maintainability and complex-
ity.

¯ Adaptivity: (i.e., adaptability) including portability
and re-usability.

¯ Organizational: including cost of operation and pro-
ductivity.

¯ Dependabili~.: including robustness and security.
¯ Cost of Ownership: including training and mainte-

nance.
¯ Trustworthiness: including vulnerability and account-

ability.

Algorithm

When viewing a configurer as an algorithm, we are con-
cerned with:

¯ Whether it always halts, or whether looping condi-
tions can be induced;

¯ Its Absolute Speed;
¯ The Total Memory used;
¯ Its Sensitivity to small changes in inputs;
¯ Its Performance relative to how much input is pro-

vided, e.g.:

¯ Speed and memory;
¯ Quality of solution;

¯ Ablation or Lesion studies (Kibler & Langley 1990):
how the algorithm responds to reduced amounts of
knowledge, or partial data;

¯ Whether all the answers are needed or just one;
¯ Whether the best answer is provided or just a satisfac-

tory answer.

Search
If we view a configurer as searching over a space of partial
or complete configurations, then we can add those issues
that relate specifically to searching to the requirements for
testing. For example, the search performance of a config-
urer may depend on:

¯ The size of the search space;
¯ The number of operators;
¯ The number of goals states (i.e., how does the config-

urer respond in the presence of many, versus few, sat-
isfactory configurations given a set of requirements?);

¯ The average branching factor for a state;

¯ The availability of abstract state descriptions (i.e., is it
possible to represent a configuration in terms of types
of components?);

¯ How it responds to being overconstrained;
¯ Whether prior knowledge is available and used:

¯ About prior solutions; i.e., Can thesearch be
guided, and potential states pruned, by using
knowledge of the characteristics of a configu-
ration that corresponds to a particular set of
requirements?

¯ To evaluate states;
¯ To detect closeness to a goal;
¯ To prefer known partial paths.

Configuration
Once we get to the level of considering a configurer as car-
rying out a configuring process then we can be much more
specific about the issues that might be tested. For example,
are "Key Components" known? Is a "Functional Schema/
Template" available that describes the target confguration?
Are functional and component hierarchies available? How
do these affect the performance? How does the system
degenerate if it is denied their use?

More precise tests can be described if we consider Config-
uring as a Problem Solving Method (PSM) (Benjamins 
Fensel 1998). It’s worth noting that ideas in this paper are
similar to what is described by Fensei & Motta (1998), i.e.,
the idea of PSM being a specialization of a generic prob-
lem-solving paradigm, such as search.

It has been pointed out that PSMs themselves have not been
well evaluated (Menzies 1998). Although that appears to 
true, that does not prevent the use of knowledge of a PSM
to guide tests of configurers.

The PSM approach includes an Operational Specification
that describes the inference steps in the reasoning process,
the control flow between them, and the knowledge used. A
portion of what a configuring PSM might look like is pro-
vided in my paper for the last AAAI

Configuration workshop (Brown 1998). This presents con-
figuring as logical subtasks:

Configuring = Selecting + Associating + Evaluating;

where:

Selecting = Choosing components;

Associating = Establishing abstract and then specific
relationships between components;

Evaluating = Compatibility Testing
+ Goal Satisfaction Testing.

108



The requirements for configurer tests would include the
need to test each "inference step" (or subtask) in the PSM.

Sdeeting: How does selection performance vary depending
on the number of currently active constraints? What is the
effect of increasing the number of available components?
What is the effect of having to use all of the components
supplied versus some of them?

Associating: How does the number of ’ports’ per compo-
nent (i.e., relationships to establish) affect performance?
How does the availability of more abstract relationships
(e.g., ’above’) affect performance -- does it serve as a least
commitment approach that reduces failure-producing early
choices?

Evaluating: How does the form and number of require-
ments on the desired configuration affect the performance?

Implementation, Domain & Problem
It should be clear that once a method, such as logical infer-
ence or heuristic search, is used to ’implement’ a subtask,
additional method-specific tests can be applied that might
cause the method to fail or to behave badly.

While different domains may vary the nature of the rela-
tionships that might be established between components
(e.g., electrically connected vs. surfaces touching), that
shouldn’t in and of itself affect the tests to be done.

However, the particular problems chosen as tests will make
a very large difference. Some might be pathological in vari-
ous ways, perhaps with a single possible configuration or
even none. Others might vary key ingredients, such as the
number of components.

Conclusions
Comparative testing of configurers is very hard, due to the
great differences in approaches used. As the number of
variables that would explain those differences is large, and
their interactions many, it will be difficult do make trust-
worthy performance predictions about configurers.

A very large number of tests will be required to reveal all
aspects of the differences between two con figurers. How-
ever, following an approach such as this, should indicate
what to concentrate on, and should produce better tests.

In this paper we have sketched some requirements for con-
figurer tests, and outlined a way of thinking about them as a
hierarchy of increasingly more specific views. Clearly there
is much more to be done in this area.

References

V. R. Benjamins & D. Fensel (1998) "Editorial: problem-
solving methods", International Journal of Human-Com-
puter Studies, Vol. 49, pp. 305-313.

D. C. Brown (Sept. 1998) "Defining Configuring", invited
paper, AI EDAM, special issue on Configuration, (Eds.) 
Darr, D. McGuinness & M. Klein, Cambridge U.P., Vol. 12,
pp. 301-305.
{also available at http://www.cs.wpi.edu/~dcb/Config/
EdamConfig.html }

D. Fensel & E. Motta (1998) "Structured Development 
Problem Solving Methods", Proceedings of the l lth Work-
shop on Knowledge Acquisition, Modeling, and Manage-
ment (KAW’98), Banff, Canada.

D. Kibler & P. Langley (1990) "Machine learning as 
experimental science", In: Readings in Machine Learning,
(Eds.) Shavlik & Dietterich, Morgan Kaufmann.

T. Menzies (1998) "Evaluation Issues for Problem Solving
Methods", Proceedings of the l lth Workshop on Knowl-
edge Acquisition, Modeling, and Management (KAW’98),
Banff, Canada.

SEI (1997) "Quality Measures Taxonomy", Software Tech-
nology Review, http://www.sei.cmu.edu/activities/str/taxon-
omies/qm_tax_body.html, Software Engineering Institute,
CMU.

109




