
The Tacton View of Configuration Tasks and Engines

Klas Orsvärn, PhD
Tomas Axling, MSc

Date: 1999-04-21

Tacton Systems AB
 Saltmätargatan 7

 113 59 Stockholm, Sweden
klas.orsvarn@tacton.com
tomas.axling@tacton.com

Abstract
This paper presents the view of product configuration taken
by Tacton Systems AB. We first define the product
configuration task in general. We then distinguish three
types of configuration tasks, describe different interactivity
requirements, and discuss three common types of
configuration engines. Finally, Tacton Configurator is
briefly described.

Product Configuration

In a configurable product line, custumization is combined
with rational production and handling, by using a set of pre-
defined components which can be combined in many
different ways to satisfy a wide range of requirements.
In a product configuration task, the case input is a
requirements specification, and the case output is a
quantified list of components in a configurable product line
which together satisfy the requirements and obey the
technical restrictions of the product line, optionally with a
description of how the component instances should be
connected. The output is called a configuration.
It is usually the case that the same functional requirements
can be satisfied with different combinations of components,
i.e. different configurations are possible. In this case, the
output configuration should be sufficiently optimal,
implicitly or explicitly, according to some criterion, which
is usually some kind of cost.
The above definition of product configuration, consistent
with that of Mittal 1989, is very wide. For example, a
computer program can be regarded as a configuration in the
above sense, as well as a VLSI circuit. However, a
programming language or the set of logical gates in digital
circuitry is not regarded as a configurable product line.
Product configuration is regarded as a routine task,
although it requires a great deal of knowledge and skills.
Programming and VLSI design are regarded as creative
engineering tasks. So, what makes product configuration
routine?

Inherent in the notion of configurable product line is not
only its pre-defined set of components, but also a modular
break-down structure. The break-down structure is a part-of
structure of abstract configurable parts. The leaves of the
part-of structure are components.
In contrast to a component, a configurable part can satisfy a
wide range of varying requirements. The requirements
input to a configuration task, is the requirements on a
configurable part.
A configuration can be regarded as an instantiation of a
configurable part. A configurable part can be instantiated in
many different ways, to satisfy different requirements.
The modular break-down structure is not the only property
that makes product configuration routine. Another
important property of a configurable product line is that the
requirements it can satisfy can be represented with a pre-
defined set of parameters, where each parameter has a pre-
defined set of possible values. The set of possible values of
a parameter may be infinite in principle, but in practice it is
finite. A parameter may represent an attribute of the
configuration as a whole, or an attribute of a part of the
configuration, such as a key component selection.
The specific requirements on a configuration is an
assignment of values to parameters (more generally;
restrictions on parameter values).
The configuration requirements may refer to several
configurable parts, and several instances of those
configurable parts, if these have interdependencies.
In re-configuration, an existing configuration is given as
input, in addition to the requirements. The output is a
description of the difference between the existing
configuration and the new configuration needed to satisfy
the input requirements. Usually, the new configuration is an
expansion of the existing configuration, which has more
functionality or more capacity. The creation of a new
configuration from scratch is a special case of re-
configuration, where the existing configuration is empty.
A configuration engine is a computer program which
performs the configuration task, i.e. match input
requirements with a suitable configuration. It uses a

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

representation of relevant knowledge of the configurable
product line, called a configuration model.

Types of configuration tasks

Even with the above more restrictive definition of product
configuration, it is still a very wide definition. It is also still
an NP-complete problem. Hence, we cannot expect to find
a single configuration engine which is the most suitable
tool for all configuration tasks. Since run-time performance
is crucial, trade-offs are needed, and the suitable trade-offs
will vary depending on the nature of the specific product
line or context of use.
We have identified three kinds of configuration tasks,
which are relevant to distinguish when discussing types of
configurators: features-and-options, compositional, and
network.

Features-and-options configuration
In features-and-options configuration, which may also be
called variant configuration, the configuration consists of a
pre-defined set of modules, which may be mandatory or
optional, and each module must be realised by one of
several alternative components. There are restrictions on
which components may be combined, and the selection of
one component may also require the selection of a set of
auxiliary components.
Configurable product lines based on mechanics, are usually
structured for features-and-options configuration.
Parameter setting of software products is another example.
When requirements are expressed in a product oriented
way, the requirements are expressed by selection which
optional parts should be included, and for each part
selecting which one of the alternative components should
be used.

Compositional configuration
The following are distinguishing features of compositional
configuration:
• The quantity of components of a certain type varies

greatly between configurations, usually depending on
capacity requirements.

• It is necessary to make sure that some of the component
instances in a configuration can be connected, in order
ensure that the configuration is valid (the connections
can be made at pre-defined points).

• There are different plausible ways to connect the
component instances in a configuration.

• There are restrictions on how component instances may
be connected, and these restrictions may be context
dependent, e.g. the legal connection of one component
instance may depend on the actual connection of other
component instances.

• Requirements are to a large extent expressed functionally
rather than in terms of component attributes.

Compositional product lines are most often within the
electronics domain, where circuit boards are typical

examples of components that may have many instances,
which must be connected by cabling and/or sub-rack
positioning.
Features-and-options configuration is a special case of
compositional configuration, and is often used for part of
the configuration of compositional product lines. Thus, a
configurator capable of solving compositional
configuration is also capable of solving features-and-
options, but the opposite does not hold.

Network configuration
Network configuration is compositional in the sense that
the number of modules is not pre-defined. The
distinguishing feature of network configuration is that the
requirements are expressed by selecting nodes
(“components”) and connecting them together. Connections
are made at pre-defined points. Some connections of nodes
are not valid. A node may be a component, a class of
components, or a configurable part. If the node is a class of
components, a component selection must be made.
Different alternative components may have different
connection restrictions. If the node is a configurable
component, it may in turn be configured according to
features-and-options configuration or compositional
configuration. Its parameter value assignments may depend
on the network configuration. Network configuration may
thus be used to configure a network of nodes where each
node itself needs to be configured.
Layout configuration is a special kind of network
configuration, where the nodes in the network represent
classes of components. The task is a to lay out a valid
network of nodes, where for each node a selection between
different alternative components must be made. A typical
example of layout configuration is interior design of
different kinds, e.g. office furniture or kitchens. The logic
of layout configuration is usually similar to that of product
oriented features-and-options configuration, i.e. to make
sure that components combinations are valid.

Interactivity requirements

This section will briefly describe different kinds of
interactivity that a configuration systems may provide. The
importance of these requirements differ between product
lines and user categories.
The basic functionality according to the definition of the
product configuration task is to propose a configuration that
is correct and satisfies the requirements. This can be done
in a more or less interactive way. A high degree of
interactivity simplifies the end-user’s task of finding a
suitable configuration, and exploring different alternatives.
In batch-mode, the configurator will take the complete
requirements as input and try to create a configuration as
output. If the requirements cannot be satisfied, i.e. they are
inconsistent, the configurator will say so. Ideally, it will
also be able to tell the user how to change the requirements
so that they can be satisfied.

When the risk of inconsistent requirements is high, batch-
mode configuration can be very frustrating for the end-user.
Propagation is a functionality that propagates the
consequences of each selection entered by the end-user, so
that all alternatives presented to the end-user are consistent
with previous selections. The propagation provided by a
configurator may be incomplete, in which case not all
consequences are propagated. In this case, the entered
requirements may still be inconsistent.
An interactive configurator will allow the user to enter
requirements in any order. The user normally wants to
begin with the most important requirements, and relative
importance of requirements may differ greatly between
users (for some customers, the power is the most important
property of a car, whereas others may regard the colour as
more important). Similarly, it should be possible to make
changes to the requirements given, i.e. to retract a
requirement and perhaps enter a new selection.
Another desirable functionality is to explain why a specific
alternative is inconsistent with previous selections, i.e.
which previous selections to change in order to select this
alternative.
The configurator should be able to propose default values
for each selection, to simplify requirements entry. The set
of default values should represent the best configuration
according to some criterion.

Types of configurator engines

We distinguish three common types of configuration
engines, described below.

Product structure with restriction tables
Requirements are expressed by selecting optional parts and
alternative components in the part-of break-down structure.
Restrictions are represented in a data-base, with tables
representing valid, invalid, and required combinations of
(usually) component pairs. The configuration engine assists
the user by making sure that selections obey the
restrictions, and by selecting required components. The task
of determining which combinations of selections is valid
corresponds to determining satisfiability of propositional
logic, which is NP-complete. Therefore, this kind of engine
usually only checks a selection for validity after it has been
made.

Constraint solver
A constraint solver engine represents the configuration
problem as a set of variables, which represent either
requirement parameters or part of the configuration. Given
requirements expressed as value assignments to some
parameters, a constraint solver engine represents the
solution as the domain of valid values of the other
variables. One advantage of a constraint solver engine is
that it offers a high degree of interactivity. Consequences of
one parameter value assignment are directly propagated to

other parameters. However, the degree of interactivity
differs between different constraint solver engines.
Some constraint solver engines are capable of searching for
a provably optimal solution when there is more than one
possible configuration, and may be able to apply different
optimisation criteria, such as cost or space.
Since propagation is an NP-complete problem, constraint
solver engines usually offer incomplete propagation. The
degree of incompleteness differs between solvers. It is
desirable that variables with domains presented to the user
are propagated completely, so that the user knows which of
the presented values are valid. If the user selects an invalid
value, some constraint solvers are capable of suggesting
which previous selection to change in order to make the
invalid selection valid.
Compositional configuration tasks require dynamic
constraint solvers. In order to represent the connections
between component instances, each instance needs to be
represented with one variable. Since the number of
instances of a component may vary greatly in
compositional configuration (e.g. in the order of zero to
thousands), the solver must be able to generate new
variables depending on the problem at hand.

Constructive search
A constructive search engine will search for one suitable
configuration that satisfies the requirements. The engine
gradually constructs the configuration solution as it
searches. With a constructive search engine, it is not
feasible to select provably optimal solutions, since it would
require all possible solutions are generated and compared.
However, it usually allows local optimisation, i.e.
optimisation for a sub-problem, either in the selection
between candidate components, or for a larger part of the
problem. This may be sufficient to generate a suitable
configuration, i.e. a sufficiently optimal solution.
An advantage of a constructive search engine is that its
configuration process is easier to understand, and it is
therefore easier to structure the configuration model for
efficiency in search. Moreover, in many product lines it is
difficult to define a cost function, so that the provably
optimal solution can be selected. The reason is usually that
some optimality criteria are soft, i.e. they express
preferences that are not strict and may be conflicting. Soft
criteria in configuration tasks are often naturally expressed
in terms of the sequence of steps in the configuration
process, e.g. “if you do this before that, the result will be
sufficiently optimal”. Procedural knowledge is easier to
express with a constructive search engine.
Another advantage of constructive search is that the engine
only represent one solution at a time. This means that it
solves a simpler task than the constraint solver engine, with
less functionality, and can thus have a better run-time
performance.
A hybrid engine will use a constraint solver for
requirements capture, and constructive search to find a
suitable configuration.

A constructive search engine is less interactive than a
constraint solver, but is usually more efficient than a
constraint solver for complex compositional configuration
where complete propagation or optimisation are not
required.

Tacton Configurator

Tacton Configurator has two engines, a dynamic constraint
solver and a constructive search engine. It is capable of
solving all types of configuration problems described
above, and combinations thereof.
Based on experiences of product configuration systems
since 1987, in a wide range of product lines, Tacton
Configurator was originally developed as a research
prototype at the Swedish Institute of Computer Science,
under the name Obelics (Axling, 1996, Orsvarn, 1996).
Tacton Configurator was released as a product in 1997, and
has since been applied for configuration of a wide range of
product lines, from simple features-and-options, to complex
networked compositional configuration, for sales
configuration of quotations as well as installation
configuration.

Acknowledgements

The view of configuration presented here has been
influenced throughout the years by many people at the
Swedish Institute of Computer Science and Tacton Systems
AB.

References

Mittal, S. Frayman, F. (1989). Towards a generic model of
configuration tasks. Proceedings of the 11th IJCAI.

Axling, T. and Haridi, S. (1996). A Tool for Developing
Interactive Configuration Applications. Journal of Logic
Programming 26(2).

Orsvärn, K. and Hansson, O. (1996) Prestudy of
Configuration of a Naval Combat Management System, In
Working Notes of AAAI Fall Symposium on
Configuration, MIT, Nov. 1996.

