
Versioning of Knowledge Bases and Configurations

Andreas Falkner

Siemens Austria, Electronics Development Center
Erdberger Laende 26

A-1030 Vienna, Austria
andreas.falkner@siemens.at

Abstract
When knowledge about a configurable system grows and
user requirements change over time, the corresponding
knowledge base of the configurator software has to change
as well. That will also affect existing configurations based
upon that knowledge base. The knowledge engineer must
find the appropriate balance between organizing the
different versions of constraints in the knowledge base and
upgrading configurations, thus making them consistent with
the new constraints. Both of these alternatives have
drawbacks and cause effort for knowledge engineers and
users. A formal solution for this problem is still missing.

Introduction

The general context of a configuration system consists of:

• User requirements for a configurable system (range of
products).

• Knowledge base (KB) as main part of a configurator
software, consisting of a component hierarchy (object
classes) and constraints for checking and/or generating
objects and setting values. It is modeled by a knowledge
engineer, based upon the user requirements.

• Configurations are object networks fulfilling all the
constraints. They are built by user interaction, based
upon the KB.

• The real world products (assembly of parts) are
represented by the configurations.

In our technology center for configurators and diagnosis
systems we have implemented several large-scale
configuration systems, among them a configurator for the
hard- and software of railway interlocking systems. The
configurator comprises approximately 500 object classes
and 3000 constraints and rules. Due to new features of the
interlocking system and changes to the requirements we
have to deploy up to 3 versions of the configurator per year
with up to 400 new or changed constraints each.
Experience shows that 20% of the changed constraints
might contradict existing configurations. The handling of
these contradictions depends on the needs of the users
(whether the product must stay unchanged or not).

In this paper we describe critical types of changes and how
to cope with them. We focus on the relationship between a

KB and a configuration based upon it. The problems
arising from that tight relationship are not covered by
literature on software versioning like (Conradi and
Westfechtel, 1996) or (Estublier and Casallas, 1995).

Types of changes

The following changes do not cause versioning problems:

• Changes to the configuration (using the same KB).

• Changes to the KB if the new KB is used only for new
configurations starting from scratch.

Changes to the KB concerning components comprise:

• Change: e.g. new attributes, different behavior.

• New component type (object class): e.g. new features.

• Delete a component type: e.g. when no longer supported.

They are similar to schema evolutions in data bases (see
Monk and Sommerville, 1993) and will not be considered
further in this paper. As a general principle, constraints
which only refer to new or deleted component types or
attributes, do not interfere with existing constraints.

The following changes to the KB concerning constraints
normally have effects on the existing configuration:

• Same premises, different conclusion: configuration might
become invalid.

• New or more special constraint: configuration might
become invalid.

• More general or deleted constraint: there might be a more
efficient configuration.

Together with the user the knowledge engineer has to
decide whether a change to the KB requires changes to the
configuration. In that case updates are necessary – e.g.
replacing out-dated components in the configuration (in the
installed product, too) or changing a combination of com-
ponents based on a constraint that turned out unsuitable.

Often the change to the KB need not or even must not
affect existing parts of the configuration. E.g. if a
component is no longer produced in the real world, most
probably it will not be replaced with its successor for cost
reasons. The same is true when a constraint is changed in

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

order to achieve improvements in the configuration (e.g.
cheaper combination of components). In such cases the
component type or constraint must remain in the KB. The
KB must be able to handle mixtures of old and new
features, which might lead to the difficult situation of
contradicting constraints.

Contradicting constraints

Whenever the changed KB is used for accessing an old
configuration, it might contain a new constraint which
contradicts an old constraint. More precisely, the new
constraint contradicts some part of the configuration,
which is valid with respect to the old KB. Examples
include simple cases like new versions of components, but
also quite complicated relations between objects, e.g.:

• A new version of a certain card consumes less space in
the frame, so that a changed constraint fills the frame
more compactly. An old card will cause a contradiction.

• According to a new constraint each site must have a
printer, whereas in former times sites of a special type
were not allowed to have a printer.

• An old constraint states that there is a common failure
indicator for the ventilation of all racks of an assembly,
whereas nowadays they have to be monitored separately.

In general, it is not possible to detect contradicting
constraints by just checking the set of all constraints in the
KB. The question is whether at least one configuration
fulfils all constraints. If the constraint language is powerful
enough (e.g. has quantors and multiplication), this question
is undecidable. For simpler languages the best algorithm
might be of exponential order. An alternative approach
based on diagnosis is described in (Felfernig et al., 1999).

Contradictions are prevented if constraints only of a certain
KB version are evaluated at the same time. This kind of
filtering requires the constraints labeled with the KB
versions they are valid for. Objects, too, and in certain
cases even attributes must be labeled in the same way if
this is necessary for selecting the correct version of the
constraint.1

Another possibility is using the KB versions or time
stamps explicitly in the code of the constraint. The new
constraints may also be implemented so that they accept
old states during checks, but never generate them.

Keeping track of the history of changes in the ways
mentioned above turned out to be very complex in our
applications and was only carried out in particular cases
with tailor-made implementations. In most cases we could
avoid contradictions by keeping KB versions separate.

1 The same situation applies to dynamically produced KBs when filtering
produces several configurator variants for different countries, product
lines, release dates, etc.

Separate knowledge base versions

This solution requires that the user can select the version of
the KB or configurator to be used (e.g. use the old KB for
old configurations). Whenever a user wants to access an
old configuration with a new KB, s/he has to upgrade the
configuration to the new KB beforehand. This is typically
only necessary when the real world product also changes,
and can happen even years after the last access to the
configuration. Therefore upgrades over several KB
versions must be allowed and supported.

In order to reduce the work load for the user, the upgrade
process must be automated as much as possible.
Nevertheless the user should check the modifications done
by the configurator, especially when constraints could not
be fulfilled. Then s/he might have to set new attributes,
replace components, etc.

The trade-off between automatic upgrade (which might be
quite expensive due to complex relationships and special
cases) and manual user interactions (which might become
time consuming if many configurations or components are
involved) should be considered thoroughly. In our
applications we noticed considerable upgrade effort both
for knowledge engineers and users.

Conclusion

Before a knowledge engineer deploys a new version of a
knowledge base, s/he has to find out whether the changes
contradict existing configurations based upon that KB. In
the general case this is undecidable or at least expensive. In
our applications, upgrading configurations (thus making
them consistent with the new KB) was useful in most
cases, but sometimes costly. Organizing the different
versions of constraints in the KB could be solved with
tailor-made implementations where necessary. A formal
approach with clear semantics would help to increase the
productivity of knowledge engineers as well as users, but is
still an open problem.

References

Conradi, R.; and Westfechtel, B. 1996. Configuring
Versioned Software Products. Lecture Notes in Computer
Science Vol.1167:88-109.
Estublier, J.; and Casallas, R. 1995. Three Dimensional
Versioning. Lecture Notes in Computer Science
Vol.1005:118-135.
Felfernig, A.; Friedrich, G. E.; Jannach D.; and Stumptner,
M. 1999. Consistency based diagnosis of configuration
knowledge-bases. University of Klagenfurt, Technical
Report KLU-IFI-99-2.
Monk, S.; and Sommerville, I. 1993. Schema Evolution in
OODBs Using Class Versioning. SigMOD Report
22(3):16-22, Sep.

