
Model-based Configuration of Machine Control Software

Extended Abstract

Markus P.J. Fromherz
Xerox PAl%C, 3333 Coyote Hill Road, Palo Alto, CA 94304, USA

fromherz@parc.xerox.com

Following the trend of mass customization, repro-
graphic machines (photocopiers, printers, fax machines,
etc.) are increasingly designed and assembled from stan-
dard components. For example, a system engineer may
design a paper path for a new print engine configu-
ration from components such as sheet transports, sheet
inverters, gates, registration units, and trays. Similarly,
customers may choose from and plug together different
complex modules such as mark engines and feeder and
finisher modules in order to get the desired function-
ality. One of the most complex steps in this composi-
tion of reprographic modules is the automatic configu-
ration of the system control software. In this extended
abstract, we give an overview of our approach to this
task. See (Fromherz, Saraswat, & Bobrow 1999) for
complete review.

Model-based computing

When planning and scheduling the machine’s opera-
tions (e.g., feeding, moving, printing, inverting sheets),
the system control software has to satisfy each mod-
ule’s physical and computational constraints (timing,
sheet sizes, etc.), and take into account the often com-
plex interactions of the modules’ behaviors. For this
task, we have deployed an approach to developing real-
time system-level controllers for electro-mechanical ma-
chines that consists of three concurrent activities: (1)
the development of application-independent, declara-
tive, constraint-based models of physical machine mod-
ules and configurations, (2) the development or re-use
of a separate, configuration-independent control soft-
ware architecture, and (3) the development or re-use
of mediating reasoners that provide the glue for em-
bedding the models into the control architecture. In
this model-based computing approach, system models
become an integral and executable part of the system
software, enabling the software to adapt itself to differ-
ent configurations, and to flexibly react to changes in
the system’s capabilities.

Model-based computing relies on the use of domain-
specific constraints for modeling, an idea that is very
familiar to engineers working in a particular domain. In
fact, developing a suitable modeling language for this
domain was crucial to getting our approach adopted

by software engineers. We learned that engineers feel
comfortable with a language that provides the domain-
specific constructs important for modeling, at the right
level of abstraction, with a minimum of ballast needed
for reasoning about the models, and with a familiar look
and feel. The resulting Component Description Lan-
guage, CDI_, is a high-level, engineering-oriented lan-
guage with domain-specific constraint systems. CDk
models describe a device’s capabilities through in-
put/output transformations and constraints on moving
parts, timing, and resources.

However, it can be difficult to provide a simple
semantic interpretation to a modeling language with
domain-specific constructs, precluding the use of pow-
erful tools to reason about the constraint representa-
tions. Our approach is to translate CDI_ into the lower-
level, but very general framework of concurrent con-
straint programming (CCP) (Saraswat 1993) (cf.
appendix). CCP provides many of the desired char-
acteristics for such an approach, including a logic in-
terpretation and compositional construction. CCP of-
fers an elegant, extensible and customizable framework
for declarative representation that supports a power-
ful concurrent computational interpretation. This dual
interpretation allows the application of powerful static
analysis techniques from the area of programming lan-
guages to manipulate and reason about models.

CCP makes it natural to build simulation models of
physical systems. Intuitively, a device capability can
be represented as a set of constraints to be asserted if
the expected control command and input events are
received. A device with multiple capabilities is de-
fined as a recursive process with multiple, alternative
assertions. Connected devices are modeled as processes
that communicate events through shared variables. To-
gether, this is the target structure for the CDL-to-CCP
compiler. As a simple example, consider the model of
a sheet transport component with a single capability,
namely moving a sheet from input to output. It re-
ceives control commands Us and input events In (sheet
s and time TAn), asserts constraints on sheet width, in-
put/output timing and space resource R, and generates
output events Out (again sheet and time). The model
is parameterized by the component’s length and speed.

133

From: AAAI Technical Report WS-99-05. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

transport(Us, In, Out, R, Length, Speed)
if (Us = [move(Tin) lUsT],

In ~ [(S,T~n) lInT]) then
S.width =< 285,
T_in + Length/Speed = T_out,
allocate(R, T_in, S.length/Speed),
Out = [(S,T_out)jOutT],
transport(UsT, InT, OutT, R, Length, Speed)

).

Model-based software configuration

In the following, we focus on the auto-configuration of
the system control software after a customer has bought
and put together a machine. Each machine module
comes equipped with a model of its structure and be-
havior. Also, the system control software is defined
independently of the configuration, using generic plan-
ning and scheduling algorithms based on a real-time
constraint solver library. Thus, the task of software con-
figuration becomes one of composing the module mod-
els to system models and deriving the system capabili-
ties that arise from the module capabilities (a planning
step). As mentioned, since the original CD[_ models
have a dual CCP representation, we can use CCP tech-
niques for this reasoning process. In fact, the primary
technique used is partial evaluation of CC programs.

The process of composing module models to system
models is complicated by a number of problem and
modeling properties. First, modules are modeled as
endless CC processes, and the system configuration may
contain physical loops (e.g., a print engine’s duplex loop
for double-sided printing). Thus, capability derivation
may result in incomplete or non-minimal system capa-
bilities, or not even terminate. (A system capability is
complete if, for each selected module capability, the in-
puts are produced by the connected upstream modules
(if any) and the outputs are consumed by the connected
downstream modules (if any). A system capability
minimal if it cannot be decomposed into other, com-
plete capabilities.)

Second, during partial evaluation, we typically do not
know the necessary inputs, and sometimes we want to
reason from a given output. In other words, in addition
to deducing outputs from inputs, we sometimes have to
abduce inputs from outputs. Finally, what statements
are useful to partially evaluate is task-specific; for ex-
ample, during planning we may not want to evaluate
the timing constraints.

To deal with these issues, we have built a partial eval-
uator for capability derivation from CC models that
uses deduction for forward evaluation of eligible state-
ments, abduction for "backward evaluation" of eligible
conditionals, backtracking to explore alternative choices
in abduction, and special initialization and termination
procedures (Fromherz, Saraswat, ~ Bobrow 1999).

Deduction is defined by the usual semantics for CC
programs. To that semantics, we add a single abduction
step, namely abduction over conditionals, as follows.
Given a suspended conditional in a quiescent computa-

tion (i.e., its condition is not entailed by the constraint
store and computation does not progress), if the condi-
tion is consistent with the store, assume it by adding it
to the store. (See the appendix for a formal definition.)

However, not all conditionals should be eligible for
abduction. In particular, we do not want to indiscrim-
inately abduce module capabilities, as this can lead to
incomplete and non-minimal capabilities. Intuitively,
like deduction, abduction should follow the flow of
events, albeit in reverse direction ("generating an in-
put from an output"). Notice that for deducing a mod-
ule capability, we have the built-in requirement that a
control command and all necessary inputs have to be
present. Similarly, for abducing a module capability, we
use the heuristic that at least the control command or
one input or output of this capability have to be present.
Together, these requirements for deduction and abduc-
tion will unfold the module capabilities of a composite
model as long as there is at least one initial command,
input or output present at the model’s interface. Fur-
thermore, the abduction heuristic will lead the partial
evaluator to trace the flow of events through the model
efficiently and in a way that guarantees complete and
minimal composite capabilities. They will be complete
because if a capability’s inputs or outputs are present,
the capability will be evaluated. They will be minimal
because only capabilities that are "required" because of
an existing input or output are evaluated.

A remaining issue of the abduction heuristic is that
"control command" and "capability input and output"
are domain concepts. While they can be identified eas-
ily in the CD[model, they are indistinguishable from
other statements in a generic CC program. For this
purpose, the CD[-to-C.CP compiler annotates condi-
tionals with the heuristic. Such annotations also allow
us to control the abduction of other "types" of condi-
tionals (e.g., to control recursion). Thus, such annota-
tions enable domain-specific reasoning within a domain-
independent modeling language.

Conclusion
Our approach to developing software for complex sys-
tems is part of a larger vision for model-based comput-
ing: to support both human communication and com-
puter processing through formal .representations. To
that effect, we provide a domain-specific language to
the engineer, but define its semantics and reasoners in
terms of the generic CCP framework (Fromherz, Gupta,
& Saraswat 1997). Reasoning for software configuration
then consists primarily of the composition and partial
evaluation of CC programs, making use of compiler an-
notations where domain-specific heuristics are needed.

Acknowledgments
The work reported here has been carried out in collab-
oration with a number of past and present researchers
and engineers within Xerox Corporation, in particular
Vijay Saraswat, Danny Bobrow, and Vineet Gupta.

134

References
Fromherz, M.; Gupta, V.; and Saraswat, V. 1997. CC
- a generic framework for domain specific languages.
In Prec. POPL Workshop on Domain Specific Lan-
guages.

Fromherz, M.; Saraswat, V.; and Bobrow, D. 1999.
Model-based computing: Developing flexible machine
control software. Artificial Intelligence, under review.
Saraswat, V. 1993. Concurrent Constraint Program-
ruing Languages. Logic Programming Series. Cam-
bridge, MA: MIT Press.

Appendix

A. CCP Syntax
Our CC programs are defined by clauses H::S with head
H and body S. The abstract syntax of a CC program
is defined as follows.

Program P ::= H::SI P.P (Head, body)
Statements S ::= c (Tell)

I [g] I [A; S] (Conditional)
[S, S (Conjunction)

I x^S (Local variable)

I H (Process call)
Ask A ::= C---* NS (Ask-tell)

I A; A (Alternatives)
Condition C ::= cI c,c (Ask)

Annotation N ::= cI c;c (Constraints)
Process head H ::= p(xl,...,x,) (Name, args)

Note that variables Xl,..., x, in the head of a clause
p(xl ,Xn)::S are implicitly universally quantified.
We also require that no more than one such clause may
be defined for a name p.

Our concrete syntax is similar to the abstract syn-
tax. Naming follows Prolog conventions (lower-case
for constants, upper-case for variables, the character
"2’ for the anonymous (nameless) variable). The (an-
notated) conditional [C1 -* N, $1 ; C2 --* N2 $2 ;... ; S] is
written as

if C1 abduceif Nt then St
elseif C2 abduceif N2 then $2 ...
else S

The syntax of constraints c depends on the constraint
system. Variable hiding is done implicitly¯ We fur-
ther assume the usual data structures known from Logic
Programming, including lists L whose head H and tail T
can be identified by the operation L = rHIT].

B. CCP Semantics
Computation of CC programs progresses by monoton-
ically accumulating constraints in the store, and by
checking whether the store entails constraints. Synchro-
nization between processes is specified by the ask con-
struct: a conditional [CI~ NISt;C2 ~ NzS2;...;S]
suspends until one of the ask constraints Ci is entailed
by the constraint store, or all ask constraints become
disentailed (i.e., their negations become entailed).
the former case, Si is executed, in the latter case S. The
program state is denoted by the tuple (S, s), which con-
sists of the current statements (or goals) S and the con-
straint store s. Program execution starts with a (goal)
statement and an empty store, and is represented as
a sequence of program states. The semantics of a CC
program is defined as follows.

((s, ~), , (s,s u ~>Tell

Ask if

Ask else

Ask abduction

Variable
substitution

Process call

s~’C
((s, [.4; c -~ _ Sl), , ((s, s),s)
VC.(C ~ -) 6 ,A "-~ 8 0 C I-- false

((S, [£ S]), s) ~ ((S,

((s, [,4; c -. ~Sl), s) , _
N = OV 3c.cE N-. s~- c

s O C (/false
((s, [,4; c -~ ~s]), ~) --- <(s, s.), ~ u c)

((s,~^s),s) , ((s,s[v/~]),s)
(v ¢ vat(s))
It: :S a clause in the program

((S, h), s) ~ ((S,

(S, S) stands for selecting S anywhere in a conjunc-
tive statement, with S being the (potentially empty)
rest of that statement, and [A; A] stands for selecting
A anywhere in a conditional statement, with ,4 being
the (potentially empty) rest of that statement.

135

