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Abstract
This paper proposes and surveys genetic implementations
of algorithms for selection and partitioning of attributes in
large-scale concept learning problems. Algorithms of this
type apply relevance determinationcriteria to attributes
from those specified for the original data set. The selected
attributes are used to define new data clusters that are used
as intermediate training targets. The purpose of this
change of representationstep is to improve the accuracy of
supervised learning using the reformulated data. Domain
knowledge about these operators has been shown to reduce
the number of fitness evaluations for candidate attributes.
This paper examines the genetic encoding of attribute
selection and partitioning specifications, and the encoding
of domain knowledge about operators in a fitness function.
The purpose of this approach is to improve upon existing
search-based algorithms (orwrappers) in terms of training
sample efficiency. Several GA implementations of
alternative (search-based and knowledge-based) attribute
synthesis algorithms are surveyed, and their application to
large-scale concept learning problems is addressed.

Keywords:genetic algorithms, constructive induction, multi-
strategy (hybrid) learning, wrappers, large-scale data
mining

Introduction

This paper presents the problems of reducing and
decomposing large-scale concept learning problems in
knowledge discovery in databases (KDD). The approach
described here adapts the methodology ofwrappers for
performance enhancement and attribute subset selection
[JKP94, KJ97] to a genetic optimization problem. The
fitness functions for this problem are defined in terms of
classification accuracy given a particular supervised
learning technique (orinducer) [KS96]. More precisely,
the quality of a subset of attributes is measured in terms
of empirical generalization quality (accuracy on cross-
validation data, or a continuation of the data in the case of
time series prediction).

The paper first presents a brief introduction to
constructive induction, discusses the role of attribute
synthesis (feature construction) in the framework of
constructive induction for KDD applications. Next, it
summarizes existing search-based approaches to
knowledge-based constructive induction, their tradeoffs,
and their benefits and shortcomings. The primary focus
of this paper is on recent and new research in applying
genetic algorithms to attribute synthesis [RPG+97],
especially adaptation of algorithms based on constraint

knowledge [Do96]. The paper then describes critical
scalability issues for industrial applications (in the context
of KDD problem solving environments) that have arisen
in preliminary applied work by the author. Finally, the
paper documents work in progress on designing genetic
encodings for attribute selection and partitioning
problems, the selection criteria, incorporation and
refinement of constraint knowledge about operators, and
scalability issues (such as task-parallel configurations of
GA wrappers).

Attribute Selection, Partitioning, and Synthesis
The synthesis of a new group of attributes (also known as
the feature constructionproblem) in inductive concept
learning is an optimization problem. Its control
parameters include the attributes used (i.e., which of the
original inputs are relevant to distinguishing a particular
target concept) [KR92, KJ97, Hs98], how they are
grouped (with respect to multiple targets), and how new
attributes are defined in terms ofground (original)
attributes. This synthesis and selection problem is a key
initial step in constructive induction– the reformulation
of a learning problem in terms of its inputs (attributes)
and outputs (concept class descriptors).

Figure 1. Attribute-based transformations in KDD
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Figure 1 illustrates the role of attribute selection
(reduction of inputs) and partitioning (subdivision of
inputs) in constructive induction (the “unsupervised”
component of this generic KDD process). In this
framework, the input consists ofheterogeneousdata (that
originating from multiple sources). The performance
element includes time series classification [Hs98, HR98a,
HR98b] and other forms of pattern recognition that are
important for decision support.

Attribute Partitioning in Constructive Induction
Attribute subset selectionis the task of focusing a learning
algorithm's attention on some subset of the given input
attributes, while ignoring the rest [KR92, Ko95, KJ97].
In this research, subset selection is adapted to the
systematic decomposition of concept learning problems in
heterogeneous KDD. Instead of focusing a single
algorithm on a single subset, the set of all input attributes
is partitioned, and a specialized algorithm is focused on
eachsubset. While subset selection is used to refinement
of attribute sets in single-model learning, attribute
partitioning is designed for multiple-model learning.

This new approach adopts the role of feature
construction in constructive induction: to formulate a new
input specification from the original one [Do96]. It uses
subset partitioning todecomposea learning task into parts
that are individually useful, rather than toreduce
attributes to a single useful group. This permits new
intermediate concepts to be formed by unsupervised
learning (e.g., conceptual clustering [Mi83] or cluster
formation using self-organizing algorithms [HW99]).
The newly defined problem or problems can then be
mapped to one or more appropriate hypothesis languages
(model specifications) as illustrated in Figure 1. In the
new system, the subproblem definitions obtained by
partitioning of attributes also specify a mixture estimation
problem. A data fusion step, shown in Figure 2, occurs
after training of the models for all subproblems) [HR99].

Figure 2. The attribute partitioning approach

Together with attribute subset selection, attribute
partitioning permits a concept learning problem to be
refined for both increased classification accuracy and
comprehensibility. The latter increases the utility of the
model in systems that combine multiple models, such as
hierarchical data fusion systems [HR98a, HR98b, RH98,
Hs98] and large-scale multi-strategy data mining systems
[HW99]. Note that these systems may incorporate
different type of concept learning algorithms, such as
artificial neural networks. In our application, the multi-
strategy (hybrid) learning system is a GA wrapper that
selects and configures probabilistic networks (especially
temporal ANNs) and decision trees for KDD applications.

The primary novel issue addressed by this position
paper is the practical application of attribute synthesis
methods to very large databases. These methods been
extensively studied as solutions to a high-level parameter
optimization problem – especially in the wrapper research
of Kohavi et al [KJ97]) – but have (to date) not yet been
investigated in depth as an application of genetic
algorithms. This paper presents the case that scaling up
of large-scale data mining methods, especially using GAs,
depends on first understanding how to systematically
control the definition of inductive concept learning
problems. The experimental framework for adaptation of
constraint-based attribute selection and synthesis methods
that is described here proposes that this type of
knowledge can be readily incorporated into a genetic
algorithm for constructive induction.

Background

The Constructive Induction Problem and
Supervised Concept Learning
In current practice, optimization problems in constructive
induction are treated as a state space search [Do96, KJ97,
Hs98]. The primary difficulty encountered in applying
search-based algorithms to synthesize attributes [Do96],
select subsets of relevant attributes [KJ97], or partition
attributes into useful categories [Hs98] is the
combinatorial complexity of uninformed search. The
ability to constrain and control the search for useful
attributes (or groups of them) is critical to making
constructive induction viable. Toward this end, both
domain knowledge and evaluation metrics have been
applied in informed search algorithms (gradient and A*)
for attribute subset selection [KJ97] and partitioning
[Hs98]. The dissertations of Gunsch [Gu91] and Donoho
[Do96], which respectively address constructive induction
based onpartial domain knowledge (“opportunistic”) and
based on constraint knowledge (“theory-guided”), contain
excellent and comprehensive bibliographies and surveys
relating to constructive induction. The interested reader is
therefore referred to these publications for a general
introduction to previous related work.

The definition of a concept learning problem consists
of input attributesandconcept classes. Each attribute is a
function that maps an example,x, into a value.
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Conversely, aclassified example can be defined as an
object (a tuple of attribute values) whose type is the range
of all combinations of these attributes together with a
concept class,y. The task of aninductive concept
learning algorithm is to produce aconcept description, y
= g(x), that maps a newly observed examplex to its class
y [Do96]. In inductive concept learning, therefore, the
input (a training data set) consists of classified examples,
and the output is a concept descriptor (a representation of
the concept description such as a decision tree,
classification rule base, linear separator, or classifier
system) [BGH89, Mi97]. This classifier can then be
applied to each new (unclassified) example to obtain a
prediction (hypothesis) of its class.

Constructive induction is the problem of producing
new descriptors of training examples (instances) and
target classes in concept learning [Mi83, RS90]. It can be
regarded as anunsupervised learningprocess that refines,
or filters, the attributes (also referred to asfeaturesor
instance variables) of some concept learning problem
[KJ97, Hs98]. The objective function of this process,
called an attributefilter in the attribute subset selection
and extraction problem [KJ97, Hs98], is theexpected
performanceof a given supervised learning algorithm on
the data set, restricted to the selected attributes. This
expected performance measure can be based on any
quantitative or qualitative analysis of the data set
(including heuristic figures of merit), but the common
trait of all attribute filters is that they operate
independently of the induction algorithm (i.e., they ignore
credit assignment based on actual supervised learning
quality). The filter method can be used not only toselect
attributes, but tocomposethem using operators, such as
the arithmetic operators {+, -, *, /}. The objective
criterion is still based strictly on factors other than direct
observation of supervised learning quality.

A more sophisticated variant, suitable for attribute
selection [Ko95, KJ97], partitioning [Hs98], or synthesis
[Do96], casts the selection problem (for 0-1 subset
membership, i.e., inclusion-exclusion; for subset
membership; or for operator application order) as a multi-
criterion optimization function. This function is defined
subject to constraints of supervised learning performance:
cross-validated classification accuracy and convergence
time are most prevalent. This type of optimization is
based on multiple runs of the supervised learning
algorithm (concurrent across any population of candidate
configurations, i.e., subsets, partitions, or synthetic
attribute sets; serial among generations of candidates).
Because it takes the supervised learning algorithm into
account and invokes it as a subroutine, this approach is
referred to as thewrappermethodology. Wrappers can be
used for both attribute reformulation (part of constructive
induction) and other forms of parameter tuning in
inductive learning [Ko95]. It is important to note that to
date, attribute selection, partitioning, and synthesis
wrappers have not been studied as genetic algorithms,

although stochastic and heuristic search and optimization
methods have been applied [Ko95, KJ97, Hs98].

Composition of new attributes by such methods has
been shown to increase accuracy of the classifiers
produced by applying supervised learning algorithms to
the reformulated data. The rationale is that concept
learnability can be improved relative to given supervised
learning algorithm through alternative representation
[Ha89]. The step of transforming low-level attributes into
useful attributes for supervised learning is known as
attribute synthesisor, as is more common in the
computational intelligence literature,feature construction.
The complementary step to feature construction iscluster
definition, the transformation of a given class definition
into a more useful one [Do96, HW99].

Attribute Partitioning as Search
Both filters and wrappers for attribute selection and
partitioning can be purely search-based or can incorporate
constraint knowledge about operators, especiallywhich
groups of attributes are coupled(i.e., should be taken
together for purposes of computing joint relevance
measures [KJ97]). [DR95] and [Do96] discuss the use of
such constraint knowledge in constructive induction. For
example, in the automobile insurance KDD problem
surveyed below, formulae are computed forloss ratio in
automobile insurance customer evaluation. Only the
number of exposures (units of customer membership)
should be allowed as a denominator. Only certain
attributes denoting loss paid (on accidents, for example)
should be permitted as numerators, and these should
always be summed. Similarly,duration attributes are a
type of attribute that is always produced by taking the
difference of two dates. This type of domain knowledge-
guided constructive induction drastically reduces the
search space of candidate attributes from which the filter
or wrapper algorithm must select.

For the rest of this paper, the discussion shall focus on
wrappers that apply supervised learning algorithms (such
as decision tree induction, simple GAs, and multi-layer
perceptrons). The objective criterion for reformulation of
a large-scale inductive learning problem in KDD is
defined in terms of classification accuracy, and this leads
naturally to the family of fitness functions and the
scalability issues described below.

In search-based algorithms for attribute synthesis,
constraint knowledge about operators has been shown to
reduce the number of fitness evaluations for candidate
attributes [Do96]. This paper shows how constraint
knowledge about operators can be encoded in a fitness
function. The purpose of this approach is to improve
upon the non-genetic, search-based algorithm in terms of
training sample efficiency. Several GA implementations
of alternative (search-based and knowledge-based)
attribute synthesis algorithms are surveyed, and their
application to large-scale concept learning problems is
addressed.



Figure 3. A numeric encoding of individuals for attribute partitioning

Methodology of Applying GAs to
Constructive Induction

Extending the Traditional Algorithm
This section briefly describes an encoding for attribute
synthesis specifications for a simple GA with single-point
crossover and a family of fitness functions that captures
the objective criteria for wrapper systems.

Raymeret al [RPG+97] use a masking GA, containing
indicator bits for attributes to simultaneously extract and
select attributes for ak-nearest neighbor(knn) supervised
learning component. This masking GA is very similar to
the state space encoding used by Kohaviet al for attribute
subset selection [Ko95, KJ97], and is quite standard (e.g.,
forward selection and backward elimination algorithms in
linear regression are described in similar fashion).
Furthermore, the bit mask (inclusion-exclusion) encoding
has an analogue in attribute partitioning [Hs98] that can
be applied to encode pairwise sequential operations on
attributes. Some related work on genetic search for
feature selection permits replication of attributes by using
a membership coding [CS96].

The bit-mask coding is natural for attribute selection,
but must be adapted for attribute partitioning. In the
genetic wrapper for partitioning, two codings can be used.
The first is a sparsen-by-n bit matrix encoding, where 1
in column j of row i denotes membership of theith
attribute in subsetj. Empty subsets are permitted, but
there can be no more thann. Also, in this design,
membership is mutually exclusive (in a true partition,
there is no overlap among subsets). The second coding
uses numeric membership as in the state space
representation, and is shown in Figure 3; this is a more
compact encoding but requires specialized crossover
operators (corresponding to subset exchange) as well as

mutation operators (corresponding to abstraction and
refinement).

For an attribute selection, partitioning, or synthesis
wrapper, the fitness function must always reflect the
figure(s) of merit specified for the performance element
of the KDD system. If this is a basic supervised concept
learner that generates predictions, the fitness function
should be based upon classification error (0-1, mean-
squared error, or whatever loss function is actually used to
evaluate the learner). This is notnecessarilythe same loss
function as is used in the supervised learning algorithm
(which may, for example, be based on gradient descent),
but it frequently is. If the performance element is a
classifier system [BGH97], the fitness function for this
wrapper should express the same criteria.

Finally (and most important), the constraint knowledge
for operator preferencecan be encoded as a penalty
function and summed with the performance measure (or
applied as a quick-rejection criterion). That is, if some
operator is not permitted or not preferred, a penalty can be
assessed that is either continuous or 0-1 loss.

Functional (Task-Level) Parallelism in Change-
of-Representation Search
As do simple GAs for most concept learning problems
(supervised and unsupervised), genetic wrappers exhibit a
high degree of functional (task-level) parallelism, as
opposed to data parallelism (aka array or vector
parallelism). This is doubly true for genetic attribute
synthesis wrappers. With replication of the data across
cluster nodes, the inter-task communication is limited to a
specification string and the fitness value, with all of the
computation for one run of the supervised learning
algorithm being performed on a separate processor. The
evaluation of each component of the specification (i.e.,
each synthetic attribute) can be also be functionally
decomposed and parallelized. This approach, however,
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has a high internal data access overhead. Possible
solutions include use of distributed shared memory and
parallel I/O. Nevertheless, the break-even point for
communications overhead is favorable, because the
fitness function computations (for applications surveyed
below) range from 5 minutes (for data sets on the order of
100 attributes and 25000 exemplars) to 75 minutes (for
data sets on the order of 400 attributes and 100000
exemplars).

Applications of Genetic Constructive
Induction in Large-Scale Data Mining

Record and Document Clustering (Information
Retrieval)
The simple GA for attribute partitioning can be applied to
knowledge discovery in very large databases. The
purpose of constructive induction in these problems is to
performchange of representationfor supervised learning,
thereby reducing the computational complexity of the
learning problem given the transformed problem. For
example self-organizing maps can be used [HW99] to
produce multiple, intermediate training targets (new,
constructed attributes) that are used to define a new
supervised learning problem. This technique has been
used at NCSA (using manual and non-genetic methods
such as Kohonen’s self-organizing maps, or SOM) to
cluster sales transaction records, insurance policy records,
and claims data, as well as technical natural language
reports (repair documents, warranty documents, and
patent literature). In current research, the simple GA and
more sophisticated genetic methods for attribute synthesis
in record clustering (especially for repair documents and
patent literature) are being evaluated in a Java-based
infrastructure for large-scale KDD.

Supervised Learning in Precision Agriculture
A family of real-world applications that involves highly
heterogeneous time series data is that of monitoring
problems in precision agriculture. Experiments using
hierarchical mixtures have shown the feasibility of
isolating multiple stochastic process types using a model
selection wrapper [HR98b, Hs98]. These experiments
were conducted using (subjective) weeklycrop condition
estimates from corn fields in Illinois (years 1985-1995).
They show that the data is heterogeneous because it
contains both an autoregressive pattern (linear increments
in autocorrelation for the first 10 weeks of the growing
season) and a moving average pattern (larger, unevenly
spaced increments in autocorrelation). The autoregressive
process, which can be represented by a time-delay model,
expresses weather “memory” (correlating early and late
drought); the moving average process, which can be
represented by an exponential trace model, physiological
damage from drought. Task decomposition can improve
performance here, by isolating the AR and MA
components for identification and application of the
correct specialized architecture (a time delay neural

network or simple recurrent network, respectively). For
details of this experiment, the interested reader is referred
to [Hs98].

Supervised Learning for Insurance Policy
Classification
Finally, another real-world application is multi-attribute
risk assessment (prediction of expected financial loss)
using insurance policy data. The input data is partitioned
using a state space search over subdivisions of attributes
(this approach is an extension of existing work on
attribute subset selection The supervised learning task is
represented as a discrete classification (concept learning)
problem over continuous-valued input. It can be
systematically decomposed by partitioning the input
attributes (or fields) based on prior information such as
typing of attributes (e.g., geographical, automobile-
specific demographics, driver-specific demographics,
etc.). Preliminary experiments indicate that synthesis of
intra-typeattributes (such as paid loss, the sum of losses
from different subcategories, and duration or membership,
the difference between termination date and effective date
of an insurance policy) andinter-typeattributes (such as
loss ratio) can be highly useful in supervised learning.
This includes definition of new input attributes as well as
intermediate target concepts [HW99].

Current and Future Work

Relevance Determination: Evaluating Attribute
Quality
The credit assignment problem for synthetic attribute
evaluation is complicated by the simultaneous question of
which attributes are relevant. Current research addresses
the problem of automatic relevance determination in
series with attribute synthesis; future work will address
how a classifier system can be built to optimize
concurrently on both criteria.

Wrappers for Constraint Selection: Evaluating
Quality of Domain Knowledge
The constraints themselves can be evaluated and the
penalty weights adjusted, as is done in an advanced
version of Raymer et al’s attribute extraction and
selection system [RPG+97]. A future project that is part
of the KDD infrastructure initiative at NCSA is the
construction of a genetic wrapper for evaluating and
refining domain knowledge in the form of constraints on
attribute synthesis operators.

Scalable Computing Issues: Exploiting
Functional (Task-Level) Parallelism
Finally, the current research and development for the
KDD infrastructure is focused on taking advantage of
functional parallelism in genetic attribute selection and
partitioning. This is accomplished by dividing fitness
evaluation tasks (application of supervised learning)
among multiple high-performance processors.
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