
The Importance of Simplicity and Validation in Genetic
Programming for Data Mining in Financial Data

James D Thomas *
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213
jthomas+@cs.cmu.edu

Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

katia÷Qri.cmu.edu

Abstract

A genetic programming system for data min-
ing trading rules out of past foreign exchange
data is described. The system is tested on
real data from the dollar/yen and dollar/DM
markets, and shown to produce considerable
excess returns in the dollar/yen market. De-
sign issues relating to potential rule complex-
ity and validation regimes are explored em-
pirically. Keeping potential rules as simple
as possible is shown to be the most impor-
tant component of success. Validation issues
are more complicated. Inspection of fitness
on a validation set is used to cut-off search
in hopes of avoiding overfitting. Additional
attempts to use the validation set to improve
performance are shown to be ineffective in
the standard framework. An examination of
correlations between performance on the val-
idation set and on the test set leads to an
understanding of how such measures can be
marginally benificial; unfortunately, this sug-
gests that further attemps to improve perfor-
mance through validation will be difficult.

1 Introduction

There has long been a strong interest in applying com-
putational intelligence to financial data. Traditionally
such attempts have been on prediction, on identifying
near-future price movements. However, another ap-
proach develops trading rules which are unconcerned
with continual price prediction and wait for certain
conditions to trigger buy or sell actions. Recently,
economists have had some success using genetic al-
gorithms to generate such trading rules that produce

*Thanks to Blake LeBaron, Andrew Moore, Matt Glick-
man, Bryan Routledge, and John Miller. Sponsored by
NSF grant IRI-9612131 and ONR grant N-00014-96-1-
1222. Copyright 1999, American Association for Aritificial
Intelligence (www.aaai.org). All rights reserved.

statistically significant out-of-sample returns [7], [1].

We are interested in building a general system of data
mining for automatic rule discovery that incorporates
these genetic programming techniques. First, we have
to examine the genetic programming methodology it-
self. This paper implements a genetic programming-
based system for trading rule discovery and evaluates
its performance over real world exchange rate data in
the dollar/yen and dollar/dm markets. Given the im-
mense amount of noise in financial markets, we are
most concerned with those aspects of our system that
allow us to fight overfitting, specifically rule complex-
ity and validation methodologies.

2 Previous Work

The efficiency of financial markets has long been a key
interest of financial economists, as literally all of mod-
ern financial theory depends on the assumptions of
efficient markets. In this framework, financial mar-
kets are thought of as random processes, whose dom-
inant component is a potentially time-varying Gaus-
sian perturbation [3]. But recently a line of inquiry
has opened up exploring the excess returns provided
by simple moving average trading rules. The pioneer-
ing work was done by Brock, Lakonishok, ~ LeBaron
[8], demonstrating that a simple moving average trad-
ing rule produced significant excess returns when ap-
plied to the S&P 500, and LeBaron [5] intriguingly
extends these techniques to foreign exchange markets.
Researchers have stepped beyond traditional moving
average rules to examine the ability of genetic pro-
gramming [4] to automatically generate more complex
trading rules. Allen & Karjallainen [1] explored this
approach on the S~P 500 and found rules that earned
excess returns over a buy-and-hold strategy. Neely et
al [7], [6] used similar methodology in investigating
foreign exchange markets and again showed excess re-
turns.

While the economists are interested in addressing is-
sues of market efficiency, computer scientists are in-

From: AAAI Technical Report WS-99-06. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

terested in optimizing the search algorithms used to
produce the best results possible. While the results of
Allen & Karjalainen and Neely et al are strong, they
use GP as a black box to answer economic questions
about market efficiency, with little thought as to the
design of that black box. This paper attempts to open
the black box to examine how the genetic program is
doing its job and how to get it to work better.

As such, little space will be devoted towards proving
the economic credentials of this work; the focus will
primarily one of comparison of excess returns across
different variants of the basic algorithm.

3 The system

3.1 Task and Data

We are interested in the profitability of trading rules;
specifically, rules that look at past data and give us a
’buy’ or ’sell’ signal. For data, we used the average of
closing bid and ask prices for dollar/dm and dollar/yen
foreign exchange price series, dating from 2/2/1979
to 12/29/1995. This gave us 4324 price quotes. We
somewhat arbitrarily took the first 1000 datapoints for
training, the next 500 for validation, and we used the
next 2750 for a test set (we threw away 74 datapoints
because we cut the test set up into 250 point slices, for
an experiment we describe in section 4.3).

3.2 Fitness

The profitability of a trading rule is measured in terms
of excess returns. Excess returns are a measure of how
much money we gain by trading, minus the cost of the
capital we have to borrow to trade with.

Consequently, we use excess returns as our measure
of fitness. We measure the log excess returns (in the
finance literature, returns are traditionally converted
into log form for easy manipulation) of a long position
(borrow dollars and buy foreign currency) as follows.
Denote the exchange rate at time t by St, the domestic
interest rate by it and the foreign interest rate by it/ .
Then our returns are the gains from trading plus the
differential in interest rates:

rt = lnSt+l - lnSt q- ln(1 q- if) + ln(1 q-

For a short position (borrow foreign currency and buy
dollars) we simply take the negative of this. We make
no provisions for transaction costs.

3.3 The algorithm

The system follows a standard genetic programming
framework. Our data structures deliberately mimic
those of traditional moving average trading rules.
These rules usually involve comparisons between mov-
ing average, max, and min statistics computed over

past price signals. A typical rule might be:

If the current price is greater than the 150-day moving
average of past prices, take a long position; otherwise
take a short position.

This is an example of a ’150 day moving average’ rule.

In order to allow for the representations of such rules
(and more complex variants), we set up our trees with
the following kinds of nodes:

¯ Leaf nodes all consist of a function of the current
price series: moving averages, maxes, or mins with
time windows varying from 1 to 250.

¯ Higher level nodes consist of two types: compari-
son nodes (< and >) and

¯ logical nodes (logical and, xor, not).

We set up our operations on the trees (crossover and
mutation) so that only structures that ’make sense’
were created: where ’make sense’ means that compar-
ison nodes always have leaves as children, and logi-
cal nodes all had comparison nodes as children. This
essentially allows arbitrary logical combiations of tra-
ditional moving average rules while ruling out poten-
tially absurd combinations like less-than comparisons
between logical values.

For reasons of computational efficiency, we precom-
puted the min, max, and moving average functions
over 18 different windows of sizes ranging from 3 to
500. By caching these results, we greatly speeded up
fitness computations.

The high-level algorithm goes as follows:

¯ Split data into training, validation, and testing
sets

¯ Generate beginning population of rules

¯ Pick two rules (weighted by fitness) and perform
crossover

¯ Pick one rule at random and mutate it.

¯ For each of the three new rules generated by
crossover and mutation, pick a single existing rule
and compare fitness on the training set; if the new
rule has greater fitness, keep it.

¯ Keep track of the average rule-fitness over the val-
idation set (excess returns generated by that rule)

¯ Repeat until average rule fitness over the valida-
tion set starts to decline

¯ Evaluate rules over test set.

There are two key differences between this algorithm
and a traditional genetic programming approach. The
first is the lack of a traditional generation structure;
instead of the entire population undergoing crossover
and mutation, it is one operation at a time. There is

8

a good reason for this; as we will see later, search in
this domain progresses very quickly, and in order to
examine what’s happening, finer resolution than the
level afforded by a traditional generation structure is
needed.

The second is the presence of the validation set, and its
use in determining when to end search. In contrast to
many problems to which genetic methods are applied,
we are looking for the ability to generalize; and if we
purely optimized over the training set we would tend
to ’overfit’ the data. What we use is similar to meth-
ods traditionally used by neural networks and other
machine learning methods [2].

4 Experiments &= Empirical Results

We are interested in understanding how variants of our
basic system function comparatively. In particular, we
want to address the folloing questions:

* How does rule complexity of affect performance?

¯ Can we use additional validation methods to pro-
tect against overfitting?

¯ Should we try to accound for nonstationarity?

The sections that follow describe our empirical inves-
tigations of these questions applied to our basic sys-
tem. We ran simulations over both the dollar/yen and
dollar/dm data and evaluated excess returns over the
training sets. All simulations are averaged over 30 tri-
als.

4.1 Rule complexity

Intuitively, controlling the size of the trees representing
the rules offers a tradeoff: bigger trees means more rep-
resentational capability at the cost of potential over-
fitting. To test this, we varied the parameter that
controlled the maximum depth of the tree, allowing
trees of depths 5, 3, and 2.

The table below presents the results, in terms of annu-
alized percentage returns for the system with differing
maximum tree depth sizes.

Depth: S/yen $/DM
5 3.94% .85%
3 2.83% .61%
2 8.10% 1.14%

The results here are striking; in the dollar/yen case,
tree size of 2 is clearly superior, and looks mildly su-
perior in the dollar/DM case. Eight percent excess
returns are pretty impressive, and are in line with
some of the better results from traditional moving av-
erage rules [8]. It is worth thinking about what this
means - when limiting trees to depth 2, the only sort
of rule that is possible is that of a simple comparison -

comparing one moving average, max, or min statistic
against another. In the battle between overfitting and
representational power, representational power clearly
loses. For the dollar/yen case T-test values compar-
ing the means of the depth 2 case with the depth 3
and 5 cases have significance levels below .001; for the
dollar/dm case the results do not show statistical sig-
nificance.

In the following sections, we discuss many variations
on the original algorithm; however, the pattern above -
tree depth 2 providing the best results- is so pervasive
we will not argue much more for it.

4.2 Validation

In our standard model, the validation set is used only
to determine when to cutoff search. However, there are
additional possible ways to use this information that
might help increase returns. Neely et al [7], [6] used the
following methodology: after he stopped search on the
genetic algorithm, he looked at the rule with the best
performance over the training set. He then examined
that rule’s performance on the validation set. If that
rule produced positive returns, he kept it, otherwise
he threw it out and started over.

Thus inspired, we added tried two additional valida-
tion techniques. One was very similar to Neely’s; once
search was stopped using the method described above,
we isolated the rule that performed best on the train-
ing set and examined its performance on the validation
set, keeping it if it produced positive returns. We label
this approach the ’single-rule’ approach. Our second
approach is similar, but instead of examining a single
rule, we examine the performance of every rule in the
population over the validation set, and keep all that
produced positive returns. We label this approach the
’multiple-rule’ approach. We present the results before
for the two additional methods (we still use the vali-
dation set to determine when to cut off search). The
first table covers the dollar/yen market; the second,
dollar/dm:

dollar/yen
Depth: standard single multiple
5 3.94% 1.22% 3.37%
3 2.83% 2.59% 1.54%
2 8.10% 6.85% 6.98%

dollar/dm
Depth: standard single multiple
5 .85% -.39% .31%
3 .61% .23% .22%
2 1.14% .94% 1.22%

The results here are surprising. In only one case
(multiple-rule with tree depth of 2 on the dollar/rim)
did the additional validation help at all, and that dif-
ference is marginal at best. In every other case, the

additional attempt at validation made things worse.
The differences are not statistically significant, but the
fact that the additional validation provides no help is
unexpected.

4.3 Time dependence

It is widely accepted that financial data is highly non-
stationary, although pinning down exactly what that
means is difficult [3]. But in our system, rules are used
almost ten years after the data that generated them.
We wanted to explore if this made a difference by re-
working the validation system: instead of using a fixed
window immediately after training, we used a ’sliding’
window. We sliced the test set into chunks of 250 dat-
apoints. For the first 250 points, we used the original
500 point validation set. Then, for the next 250 steps,
we moved the validation set forward 250 steps, and so
on throughout the data, so that the validation set was
always the 500 datapoints immediately preceeding the
test set. The results are presented below:

dollar/yen
Depth: standard single multiple
5 1.25% .03% 2.16%
3 3.07% 1.21% 3.07%
2 6.88% 6.86% 7.08%

dollar/dm
Depth: standard single multiple
5 .42% -1.00% .72%
3 .39% -1.11% .78%
2 1.30% 1.10% 1.51%

This table is qualitatively similar our results with a
fixed validation set, presented in section 4.2, with a
couple of minor differences: performance on the dol-
lar/yen market with depth 2 tree is poorer in the stan-
dard case. In the dollar/dm markets, returns for the
depth 5 and 3 trees is inferior, but the depth 2 tree
shows small improvement. But the important thing is
that allowing for the validation set to ’keep up’ with
the test set produces no significant improvements.

4.4 Why can’t we validate better?

We find the result that using only rules that produced
positive results on the validation set resulted in poorer
test set performance very puzzling. This subsection we
proposes a possible explanation. By no means do we
have a definitive answer; what we do here is intended
to be suggestive.

We looked at correlation between rule performance on
the validation set and rule performance on the test set.
The inution is that if using the validation set to weed
out ovefitted rules worked, we would expect to see a
positive correlation, indicating that poor performance
on the validation set indicated poor performance on
the test set, and vice versa. However, since using the

0.4

0.2

0

-0,2

-0.4

-0.6

-0.8
0

dollar/yen --
~dollar/dm

;o--.-,
.,..,. ,...]

/
//

//
///

i i i i
20 40 60 80 100

Number of Steps (xlO)

Figure 1: Correlation between performance on valida-
tion and training sets

validation set to weed out poor performing rules is
actually counterproductive, we expect to see the op-
posite. Figure 1 shows a graph of correlation across
number of steps for the tree depth 2 case, both dol-
lar/yen and dollar/rim.

Strangely, at the beginning of search, with completely
random rules, the correlations are strongly negative;
as search continues, the correlations rise. In the dol-
lar/yen case, the correlation becomes positive, and in
the dollar/dm case, they stay negative, but close to
zero. This measurement of correlation relates to our
concerns of validation as follows. In the dollar/yen
case, the median correlation between rule fitness on the
validation set and fitness on the test set at the point
of search cutoff over the 30 trials is 0. This suggests
that in half of the cases, there was zero or less corre-
lation between validation set performance and test set
peformance. For the dollar/dm case, the median was
-.4412, indicating that there was a negative correlation
in most cases.

Given this information, we should not be surprised to
find that using the validation set to identify bad rules
will fail as often as not at the point of search cutoff.

However, given that the correlation rises as search pro-
gresses, one might expect the ability of the multiple-
rule validation technique would improve accordingly.
Figures 2 and 3 plot the excess returns against num-
ber of search steps taken for the tree depth 2 case over
the validation set and over the test set - for both the
standard approach and the multiple-rule approach.

Examining these graphs roughly confirms are expecta-
tions. In both cases, around step 230, the multiple-rule
method starts to produce superior performance; and,
this is approximately when the correlation graphs for
each level off. The match isn’t perfect: the dollar/dm
correlations are still negative, despite some gains made
in the test set performance, but it is suggestive. In ad-
dition, the test set performance in the dollar/yen case

10

IM

12 /
/ Validation set --

10 I- Test set, standard

8 ~

Test set, multiple

6

4

;g..<::...
0 / / ..

-4
0 20 40 60 80 100

Number of Steps (xl0)

Figure 2: Excess returns for rules on validation and
test sets for dollar/yen

I.O

12

10

8

6

4

2

0

-2

-4
0

Validation set --
Test set, standard
Test set, multiple

..................... ::::::::::::::::::::::::::::::::::::::

S
....:..-.-. ~-::::’..:::

i J i i
20 40 60 80 100

Number of Steps (xl0)

Figure 3: Excess returns for rules on validation and
test sets for dollar/dm

shows no sign of overfitting; these two facts suggest
that additional criteria for identifying a cutoff point
for search need to be investigated.

5 Conclusions &: Future work

What can we conclude from the results here? First, it
is possible to extract rules with out-of-sample excess
returns, at least in some domains: we get very clear
results from the dollar/yen market but not from the
dollar/rim market. However, some caveats apply.

The most important issue here is that of tree size.
Given that trees limited to a depth of two outper-
formed larger trees, we must wonder if the full repre-
sentational power offered by the genetic programming
framework may be a hindrance rather than a help (at
least with the sparse feature set presented here). Given
how fast the system finds good solutions (in less than
ten generations, usually) and the simplicity of such
solutions, a more enumerative search method may be
preferrable. Still, we see promise in the genetic pro-

gramming framework, for its potential ability to inte-
grate multiple streams of data- an active research area
is using genetic programming to integrate data about
interest rates and even text information into the auto-
mated rule discovery mechanism. Future work lies in
attempts to find a way to encourage simplicity rather
than mandate it. Neely [7] suggests that using high
costs during training would encourage simpler strate-
gies that didn’t trade as much and provides some en-
couraging, but highly preliminary results along those
lines. Adjusting the fitness mechanism to bias towards
simplicity is another potential approach.

The validation issues raised by these experiments are
puzzling. It seems that neither allowing the valida-
tion window to move with the test set, nor trying to
use information from the validation set to select better
rules provides much gain. However, a closer look shows
that gains might be found in a new criteria for stop-
ping search. We examined the relationship between
validation set fitness and test set fitness and found cor-
relations that are often negative. Unfortunately, this
would seem to make use of more validation information
for performance improvement difficult. It seems likely
there is a sort of regime change occuring in the data -
understanding and taking advantage of this structure
in the data is a key to future research.

References

[1] Franklin Allen and Risto Karjalainen. Using ge-
netic algorithms to find technical trading rules.
Technical report, Rodney L. White Center for Fi-
nancial Research, 1995.

[2] Christopher M. Bishop. Neural Networks for Pat-
tern Recognition. Oxford University Press, 1995.

[3] John Y. Campbell, Andrew W. Lo, and A. Craig
MacKinlay. The Econometrics of Financial Mar-
kets. Princeton University Press, 1997.

[4] John R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Se-
lection. MIT Press, 1992.

[5] Blake LeBaron. Technical trading rule profitabil-
ity and foreign exchange intervention. Journal of
International Economics, forthcoming 1998.

[6] Chris Neely and Paul Weller. Technical analysis
and central bank intervention. Technical report,
Federal Reserve Bank of St. Louis, 1997.

[7] Chris Neely, Paul Weller, and Rob Dittmar. Is
technical analysis in the foreign exchange mar-
ket profitable? a genetic programming approach.
Technical report, Federal Reserve Bank of St.
Louis, 1997.

[8] Josef Lakonishok William Brock and Blake
LeBaron. Simple technical trading rules and the
stochastic properties of stock returns. Journal of
Finance, 47(5):1731-1764, 1992.

11

