
Genetic Algorithms as Post Processors for Data Mining

Simon Thompson

Intelligent Business Systems Research,
PP12, MLBI. BT. Laboratories,

Martlesham Heath,
Ipswich,

UK.
Simon .2. Thompson@bt. com

http://www.labs.bt.com/projects/ibsr/thompson.htm

Abstract
In this workshop paper we describe the use of Genetic
Algorithms (GAs) to post-process machine discovered
knowledge. We present an example where a GA can give
results comparable to the best available alternative
heuristics. We then discuss open issues in Post Processing
examining prospects for incorporating work on more
sophisticated measures of knowledge utility, local (Baldwin
and Lamarckian) search and the selective repair of
knowledge structures.

1. Introduction

Knowledge Discovery from Data Bases, or data mining as
it is often known is a multi-step process that transforms a
corpus of data into a machine executable classifier or some
human executable knowledge. The steps of the process
from data to final discovered knowledge artefact are
illustrated in figure 1.

I eleo 1

Pre-process

Figure 1: The Knowledge Discovery Process Data is obtained from
a database, selected by some query, pre-processed to clean it, mined
for knowledge and then integrated with pre-existing knowledge
bases.

Genetic algorithms have been applied to several of these
steps.
¯ Meggs (1996) reports good results when using a genetic

algorithm to select feature subsets from a database
before classifiers are learned using C4.5. Zelezbujow
and Stranien (1998) report using a GA to select
features before attempting knowledge discovery on a
legal data set.

¯ Genetic algorithms have been applied to the mining step
of the process: that is GA’s have been used to search
for the concepts or domain theory that generated the
data in the Data base or data warehouse. For example
GA’s have been used to search for first order
predicates entailed by data (Angier et al 1995) and 
discover rules in data (Pei et al 1997). Flockhart and
Radcliffe (1996) have exploited the natural parallelism
of GA’s to develop a massively parallel data mining
system.

The next step in the classic KDD process as illustrated in
figure 1 would be to evaluate the discovered rule set using,
for example, statistical techniques such as significance
tests and attempt to integrate it with any pre-existing
knowledge available. However in our experience a post-
processing step where the classifier or knowledge that has
been discovered is optimised to remove low utility
structures can be useful.
It is the use of GAs in this phase of the process that we
address in this paper.

2. Post Processing Classifier Ensembles

Previously Genetic Algorithms have been used by Optiz
and Shavlik (1996) to select populations of neural
networks. In the next two sections of this paper we present
an example that shows how an ensemble of decision tree
classifiers generated using a boosting algorithm earl be
optimised using a real valued GA.

2.1 Boosting Algorithms
Boosting Algorithms (Shapire 1990) are one of a group 
ensemble generation methods collectively known as
Perturb and combine algorithms (Breiman 1996). Although
the original Boosting Algorithms were derived from the
PAC learning framework several authors have reported

18

From: AAAI Technical Report WS-99-06. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



that they can be used to generate ensembles of classifiers
with enhanced generalisation abilities.
Boosting algorithms work by first generating a classifier
over a distribution, and then estimating a weight for it by
evaluating its performance over the distribution. This
weight is stored to be used in the final weighted majority
vote that combines the discovered classifiers in the
ensemble, but it is also used to weight the examples in the
Boosting Algorithms training set. These are evaluated
against the classifier, and if they are correctly labelled by
the classifier then the chance of them being included in the
training set for the next member of the classifier ensemble
is reduced. If they are incorrectly labelled then the
probability of them being included in the next training set
in increased.
Two separate heuristics have been proposed in the
literature for pruning boosted classifiers. These are the
Backfitting procedure proposed by Margineantu &
Dietterich (1998) and diversity based procedures proposed
both by Margineantu & Dietterich and in a paper on
pruning meta-learned ensembles by Prodromidis (et al
1998). We describe these two procedures below.

2.2 Backfitting
Margineantu & Dietterich (1998) describe a backfitting
algorithm for the post processing of ensemble classifiers.
This involves choosing an additional classifier to add to a
set of classifiers by a greedy search and then checking that
the each of the other classifiers in the set cannot be
replaced by another classifier to produce a better ensemble,
this process is known as the backfitting step.

2.3 Diversity
Both Prodromidis and Margineantu & Dietterich describe a
pruning algorithm based on finding a diverse accurate set
of classifiers.
We derived a diversity based algorithm from the two
papers above:
1. Select hi, the most accurate classifier on the pruning set.
2. Select hk the most different classifier available from the

classifier pool from hme,a the current ensemble.
3. Repeat 2 until the maximum number of iterations
We set the number of classifiers permitted to have non-0
weights in the optimised ensemble to 40, which is 80% of
the total which was the figure reported by Margineantu &
Dietterich to be most effective with this method.

2.4 A Genetic Algorithm approach
We developed a GA to optimise the weightings of the
ensemble classifiers we have developed. We used a real-
valued GA (Wright 1990) to optimise the weights of the
ensemble of classifiers. In the parlance of the evolutionary
algorithms research community this is a steady-state real-
valued GA that uses two-point cross-over and tournament
selection

3. Experimental Evaluation

We implemented six variations on the three basic
algorithms that we described above.
We noted that the backfittiing algorithm could be deceived
by the fh’st step of the search where because the initial seed
classifier will be the most accurate derived. This will
always be the classifier with the highest weighting the
choice of the next classifier will be arbitary (because it will
always be outvoted). We implemented an algorithm that
searched for the optimal pair of classifiers to be added to
the seed classifier that we called new-backfit (shown in
table 1 as NewB/F).
The algorithm for our variation is as follows:
1. Select the most accurate hion the pruning set

2. Select hj and hk the optimal pair of classifiers when
combined with hi to form hi.j.k

3. Iteratively attempt to find the optimal classifier to add
to the ensemble and then backfit on the other members
of the ensemble until a certain number of iterations has
been made or no improvement in accuracy is achieved.

An alternative would have been to search for the optimal
first 3 classifiers in the ensemble, but this is an
unacceptably computationally intensive procedure because
we would have to evaluate all the combinations of three
out of 50 classifiers. We also implemented a
straightforward backfitter (shown as B/F) using the
algorithm given by Margineantu & Dietterich.
We implemented three variations on the Real Valued
Genetic Algorithm approach:
Our first variation that we have called randlnit is as above,
except that rather than use the weights that are given by the
boosting algorithm it generates a set of starting weights
using a pseudo-random number generator.
Our second variation is called genetic and used a
population seeded with hypothesis derived by taking the
f’mal weightings produced. Apart from the strategy used to
seed the initial population randlnit and genetic use the
same search procedure.
The other variation of the GA that we implemented we
called newMute. In this algorithm a population of binary
strings are evolved, with a positive position on the string
representing the membership of the relevant classifier in
the final ensemble, and a negative position on the string
representing the exclusion of the classifier from the final
ensemble.
We implemented only one diversity based algorithm as
discussed in Section 2.3.

19



3.1 Method
We conducted a number of experiments to compare the
performances of the pruning algorithms on datasets drawn
from the UCI repository (Mertz and Murphy 1997)
Our setup was as follows. We first split each data-set into
four cross-validation sets using 75/25 training test splits.
Then we derived eight sub-training sets from each of the
training sets. Each of the sub-training sets was then used as
the input to a boosting classifier using the Ada-Boost
algorithm developed by Freund and Shapire (1996). Each
booster was run for 50 iterations producing 50 ensemble
members.
We combined outputs of all 50 classifiers on all eight
nodes by using a single weighted majority gate. The results
of these experiments summarised in Table I below. As
well as showing the results for each of the pruning
algorithms we have included a column "best" which gives
the cross-validated results for the highest observed
generalisation rates obtained by the SWMG classifiers
before they over-fitted. In other words the advantage that
would be obtained if the booster was stopped after it
produced the last classifier that did not reduce the
ensembles generalisation abilities. The column "unpruned"
shows the relative performance of the boosting algorithms
after 50 iterations of boosting.
The results are expressed as the percentage difference in
performance of meta-classifier over a ten fold cross
validation of C4.5. The base learner used was C4.5.
Highlighted results are those that show an advantage

I
1
I

Data- diversity randlnit newMute "B/F
letter 4:64 5R2 2177 2~12
adult 0.11 0:18 0,17 0.0
satim~, 1:19 4:59 -0,1 5.79
nurse -6.42 -7,71 -6,88 -8,27
car 8.12 673 7~89 5::34
mush 8.53 14,19 -20,47 5:9
solice -2,86 1,I7 -3.24 0:03
wave 9.52 10.48 5i6 7,28
musk -4.25 -0.93 -8.84 0.21
yeast 2i34 2:61 261 1,26

NewB/F genetic Unpruned Best

letter 6,04 5.97 1:7 6,17
adult 0:14 2; 86 0:09 0,17
satim~ 5~39 -0.3 2.84 4,43
nurse -8.07 -6,46 -6.46 -6.49
car 7,19 8,35 0.61 8.85
mush 5,9 -3.51 -8.04 14~18
sDIice 0!67 0.41 -1.35 0;91
wave 9,76 9,92 6i96 11,13
musk 0:75 -4.25 -7.09 0.94
yeast i,8 2:88 2:62 3,43

Table 1. The improvement over base classifier performance for a
pruned ensemble of boosted dassifiers using 6 different pruning
algorithms compared to Unpruned and early stopped results. The
columns in the table show the results for each of the prtming
techniques tried. Diversity was the diversity based algorithm
described in section 2.3; randInit was a GA using a randomly

initialised population; newMute was a GA using a mutation
operator that switched particular ensemble members on or off; B/F
was the backfimng procedure described in section 2.2; NewB/F
was our modified backfitting procedure (searching for the optimal
second and third dassifiers to be added to the best); genetic was 
GA using a population intialised with varients on the classifier
weightings discovered during the boosting proceedure; Unpruned
shows the results for the overfit ensembles and Best shows the
results that would be obtained by choosing the stopping point for
the booster by hand. Results are lout fold cross validated.

3.2 Discussion of Results
From the results given in table 1 we observe that the
pruning algorithm that worked best was the randomly
initialised GA, in fact it did almost as well as early
stopping ("best"). This was a major surprise to us, because
it was our hypothesis based on our previous knowledge of
GA’s that the GA which had its population initialised from
the weights estimated by the boosting algorithm would
out-perform the randomly initialised one.
This behaviour could be explained if the weights that are
estimated by the boosting algorithm are in a different local
minima in the search space from the global minima.
Looking again at table 1 makes us suspicious that this is in
fact what is going on. None of the algorithms achieves the
best accuracy for all data-sets making us think that their
are many different local minima across this search space.
Alternatively, it may be that we did not introduce sufficient
diversity in to the initial population for the initialised GA
in which case it may be possible to produce an
improvement in performance by developing an
initialisation procedure that does introduce an appropriate
noise level.
Another conclusion that we draw is that our variation on
the backfitting procedure given by Margineantu &
Dietterich is superior on the letter, splice, waveform, musk,
yeast car and (marginally) adult datasets and inferior 
the satimage data-set. However, it is worth noting that our
procedure is more computationally intensive.
In terms of computational cost the backfitting procedures
seem to be slightly more efficient than the GA’s. We used
a population size of 100 for 50 generations or about 5000
calls to the objective function for both of the GA’s, but
they generally converged and terminated at about 25
generations. The back fitting procedures typically
terminated after approximately 15 iterations, since they
made approximately 100 calls to the objective function
per-iteration as did the GA this would appear to be more
efficient. However, the initial search for the new-
backfitting procedure requires approximately 2500 calls to
the objective function for a 50 member ensemble making it
some-what less efficient than the GA.

20



4. Research Directions for Post Processing

with GA’s

In section 3 we showed that good results can be obtained
when GA based methods are used to prune ensembles of
classifiers. The GA is being used to select knowledge (in
the form of individual classifiers) for inclusion in an
optimised classifier (in this case a meta-classifier based on
weighted majority voting). In this section we speculate
about possible elaboration’s of this general method and
propose a number of alternatives for future research
investigations.

4.1 The Economics of Learning and Secondary
Learning Systems
Previous research in utilising GAs for post processing
discovered knowledge, such as the example that is
presented above, have used the generalisation performance
of the post processed knowledge structures to decide on
the fitness of hypothesis representing the pruning actions
to be taken. However more sophisticated approaches to
knowledge selection are available.
Markovitch and Scott (1993) present a framework in which
knowledge has both costs and benefits. This view of the
economics of learning balances the search overhead of
including a knowledge in a knowledge base, the
improvement or degradation in the classification utility of
the resulting classifier(s) and the novelty of the knowledge
element.
Using this approach would have several benefits. For
example if we were to include the size of the classifier in
our evaluation function then structures which do not effect
the classification performance of the system would be
removed because they would impede the fitness of the
hypothesis that contained them.
If we were to measure the novelty of the knowledge
structure as well as its utility in improving classification
performance then knowledge that applied to only a small
section of the test set would become more important to
hypothesis in genetic search. Weighting classification
performance in this way is useful in domains such as
oncology where the costs of some misclassifications are
much higher than the costs of others.
Although these approaches look promising they introduce
bias into the pruning process: rejecting knowledge or
classification structures because they appear not to effect
the classification utility is similar (at least in intent) 
preferring small knowledge structures to large ones. This
"Occam" bias is built into many symbolic learning systems
and reinforcing it with this sort of pruning heuristic may be
unhelpful.

4.2 Baldwin and Lamarckian approaches
If we are using GA’s as post processors for knowledge
structures it seems reasonable to attempt to utilise local
search heuristics that might be able to improve the genetic
search.
Two general types of local search procedure have been

identified (Houck 1997), these are known Lamarckian and
Baldwin type local search. Lamarckian search uses a local
heuristic to optimise hypotheses from the GA’s population
and then re-introduces the optimised solution into the GA’s
population and restarts the genetic search. Baldwin type
search optimises the hypotheses using local search and
then measures the relative fitness’ of the optimised
individuals. The original hypotheses in the population are
then given these optimised fitness rankings and another
step of the GA is made on this basis.
It is not clear whether using local heuristics will be useful
for a post processing GA, it may be that the heuristics will
re-introduce bias into the procedure of selecting
knowledge elements, and will so prove ineffective, but this
is certainly a worthwhile topic for further study.

4.3 Selective Repair of Knowledge Structures
If we interpret the post processing of discovered
knowledge as a secondary learning task then it becomes
clear that we do not need to consider the role of the GA as
being only to prune and reduce the knowledge base.
Alternatively GAs may play a role by supplementing the
currently discovered knowledge. We will sketch a possible
scheme for this approach below.
Given a classifier or a knowledge base and a set of unseen
data we can identify areas of the distribution that the
learning procedure that has been used on has not classified
well (if no such areas exist, we can terminate. We have 
perfect classifier already).
The GA can be used to directly search for knowledge that
covers the bad areas of the distribution directly. For
example, the GA might be seeded with the already
discovered rules in the knowledge base, and a search for
extensions to the rules that cover the bad areas might be
initiated. Alternatively a straightforward search for new
rules that have been missed due to some bias in the
discovery algorithm might be attempted.
Of course we would have to combine the newly discovered
knowledge with the pre-discovered knowledge base. This
could be done by employing and arbitrator type
architecture (Chan and Stolfo 1996). An algorithm that
employs these ideas is given bellow:
1. Split the training data into three parts: the training set

Sirai,, the hold out set Sh and the test set Stest.
2. Employ whatever approach that has been selected to

discover a knowledge base from Strot, Call the
discovered knowledge base Cp~e

3. Prune Cpr~ using a GA and Sh to assess the
appropriateness of the pruning and optimisations
performed by hypothesis in the GA’s population. Call
the pruned knowledge base Cpr~,~a

4. Find the examples that are mislabelled by Cpru,,ea in S~rai,,
label these as positive, and label all the other (correctly
classified examples) and negative call this data set Sm~ss

5. Learn a classifier that can detect examples that are likely
to be mislabelled by the pruned knowledge base from
S,~ss call this classifier Ca,.btt

6. Learn a classifier that correctly classifies examples in
S,.at,, that are labelled positive in Smis.~ call it C, er~l,

7. Construct a meta-classifier as follows: if the example is

21



classified -ive by Corhit then label it using the output of
Cp,~,ed other wise label it using the output of Crer~i~.
Assess the usefulness of this classifier using S,~,

5. Conclusion

In this paper we have examined the use of GA’s for post
processing discovered knowledge structures. We presented
an example from our own research demonstrating the
utility of the approach when pruning ensembles of
classifiers. We identified three possible avenues for further
investigation:
¯ Using more sophisticated measures of knowledge utility
¯ Using local search and investigating Baldwin and

Lamarckian style searches
¯ Identifying areas of the distribution that have not been

well learned by a pruned classifier and then attempting
to repair them

6. References

Angier, A. Venturini, G.& Kodratoff, Y. (1995) Learning
First Order Logic Rules with a Genetic Algorithm. In :
Proceeding of KDD ’95 21-26

Breiman, L. "Bias, Variance and Arcing Classifiers".
Technical Report 460, Statistics Department, University of
California, Berkeley, CA., 1996

Chan,P. & Stolfo,S.J. "Shared Learned Models among
Remote Database Partitions by Local Meta-Learning",
Proc. Second Intl. Conf. On Knowledge Discovery and
Data Mining, 1996, pp2-7

Flockhart, I.W., Radcliffe, N.J. "A Genetic Algorithm
approach to Data Mining". Proceedings of 2nd
International Conference on Knowledge Discovery and
Data Mining (KDD-96), 2-4 Aug. 1996, AAAI Press, 
299-302

Freund, Y. and Schapire, R.E. "Experimenting with a New
Boosting Algorithm" In: Proceedings of the Thirteenth
International Conference on Machine Learning 1CML96.
Bari, Italy, July 3-6 1996 pp148-157

Houck, C. R., J. A. Joines, and M. G. Kay. 1997. Empirical
investigation of the benefits of partial Lamarckianism.
Evolutionary Computation 5:1,31-60

Margineantu, D.D. & Dietterich, T.G. "Pruning Adaptive
Boosting" In: ICML-97: Proceedings of the Fourteenth
International Conference on Machine Learning. 1997,
San-Franciso, CA. Morgan Kaufmann

Markovitch, S. & Scott, P.D. 1993, Information Filtering:
Selection Mechanisms in Learning Systems. Machine
Learning, 10:113-151.

Meggs G. A genetic enhancement to the wrapper method
lEE Colloquium on Knowledge Discovery and Data
Mining (Digest No. 1996/198), 18 Oct. 1996, IEE,ppl0/1-8

Merz, C.J., & Murphy, P.M. UCI Repository of machine
learning databases Irvine, CA: University of California,
Department of Information and Computer Science, 1998.

[http://www.ics.uci.edu/-mlearn/MLRepository.htmi].

Opitz, D.W. & Shavlik, J.W. (1996)"Actively Searching
for and Effective Neural-Network Ensemble", Connection
Science, 8(3-4)

Pei, M., Goodman,E.D. & Punch,W.F. "Pattern
Discovery From Data Using Genetic Algorithms", First
Pacific-Asia Conference on Knowledge Discovery & Data
Mining, Feb. 1997.

Prodromidis, A.L., Stolfo,S. &Chan, P.K. "Pruning
Classifiers in a Distributed Learning System" Pre-print of
paper submitted to KDD-98.

Shapire,R.E. "The Strength of Weak Learnability"
Machine Learning, 1990 5(2): pp 197-227

Wright, A.W. "Genetic Algorithms for real-parameter
optimization", In Rawlings, R.E. (ed) Foundations of
Genetic Algorithms, 1990, pp 205 -220, MorganKaufmann

Zeleznikow J & Stranieri A (1998) Knowledge discovery
in discretionary legal domains.In: Research and
Development in Knowledge Discovery and Data Mining.
Second Pacific-Asia Conference, PAKDD-98, 15-17 April
1998, Springer-Verlag, pp 336-47

22




