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Abstract

The correct control and prediction of Wastewater
Treatment Plants poses an important goal in or-
der to avoid breaking the environmental balance
and to always keep the system in stable operating
conditions, In this respect, it is known that quali-
tative information -—coming from microscopic ex-
aminations and subjective remarks— has a deep
influence on the activated sludge process, espe-
cially in the total amount of effluent suspended -
solids (T'SS), one of the measures of overall plant
performance. The strong interrelation between
variables, their heterogeneity, and the very high
amount of missing information make the use of
traditional techniques difficult, or even impossi-
" ble. Despite this problems, and through the use of
“-several soft computing methods —rough set the-
ory and artificial neural networks, mainly— ac-
‘ceptable prediction models are found that show
- the interplay between variables and give insight
.- to the.dynamics of the process.

INTRODUCTION

Dirty water is both ‘the world’s greatest killer and its
biggest single pollution problem (Lean and Hinrichsen
1994). The large amount of wastewater generated in
industrialized societies is one of the main environmen-
tal pollution aspects that must be seriously considered.
New Directives and Regulations have guaranteed the
appearance of specific plants to treat these wastew-
aters, being activated sludge the system most exten-
sively used in Wastewater Treatment Plants (WWTP).
In an activated sludge process, the wastewater (mainly
organic matter, suspended solids and nutrients) goes
into an aerated tank where it is mixed with biological
floc particles. After enough contact time, this mixture
1s discharged to a settler that separates the suspended
biomass from the treated water, Most of the biomass
is recirculated to the aeration tank again, while a little
amount is purged daily (WETF 1996).

Activated sludge is a clear example of an environmen-
tal process which is really difficult to understand, and
thus difficult to be correctly operated and controlled.
The inflow is variable (both in quantity and in qua-
lity): not only there is a living catalyst (the microor-
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ganisms) but also a population that varies over time,
both in quantity and in the relative number of species;
the knowledge of the process is scarce; there are few
and unreliable on-line analyzers; and most of the data
related to the process is subjective and cannot be nu-
merically quantified.

Most of the problems of poor activated sludge effluent
quality result from the inability of the secondary settler
to efficiently remove the suspended biomass from the
treated water. When the biomass is strongly colonised
by long filamentous bacteria, holding the flocs apart
and hindering sludge settlement, the amount of Total
Suspended Solids (TSS) at the outflow of the plant in-
creases seriously, Although this phenomenon, called
bulking, has been extensively studied, the interrelations
and diversity of the many bacterial species involved,
and the uncertainty about the factors triggering their
growth constitute obstacles to a thorough and clearcut
understanding of the problem.

Research contributions in this field have been formu-
lated from many different points of view. However, a
direct cause-effect relationship for WWTP performance
has been established only in few cases and, even in
those, the experimental results could lead to contradic-
tory conclusions (Capodaglio 1991), avoiding the for-
mulation of deterministic cause-effect relationships that
could be used as prediction models. The identification
of a model that could predict in real-time and with rea-
sonable accuracy the appearance of sludge bulking is
thus of great practical importance because of the poten-
tial improvement of treatment plant efficiency and cost
savings (Novotny et al, 1990). This model should let
to obtain an accurate estimation of TSS ranges at the
outflow of the plant, based on the relationship among
the most relevant variables of the process, both quanti-
tative (e.g. flow rates and analytical results) and qua-
litative (biomass microscopic examinations and process
observations), in order to know whether the plant is
accomplishing the discharge permit limit.

To tackle such a task, different, interrelated stud-
ies have been performed towards the development of a
model of input-output behaviour of WWTP using soft
computing techniques (Belanche et al. 1998); (Belanche
et al. 1999). The next natural step is to take into ac-



AB (inflow) Q-AB (inflow) COD, BOD (organic matter) -
TSS (suspended solids)
Presence-foam
Q-R (biological recycle) Microfauna

AS Q-P (biological purge) - (Aspidisca, Vorticella, ...)

(bioreactor) | Q-A (biological aeration) Filamentous bacteria
(Nocardia, Thiothriz, ...)

AT (outflow) - COD, BOD, TSS Look (appearance)

Table 1: Selected variables characterizing the behaviour of the studied WWTP.

count qualitative information —which had not been con-
sidered in the previous studies— and to explore how it
affects the formation of predictive models. This quali-
tative information is usually put aside because of its na-
ture and the high levels of missing values that it brings
along, both being a nuisance -if not a problem- for
many learning algorithms and models, which have to
accommodate qualitative and missing information in a
cdeformative preprocessing. There is also a need to han-

dle uncertain or imprecise information, a characteristic .

present in all kinds of variables.

Variable Unit Missing Mean | StDev
Q-AB m®/d 18 | 10707.0 | 3634.0
COD-AB mg /T 380 | 795.8 | 198.0
BOD-AB mg/l - 480 390.7 95.7
TSS-AB mg/1 380 315.9 91.4-
Q-R "~ m°/d 1| 5597.7 | 2287.1
| Q-P Kg TSS/d 11 771.6 | 756.6
Q-A Kg O, /d 61 | 4138.6 | 1878.4
COD-AT mg/l 380 558 | 185
BOD-AT mg/1 480 9.0 4.9
TSS-AT mg/1 376 9.6 5.8

Table 2: Basic statistical descriptors for selected quan-
titative WW'TP variables (in 609 days).

‘The purpose of this paper is to present several expe-
riments performed using qualitative information, either
per se or together with quantitative information, such
as influent characteristics and control actions. Speci-
fically, the influence on effluent TSS levels is studied,
as an indication of plant performance and fulfillment of
regulations. The final aim of the work is to find a model
capable of short-term prediction, which takes into ac-
count only really relevant variables and accommodates
characteristics of real WWTP data: imprecision, hete-
rogeneity, and high incidence of missing information.

The technigues used throughout the work fall within
whal is nowadays labeled as soft computing, among
which we find rough sets, fuzzy sets, evolutionary meth-
ods and neural networks. In particular, time-delay neu-
ral networks of three kinds are used: classical (though
trained with simulated annealing plus conjugate gradi-
ent), probabilistic (trained as a Bayes classifier), and
heterogeneous (trained with genetic algorithms).
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A WWTP CASE STUDY

The historical database used throughout the work cor-
responds to a WW'T'P of a touristic resort in the Costa
Brava (Catalonia). This plant removes organic matter
and TSS contained in the raw water of about 30,000
inhabitants-equivalents in winter and about 150,000 in
summer. This database comprises a large amount of
quantitative and qualitative variables corresponding to

" an exhaustive characterization of the main points of

the plant, such as the inflow, the bioreactor, and the
outflow (indicated in table 1.as -AB, -AS, and -AT,
respectively). Quantitative information includes ana-
lytical results of water quality ~organic matter, mea-
sured as chemical (COD) and biochemical (BOD) oxy-
gen demand, and Total Suspended Solids, measured as
TSS (WEF 1992)-, together with on-line signals com-
ing from sensors ~inflow or Q-AB, recycle or Q-R, purge
or Q-P and aeration or Q-A flow rates. Qualitative
data include information about the presence of foam
in the bioreactor (“Presence-foam”), the subjective ap-
pearance of outflow (“Look”), and daily microscopic
examinations (basically, presence of microfauna —e.g.
Aspidisca, Vorticella- and some filamentous organisms
-e.g. Nocardia, M. Parvicella).

The final data set covers an homogeneous represen-
tative period of 609 consecutive days, considering each
day as a new sample. Basic statistical descriptors of
the variables comprised in the database are shown in
table 2 (for quantitative variables) and table 3 (for qua-
litative ones). The relative abundance of qualitative
variables is categorized in three different levels: none,
some and many, with the exception of outflow appear-
ance (that is, “Look-AT”), categorized as poor, fair and
good. The most relevant feature of the database is the
extremely high incidence of missing values (between
60-80%, approximately). This is specially true in the
case of outflow variables COD-AT, BOD-AT and TSS-
AT -more suitable as targets for developing prediction
models— variables characterizing water quality at the
inflow COD-AB, BOD-AB and TSS-AB, and qualita-
tive variables characterizing the microorganisms. For
this reason, the final database processed includes only
those days with a recorded value in the target variable
TSS-AT, causing the initial data matrix to shrink from
609 to 233 days (table 2, last row). Nevertheless, the
rate of missing values is still extremely high among po-



Presence-foam 394 17 153 45
Zooglea 394 117 69 29
Nocardia 399 90 51 69
Thiothriz/021N 396 112 85 16
Type 0041 397 140 44 28
M. Parvicella 395 156 23 35
Aspidisca 503 8 82 16
Fuplotes 438 154 16 1
Vorticella 501 4 89 15
Epistylis 501 9 81 18
Opercularia 450 126 27 6
Carniv. ciliates 394 160 48 7
Flagell. >20pum 394 184 23 8
Flagell. <20um 394 176 24 15
Amaebae 394 173 38 4
Testate amebae 394 206 8 1
Rotifer 394 117 97 1

poor | fair | good
Look-AT 394 9 168 38

Table 3: Basic statistical descriptors for qualitative
WWTP variables. The last three columns show the
number of days for each variable and category.

tential predictor variables.

In addition, the complexity of the WWTP behavior
problem is reflected in the frequency distribution of its
variables. As an example, Kolmogorov-Smirnov tests
applied to the incoming TSS-AB and outgoing TSS-
AT variables confirm what direct inspection suggests:
whilst the first variable distributes normally, the sec-
ond does not. Actually, it has a right-skewed distribu-
tion, reflecting strong non-linear distortions introduced
by the WWTP dynamics (see figures 1, 2). All these
features make considerably hard the search for models
to characterize WWTP behaviour and must be always
taken into account when evaluating the quality of the
learned models.

DESCRIPTION OF THE METHODS

Four techniques were employed in this work to study
the influence and classification ability of qualitative
variables: fuzzy heterogeneous neural networks, clas-
sical neural networks, probabilistic networks and the
k—nearest neighbours algorithm. Rough set theory was
also used to perform a reduction of dimension.

Heterogeneous neural networks (HNNs for short)
are neural architectures built out of neuron models
which allow heterogeneous and imprecise inputs, de-
fined in (Valdés and Garcia 1997); (Valdés, Belanche
and Alquézar 1999) as-a mapping h : H" = Ry CR.
Here IR denotes the reals and H" is a cartesian product

32

088 4 @

99 1
95 o -

80 1
809
20 1

05 9 -
01 4.
001 7

Probability

50 150 260 350 450 550 660

Average: 315,647

RDav: 91.3834
N: 2290

-$mimov Normaity Test
D+:0082 0-:0024 D: 0062
Approximate P-\alye: 0.140

TSS-AB

Figure 1: Kolmogorov-Smirnov test for incoming Total
Suspended Solids (TSS-AB).
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Figure 2: Kolmogorov-Smirnov test for outgoing Total
Suspended Solids (TSS-AT).

of an arbitrary number n of source sets. These source
sets may be extended reals R; = R; U {X}, extended
families of (normalized) fuzzy sets F; = F; U {X}, and
extended finite sets of the form O; = O; U {X}, M; =
M;U{X}, where each of the O; has a full order relation,
while the M; have not. The special symbol X extends
the source sets and denotes the unknown element (miss-
ing information), behaving as an incomparable element
w.r.t. any ordering relation. According to this defini-
tion, neuron inputs are vectors composed of n elements
among which there might be reals, fuzzy sets, ordinals,
nominals and missing data.

An heterogeneous neuron computes a similarity in-
dex, or proximity relation, followed by the familiar form
of a squashing non-linear function with domain in [0, 1].
Thus, the neuron is sensitive to the degree of similar-
ity between its input and its weights, both composed in
general by a mixture of continuous and discrete quan-



SImIlarity Index (LGOwer 1Y/ 1) 1n whicn tie compuuation
for heterogeneous entities is constructed as a weighted
combination of partial similarities over subsets of vari-
ables. This coefficient has its values in the real interval
[0,1] and for any two objects i, j given by tuples of
cardinality n, is given by the expression

oy = kz19iik Sigk
T Yk=rSik

where g;jk is a similarity score for objects 7, j accord-
ing to their value for variable k. These scores are in the
interval [0,1] and are computed according to different
schemes for numeric and qualitative variables. In par-
ticular, for a continuous variable k¥ and any two objects
i, j the following similarity score is used:

_ vie — v

range (v.x)
Here, v;r denotes the value of object 7 for variable & and
range (v.x) = max; ; (|vik — vjx|) (see (Gower 1971) for
details on other kinds of variables). The d;;; is a binary
function expressing whether both objects are compara-
ble or not according to their values w.r.t. variable k. It
is 1 if and only if both objects have values different from
A for variable k, and 0 otherwise. For variables repre-
senting fuzzy sets, similarity relations from the point of
view of fuzzy theory have been defined elsewhere (Zim-
mermann 1992), and different choices are possible. In
our case, if F; is.an arbitrary family of fuzzy sets from
the source set; and A, B are two fuzzy sets such that
A Be Fi, the following similarity relation is used:

Gije =1

9(A, B) = sup {min (u(2), #5(=))}

As for the activation function, a modified version of the
logistic is used (Valdés and Garcia 1997), that maps
the real interval [0,1] on (0,1). The resulting hetero-
geneous neuron can be used for configuring artificial
neural networks, of which a layered, feed-forward archi-
tecture, with a hidden layer composed of heterogeneous
neurons and an output layer of classical ones, is a basic
straightforward choice, thus conforming a hybrid struc-
ture. The general training procedure for the HNN is
based on genetic algorithms, due to data heterogeneity,
missing data and the eventual non-differentiability of
the similarity function.

Rough Sets. An important issue in the analysis
of dependencies among variables is the identification
of information-preserving reduction of redundant vari-
ables. In particular, the task is to find a minimal sub-
sel. of interacting variables having the same discrimina-
tory power as the original ones, which would lead to
the elimination of irrelevant or noisy variables, without
the loss of essential information. Rough Sets (Pawlak
1991) exploit the.idea of approximating a set by other
sets. (iven a finite set of objects U (the universe of
discourse), a set X C U and an equivalence relation
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ana upper (Iiy ) approximation, respectively, as tollows:
Ro=U{Y:YeU/R:Y C X}
Ry=U{Y:YeU/R:YNnX#0}

where U/R is the equivalence class (partition) in-
duced by R. The lower approximation, also called the
positive region POSR(X), is the set of elements which
can be certainly classified as elements of X, whereas
the upper approximation is the set of elements which
can be possibly classified as elements of X. The depen-
dency coefficient is defined as the ratio between posi-
tive region size and universe size. A set of variables P
is independent w.r.t. the set of objects Q if for every
proper subset R of P, POSp(Q) # POSRr(Q); other-
wise P is said to be dependent w.r.t Q. Moreover, the
set of variables R is a minimal subset or reduct of P,
if R is an independent subset of P w.r.t. Q, such that
POSR(Q) = POSp(Q)." A variable a € P is superflu-

~ous if POSp(Q) = POSp_(4}(Q); otherwise a is said

to be indispensable in P. The set of all indispensable
relations is the core. An important property of the core
is that it is equal to the intersection of all reducts.
Rules of the form <condition> = <decision> can
be generated by using the information contained in the
reducts and the objects, concerning their condition and
decision attributes. The condition part of the rule is
a conjunction of attribute—value pairs. The decision
part, in this study, is a single pair composed of the
object’s decision attribute. Three different strategies
were used for rule generation from reducts, as follows:

Strategy 1 : for each object, this strategy finds a sin-
gle relative optimal reduct (in the sense of its length),
using heuristics for preserving the dependency coef-
ficient. This strategy is usually the fastest;

Strategy 2 : for each object, the shortest relative
reduct (in the explicit sense) is computed and used
for constructing the rule;

Strategy 3 : thisstrategy operates in a classwise man-
ner by finding all shortest relative reducts whose rules
cover some element of the corresponding class.

In all cases, repeated rules are not included. Crite-
ria for matching objects with rules are based on a no-
tion of distance, defined as the number of unmatched
attributes taken from the set of predictor variables ap-
pearing in the rule. Missing attributes are considered
in an optimistic sense, i.e., always matching. In this
study, two classification methods were used for testing
the performance of the rule sets generated.

Method 1 : Find the most frequent decision among
rules with minimum distance from a given sample
object.

Method 2 : Select first all the rules with minimum
distance from a given sample object and then, for
every selected rule, count the number of matched ob-
Jects, choosing as decision the one corresponding to
the rule with the highest such number.



model (Specht 1990) is a reformulation of the Bayes-
Parzen classifier —a classical pattern recognition tech-
nique (Fukunaga 1972)- in the form of an artificial neu-
ral network. The fact that the Bayes classifier is optimal
in the sense of the expected misclassification cost makes
the use of this kind of network very attractive, specially
for classification problems.

Setup and specification of the methods

If some fixed-length segment of the most recent input
values is considered enough to perform a task success-
fully, then a temporal sequence can be turned into a set
of spatial patterns on the input layer of a multi-layer
feedforward net. These architectures, regardless of the
training method and the neuron model, are called time-
delay neural networks (TDNNs), since several values
from an external signal are presented simultaneously
at the network input using a moving window (Hertz,
Krogh and Palmer 1991). Their main advantage in
front of recurrent architectures is their lower cost of
training, which is very important in the case of long
training sequences.

Three different TDNN approaches that differ in the
neuron model and training method have been tested: a
hybrid procedure (Ackley 1987) composed of repeated
cycles of simulated annealing coupled with the conju-
gate gradient algorithm (which we will call TDNN-AC),
our HNN model (:d. TDNN-HG), incorporating hetero-
geneous neurons and trained by means of genetic algo-
rithms, and the probabilistic neural network (TDNN-
PR). Four architectures formed by a hidden layer of
2, 4, 6 and. 8 neurons and an output layer of a linear
neuron were studied. The TDNN-HG was:trained us-
ing a standard genetic algorithm (Goldberg 1989) with
Peross = 0.6, pmut = 0.01, population size=26,52 in-
dividuals, a linear rank scaling with factor 1.5, and
stochastic universal selection. The algorithm was al-
lowed 5 runs for each population size and stopped after
1, 000 generations unconditionally. The TDNN-AC uses
the hyperbolic tangent instead of the logistic, and is
trained in one long run for every architecture, in which
the number of annealing tries was fixed to 50.

The probabilistic network TDNN-PR, uses a gaussian
kernel. During training each variable and class was al-
lowed to have its own variance, with values optimized
during the process (possible values ranged from 0.001
to 10). Also, the k—nearest neighbours (KNN) algo-
rithm (with & = 3) was tested against the data as a fur-
ther reference (recall that this algorithm has no training
phase). The TDNN-HG treats qualitative and missing
information directly and original real values as triangu-
lar fuzzy numbers in the form of a £5% of imprecision
w.r.t. the reported value, while the other two neural
approaches code a missing input as zero (no input) and
discrete values as real numbers.
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EXPERIMENTS

The effluent quality of the WWTP process given
by the TSS-AT was discretized by categorizing
the original continuous values into three classes
{(0,5),[5,13.5), (13.5,00) }, expressing low, normal and
high values. Four main sets of experiments were per-
formed, in accordance with the general model:

y(t) = F{.’L‘l(t jans 2),:1:1(t - 1),-~ Y
Tm(t —2),zm(t —1),y(t ~2),y(t - 1)} Vt >3

where m is the number of input variables, for a total of
" = 2m + 2 model input variables. Each z;(t) denotes
the value of the ith input variable and y(t) the value
of the target TSS-AT output variable, at time ¢.".The
number m varies and will be specified accordingly.

For each experiment, a preliminary study of the train-
ing data matrices via rough set analysis is first pre-
sented, with the aim of evaluating the actual predictive
capacity of the considered model and thus what can be
expected on its influence in the output. Next, the ma-
trices are processed by using the three different strate-
gies for rule generation, and the generated rules, along
with the two classification methods, are applied to the
test matrix, yielding corresponding percentages of cor-
rect classification. For the training set, the number of
generated rules in each case is shown too. Then, the
results obtained by training and testing the three neu-
ral methods (classical, heterogeneous and probabilistic)
and the k-nearest algorithm are collectively shown and
discussed. The advantage of this fanning out of meth-
ods is that, being so different in nature, are able to ana-
lyze the data from very different perspectives, allowing
to draw more general conclusions. It has to be noted
that, throughout all the experiments, all the methods
are applied to the data in exactly the same conditions.

Experiment 1: Qualitative.

Oriented to reveal the influence of qualitative variables
when studied per se; in particular, to reveal their pre-
dictive ability on the TSS classes, taking as inputs z;
the qualitative variables of table 3 (m = 18,7 = 38).
This leads to a matrix of qualitative information 145
days long, split into a balanced (in the sense of class
frequencies) training part (the first 115, 79.3%) and test
part (the subsequent 30 consecutive days, 20.7%) to be
forecast. It should be noted that the initially formed
matrix (232 days long) had a portion of missing in-
formation so severe that entire rows had to be removed
because all information was missing. After that, figures
for missing information still are 57.8% in training and
56.9% in test. As a further reference, the percentage of
normal days (the majority class) in the test matrix is

73.3%.

Experiment 2: Reduced-Qualitative.

Previous results. via rough set analysis are used in an
attempt to reduce the number of model input variables.



[Met. 1] Met. 2 [ Met. 1 [ Met. 2 | Met. 1 [ Met. 2 [| Best | Avg. | Best | Avg.
75% 74% 79% 74% 69% 74% || 87.0% | 82.2% | 86.9% | 82.2% 76.5% -
73.3% | 73.3% | 73.3% | 73.3% | 73.8% | 13.8% || 80.0% | 76.8% | 73.3% | 47.5% 73.3% 76.7%
78% 4% 79% T4% | 61% | 4% | 85.2% | 81.5% | 82.6% | 81.3% 83.5% -
T33% | 713.3% | 73.3% | 73.3% | 13.3% | 79.3% || 76.7% | 75.4% | 76.7% | 70.2% 16.7% 73.3%

Table 4: Rough set approach, Neural approaches and KNN: correct classification percentages for Experiment 1
(top two rows) and Experiment 2 (bottom two rows), along with the number of rules needed.

'This, besides being beneficial for the majority of learn-
ing methods, will shed some light on the relevance of
variables in relation to the TSS-AT. The new matrices
consist of the same days as in Experiment 1, though
only part of the original 38 model variables are used.

Experiment 3: Combined.

Aims at discovering how qualitative information be-
haves when joined to five selected quantitative vari-
ables: those corresponding to inflow characteristics (Q-
AB, COD-AB, TSS-AB) and control actions (Q-P and
Q-R). These variables are counted among the most rel-
evant of the overall process, according to their linear in-
tercorrelation structure (Belanche et al. 1999). Model
parameters are thus (m = 23, = 48). The heteroge-
. neous data matrix generated covers the whole period of
days since this time none had to be removed from the
matrix, although figures for mlssmg information were
64.2% in.training and 63.4% in test. It was split into
a training part (the first 191, 82.3%) and a test part
" (the subsequent 41 days, 17. 7%) to be forecast. The
' »pewentage of normal days in the test matux is 70.7%.

Experlment 4 Reduced Combined.

The model of Experiment 3 is reduced, again via rough
set analysis, leading to a model with lesser variables
and to much lesser missing information percentages of
31.6% in training and 29.8% in test.

EXPERIMENTAL RESULTS

The information displayed includes average and best
predictive accuracies obtained with each method.
Training information is also shown. For the rough set
approach, this information is given for évery strategy
and method, along with the number of rules generated.

Experiment 1: Qualitative

Beginning with the preliminary analysis, under the
rough set approach, the relative reducts and the core
were computed. The dependency coefficient between
the 38 model variables and the predicted TSS-AT in
the training set was found to be 0.0, indicating that
no clement can be classified with absolute security and,
therefore, that the set of variables is rather incomplete.
A total of 68 relative reducts were found, with a core
composed of 11 variables. The frequency distribution
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of variables in the reducts reveal that 12 do appear in
75% or more of all the reducts; specifically, the 11 of the
core plus an extra variable. On the other hand, another
14 variables from the original set are superfluous (they
occur in no reduct). All this means that information
dependency is unevenly distributed in the set of vari-
ables, as 32% of them is conveying the major part while
another 37% is carrying no information at all.

The results of the rule generation process, .the three
neural approaches and the KNN are given in table 4
(top) as percentages of correct classification. All the
methods and strategies are signaling the same predic-
tion ability, 73.3%, which coincides with the majority
class. This poor performance is nonetheless reflecting
the complexity of the data set, with a high rate of miss-
ing values affecting all variables, and classes showing se-
vere overlappings, revealed by the null dependency co-
efficient. It is interesting to observe that Strategy 3 for
rule generation needed only 23% of the rules required
by the other two while keeping the same effectiveness.

As for the neural methods, several aspects are note-
worthy. First, the results are quite similar and consis-
tent for both training and test sets. In other words,
no method clearly outperforms the rest. Second, there
seems to be a limit in training set accuracy around
87.0% and at 80.0% in test, which is a not so bad result
for such messy data. Also interesting to note are the
solid results achieved by the TDNN-HG, the poor aver-
age achieved by the TDNN-AC and the comparatively
good KNN performance.

Experiment 2: Reduced-Qualitative

In order to assess the viability of smaller models, a new
data matrix was constructed as in Experiment 1, but
now using only those model variables (twelve, see ta-
ble 5) occurring most frequently (in 75% or more) in
the collection of reducts. Note that selected variables
include all the filamentous bacteria —dominant in situ-
ations regarding poor sludge settleability, making solids
more likely to escape the settler— , and also the pres-
ence of the predicted variable in the two previous days.
Moreover, and due to the frequency of analysis and ob-
servations, the 2-day lag variables dominate over 1-day
ones, a consistent result. Also, with this variable selec-
tion, figures for missing information drop to 25.8% in
training and 19.2% in test.




table 4 (bottom). As'could be expected, overall training
and predictive performance is less and performance of
some methods (the TDNN-PR and the KNN) has fallen
-slightly the latter, abruptly the former-. On the other
hand, the other two neural architectures still keep a de-
cent classification ability, slightly above the 73.3% limit
imposed by the major class. Moreover, the results are
quite balanced between the training and test sets, and
what is more important, almost identical w.r.t. those
obtained for the model having all qualitative variables,
thus showing that a shorter model with only less than
one third of the original variables says the same about
TSS-AT than the whole set. If this behavior is con-
firmed by future investigations, it might have important
practical consequences.

Variable Delay
Presence-foam t—2
Look-AT t—2
Zooglea t—2
Nocardia t—2
Thiothriz/21N t—2
Type 0041 t—2
M. Parvicella t—2
Carnivorous ciliates | ¢ — 2
Rotifer t—2
Aspidisca t—1
TSS-AT t—2
TSS-AT t—1

‘Table 5: Reduced set of qualitative variables for Ex-
periment 2. :

Experiment 3: Combined

The preliminary analysis via rough sets was again per-
formed on the new set of variables. To this end, the
continuous process represented by numerical data was
transformed into a discrete one by expert introduction
of cut-point values. In particular, the following were
sct: Q-AB (6,000; 14,800), COD-AB (560; 1,000), TSS-
AB (210; 420), Q-R (3,500; 10,300) and Q-P (100;
1,400). Trom the total of 48 model variables (10 nu-
meric and 38 qualitative), 325 relative reducts and a
core composed by 12 variables were computed.

The dependency coefficient between the 48 model
variables and the predicted TSS-AT category in the
training set now rose to 0.22. This shows a gain in
secure classification ability due to the addition of the
new information given by the set of 10 numerical vari-
ables. However, the value of this coefficient is rather
low, indicating that the new variable set, although en-
larged, is still incomplete. Frequency distribution of
variables among the reducts reveals that only 13 vari-
ables, from the set of 48, appear in 75% or more of
all the reducts (actually, again the core plus an extra
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quantit‘ative information only, iﬁform’ation dependency
is unevenly distributed in the set of variables (27% tak-
ing the major part and 31% taking no part at all).
The results (table 6, top) show that, with a single
exception, classification performance via rough sets has
increased in the training set w.r.t. to Experiment 1,
while it has decreased slightly in the test set (70% vs.
73%). This indicates that the gain effect of the new
variables was not enough, as classification performance
remains about the same, and new informative model
variables should be included. For the neural methods,
the generalized lower performance (see table 4, top) is
at first glance surprising but can be explained with the
sudden increment in parameters while keeping a very
small training set. Also noteworthy is the 100% training
accuracy achieved by the TDNN-PR, although test set

performance is below average.

[ Variable Delay
Q-AB t—2
Q-AB t—1

COD-AB t—2
TSS-AB t—2
Q-R t—2
Q-R t—1
QP )
Q-P t—1
Nocardia t-—2
Thiothriz/21IN | t ~2
Aspidisca t—1
TSS-AT t—2
TSS-AT t—1

Table 7: Reduced set of combined variables.

Experiment 4: Reduced-Combined

This time only those 13 (out of 48) predictor variables
(table 7) are occurring in 75% of the reducts or more.
This reduced set is giving much information and de-
serves careful attention.

First, numerical variables are predominant, despite
their lower number w.r.t. the qualitative ones. Among
them, the physico-chemical inflow characteristics (Q-
AB, COD-AB and TSS-AB) and the control actions
Q-R and Q-P (purge and recycle flow rates).

Second, we can see how this information is needed at
both delays for the inflow rate and the control actions.

Third, the three qualitative variables include the
most commonly filamentous bacteria found in this plant
(Nocardia and Thiothriz or type 021N) causing bulk-
ing sludge, and a protozoa (Aspidisca), the absence of
which may indicate a decrease in plant performance and
poor settling characteristics. It is also remarkable the
fact that these three variables also appeared in the pre-
vious reduced set of qualitative information, and are



@et. [ [ Met, 9| Met. 1] Met. 2 | Met. 1| Met. 2 || Best | Avg, [ Best | Avg.
83% | 80% | 82% | 80% | 43% | 80% || 84.3% | 81.7% | 81.7% | 80.6% 100% -
70.0% | 70.0% | 70.0% [ 70.0% | 24.0% | 70.0% [[75.6% | 73.2% | 70.7% | 70.2% 70.7% 61.0%
81% 80% 81% 80% 41% 79% ]| 83.8% | 81.2% | 80.6% | 78.3% | 100% -
70.0% | 70.0% | 70.0% | 70.0% | 41.0% | 70.0% || 73.2% | 71.6% | 70.7% | 70.1% 70.7% 63.4%

Table 6: Rough set approach, Neural approaches and KNN: correct classification percentages for Experiment 3
(top two rows) and Experiment 4 (bottom two rows), along with the number of rules needed.

the sole survivors when mixed with the numerical in-
formation.

And fourth, again, the predicted variable itself (TSS-
AT) (at both delays) is considered amongst the most
informative. The behaviour of this model (table 6, bot-
tom) is similar to that of the previous, in the sense that
classification performances for training and test sets are
slightly less, showing that the effect of the 35 discarded
variables was in fact small.

‘Turning the attention to the neural models, it is in-
teresting to observe that the overall results are consis-
tent with those obtained in the different experiments,
specially in what concerns to the test set. Moreover,
since the PNN is asymptotically optimal in the sense
of the Bayes classifier, this might indicate a limit in
what is achievable with the available information. Also,
the fact that the TDNN-HG model gives slightly but
consistently higher results and a more balanced train-
ing/test ratio than all of the other methods has been ob-
served in other application contexts (Valdés, Belanche
and Alquézar 1999); (Belanche, Valdés and Alquézar
1998) and, in this case study, can be attributed to its
better treatment of missing values and qualitative in-
formation,

CONCLUSIONS

The influence of qualitative information in WasteWater
Treatment Plants (WWTP) has been studied, in what
regards to effluent total suspended solids quality, one of
the measures for plant performance. Summarizing the
results, 1t was found that qualitative information exerts
a considerable influence on plant output, although very
unevenly. A high degree of information redundancy was
discovered, since comparable predictive capabilities are
obtained when working with much severed subsets of
variables, obtained by rough set analysis. This analysis
produces homogeneous groups of variables; for qualita-
tive variables only, it signals the greater importance of
2-day delayed data in the process dynamics, as opposed
to I-day data. When qualitative and numerical infor-
mation are collectively considered, the latter are found
to be amongst the more informative, always in both de-
lays. In both cases, selected variables are highly rated
by WWTP experts. They also tend to be the ones with
less amount of missing values, thus reducing the relative
overall amount.

In addition, a common upper-bound in classification
accuracy is discovered, located around an 87% accuracy
in the model search process (the ¢training) and an 80% of
predictive accuracy (that is, using the learned model).
In this respect, the generalized and (relatively) poor
performance can be attributed almost entirely to the
data -besides, of course, to the problem complexity- in

" light of the consistent results yielded by methods that
are so different in nature; the fact that they are based
on very different principles allows to derive broader con-
clusions on the available data. The possibilities of these
methods are also noteworthy, provided they can handle
heterogeneity, imprecision and missing values, aspects
that characterize the data in a WWTP process.

In conclusion, the observed patterns of behaviour are
very promising and desérve ulterior studies to deter-
mine whether these patterns are specific or else they
represent a more general property of WWTPs. The
future work being done is oriented in this direction,
adding information in the form of better delays (e.g.
the weekly effect) and a more accurate selection of vari-
ables, taking into account the findings reported herein.
An additional goal is the development of a predictive
model for control variables (Q-P and Q-R). These mod-
els will hopefully supply the plant manager with a useful
tool to improve plant control and operation, -
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