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Abstract
Integrated environmental management in urban areas is
nowadays considered as a sine qua non objective of
Community and national environmental and development
policies. Large amounts of scientific information on the state
of the environment are now available from a large pool of
data sources. This work presents the on-going research
efforts at the Joint Research Centre of the European
Commission towards integration of these data sources and
effective coupling of the environmental information with
appropriate models and decision-support tools. State-of-the-
art data fusion techniques and inference systems are used in
an integrated environment in support of multi-criteria
environmental assessment and policy-making.

Introduction

Integrated environmental management in urban areas
requires the simultaneous consideration of a multitude of
information classes, including environmental quality data,
impact pathway models, economic analyses, the respective
regulatory framework, and the priorities of the stakeholders
involved in (or affected by) the decision-making process.
Assimilation of these types of information in a
comprehensive yet functional framework is necessary for
the development of user-friendly decision support tools
which foster public dialogue and enhanced stakeholder
participation in urban policy-making. (Fedra 1990).
Integrated air pollution assessment in particular includes
accurate representation of the pollution distribution in time
and space (environmental pressure), identification of the
main emission sources (causes), and evaluation of the
possible alternatives for coping with the observed
environmental burden.

The information base for urban environmental
management decision-making should stem from
measurements that ought to be:
(a)  reliable, objective and accurate at the local level, and
(b) representative and comparable at higher (regional,
national, and international) levels.

Site selection of ground-level measurements
determines the accuracy and representativeness of point
measurements; it is thus of fundamental importance for

spatial air quality comparisons and for the determination
of the effectiveness of air pollution abatement measures
and policies at the local and regional levels. Furthermore,
the choice and siting of the measuring network represents
a factor of significant economic relevance for policy-
makers.

The actual siting of measuring stations should
theoretically be based on criteria of population density,
historical data on air emissions inventories, location of
industrial and traffic emissions, environmental conditions
and meteorology. In practice, these variables are most
often weighted in an empirical way and are highly site-
specific. Moreover, the optimal design of the measuring
network requires initial information regarding the
geographic patterns of the ambient air concentration.
Existing modelling tools require validation and bench
marking in a variety of urban environments limiting thus
their reliability.

Earth observation from satellites offers a new
opportunity to integrate spatial information on pollution
dispersion. This can be provided on the one hand by the
assessment of the phyto-sanitary state of natural
ecosystems and on the other by the estimation of the rate
of atmospheric turbidity due to aerosols, namely
particulate optical thickness. Atmospheric turbidity shows
the particulate matter load but it does not provide
information on the chemical nature of the substances
present in the atmosphere. However, particulate matter is
a tracer for pollutants dispersion, and turbidity is an
appropriate pollution indicator due to its strong correlation
with the concentration of small particles, that have
recently been proven to be most harmful to human health
(Lipfert 1994; Pope et al 1995). To date, Earth
observation-derived data are used extensively in
atmospheric studies at the global scale. They provide
significant aid to better understanding of both natural
processes and anthropogenic impact on the environment
(CEOS 1992). There are, on the contrary, very few
examples of use of Earth observation data in urban or
regional air pollution investigations, where spatially
resolved information needs to be derived (Sifakis and
Soulakellis 1996).
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Features of environmental systems

Environmental systems and, consequently, environmental
management problems have several attributes which render
their formal representation different from that of other, say,
industrial systems. Some of the distinctive features of
environmental systems are highlighted below:
• Dynamics. Environmental systems evolve with time.

Many environmental processes are best treated as
continuous for modelling purposes. Other processes,
however, are better described as single events
requiring discrete event models.

• Spatial coverage. Environmental systems involve
physical processes, which take place in a two or three-
dimensional space. Modelling such processes
rigorously usually needs the solution of sets of partial
differential equations linking spatially referenced
variables with time referenced ones. Data are stored in
spatial databases often via a geographic information
system (GIS) to assist in spatial analysis.

• Complexity. Environmental systems are complex,
usually involving interactions between physico-
chemical and biological processes with social ones.
Models of such systems require multi-disciplinary
approaches, the success of which depends heavily on
the establishment of common grounds for
communication among different scientific disciplines
and various classes of stakeholders.

• Randomness. Many environmental processes are
stochastic. Parameter uncertainty characterises the
models representing them, and it is common to define
the parameter space only approximately. Statistical
analysis and qualitative interpretation of model
equations are therefore warranted.

• Periodicity. Many environmental processes are periodic
in time, adding thus a further degree of complexity in
parameter calibration and validation. Data storage can
also be affected by the periodicity of input data.

• Heterogeneity and scale. The media in which
environmental processes take place are not
homogeneous and cannot easily be characterised by
measurable parameters. Processes in different media
may have quite varying characteristic time and space
scales.

• Paucity of information. Observational data on
environmental systems, particularly on internal states,
typically suffice only for the characterisation of simply
parameterised models.

Users of environmental management decision support
systems vary, including scientists, managers (decision-
makers) and concerned stakeholders. Each of the user
categories has different needs, knowledge acquisition and
communication standards, and final objectives.

Integrated solutions to environmental problems are
inevitably at the interface between the domain of
observation, studies and scientific action, which allow the
emergence of knowledge, and the domain of political
strategies and social pressure. These domains have their

own indicators, their concepts, their culture and behaviour,
as well as their sources of bias and misunderstanding.

The main feature of our work is the identification of the
need and the development of a state of the art methodology
and of the respective tools for integrating the variety of
information classes affecting decision-making on
environmental problems. First all relevant stakeholders and
the actual decision-makers are identified, and the
fundamental question a decision is called to answer is well
formulated. Second, the relevant scientific/technical
information is organised and put in an easy-to-manage
form. A series of indicators correlating the decision-
makers’ question and the scientific information (data) is
created. Then, the sequence of the use of the different tool
is as follows:
a) Simulation of technical/environmental system

operation
b) Calculation of impacts
c) Calculation of values of indicators
d) Modification of the system or operational assumptions
e) Revision of the process to evaluate the impact of the

newly selected set of assumptions on the values of the
indicators

Fig. 1: Flow chart of relevant information classes among
stakeholders levels

The information requirements to support the complete
definition of an environmental problem and a structured
approach towards participatory decision-making are
identified and the flow of different information classes
among stakeholders is facilitated. This is the first step
toward decision analysis. The flow between the different
levels of information necessary for integrated
environmental management is given in figure 1.

Inference models may play a double role in this
process:
(a)  they may be used to complete the information

necessary to define well (in the mathematical sense)
the environmental problem, and

(b)  they may be used to support the actual decision-making
by predicting the behaviour of the environmental
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system based on the historical knowledge base. In this
paper I present the methodology and some results of
the application of inference models to air pollution
distribution assessment and to the optimisation of air
quality monitoring networks.

Methodology

Environmental Data Fusion
Fusing environmental data coming from a variety of
information sources together with other data classes, such
as socio-economic indicators is necessary for effective
environmental management and decision-making. In the
case of air pollution assessment, the so far state of the art
involved the coupled use of atmospheric dispersal models
supported by ground-based measurements to calculate
continuous in space and time pollution profiles (Günther,

Radermarcher and Rieckert 1995). Recent developments in
satellite image processing allow the integration of data
coming from Earth observation satellite missions in air
quality monitoring (Sifakis, 1995). The effective
integration of EO-derived data with ground measurements
of air quality and atmospheric pollution transport models
necessitates, however, the development of an integrating
computational environment that permits the assimilation of
these diverse data types. For this operation to be user-
friendly this information technology tool be based on an
object-oriented platform. Object-oriented data management
and modelling technology is the most appropriate to use for
building the ICAROS® tool kit.

Environmental information processing imposes specific
requirements on data management platforms. Among the
most important are the efficient modelling and storage of
complex objects and the related access operations. Storing
all components of an object together increases the
efficiency of processing search queries and consequently

Fig. 2: Information flow in the integrated ICAROS environmental data assimilation system



the use of environmental data for decision-making support.
At the same time, every component of the object can still
be accessed directly and without restrictions. Object-
oriented data management systems allow extensions in the
form of application-specific objects and operations. Thus,
they enable the management of long and unstructured
documents or even pixel graphics. They are not limited to
fixed length attributes, as is normally the case with
relational databases.  On the contrary, they allow
processing of very large data objects effectively supporting
the different elements impinging upon environmental
decision-making.

The fusion of different data sources within ICAROS® is
organised in a modular way in order to allow for variations
in the time and space scales of reference related to the input
data and to the information content required by identified
end-users (see figure 2). Each data source (Earth
observation data, ground-level measurements, and
atmospheric transport models) is considered as a distinct
but comprehensive object. The information contained in
these objects includes air quality data (pollutants spatial
cover and concentration, diffusion pathways, etc.),
meteorological data (cloud cover and time evolution) (see
figure 3), data on land use and emissions intensity.

Fig. 3: Pollution cloud in the Po valley (N. Italy)

Furthermore, it includes meta-information allowing the
user to identify the origin of the environmental data, their
uncertainty levels, the spatial and temporal scales of
reference, and the format requirements for communication
with the other data sources available in the system. In this
way, users have the option to use the ICAROS® data
assimilation environment with environmental data
acquisition techniques and atmospheric transport models
that satisfy the needs of the specific local applications.

The following urban air quality-related issues can be
affronted with state-of-the-art methodologies and
techniques for ground-level remote sensing measurements:

• Monitoring of power plant emissions and other warm
exhausts (industrial stacks, flares) by remote sensing

• Monitoring of heterogeneous and diffuse emissions by
remote sensing: waste / garbage deposits, industrial
areas, gas filling stations and gasoline tanks, highways,
agriculture

• Investigation of sources of particulate matter and
optical visibility near the ground

• Investigation of air quality by path integrated trace gas
measurements

• Investigation of ozone distribution by mobile ozone
lidar / Doppler sodar system
The ICAROS® integrating environment is able to

support computationally the state-of-the-art techniques
used for the resolution of the above issues. ICAROS® is
currently being implemented in two pilot projects aiming at
the best use of varied environmental stress information to
optimise the air quality monitoring network in the larger
area of Brescia (urban conglomerate) and the area of
Cayenne, the capital of French Guiana.

Statistical processing of the values of aerosol optical
thickness derived from Earth observation via satellite with
regard to the concentration of principal urban pollutants has
so far indicated that there is significant correlation between
EO-derived air quality indicators and measured
concentrations of pollutants.  Such an attempt has recently
been made successfully by the author and his colleagues
using data from the greater Athens area in Greece and the
area surrounding the province of Brescia in Northern Italy.

System and User Requirements
The ICAROS® computational environment is mainly
addressed to environmental and transport policy- and
decision-makers at the urban and regional levels. The
typical user is the technical service of such decision-
making bodies, whereas the final recipients of the
information generated by ICAROS® are the actual decision-
makers. Decisions in the area of environmental protection
in general, and in particular in air pollution control and
abatement need to take into account information ranging
from validated technical data to economic and social
factors. The technical information on the status of the
environment needs however to be pre-processed before it
can be readily used in order to integrate in the most
efficient, valid, and user-friendly manner the array of
different data types characterising environmental systems.
In the case of air pollution control and abatement this
information includes data on the causes of pollution, on
atmospheric transport processes, and on the effect pollution
has on the affected ecosystem. The user requirements for
this information include:
• dynamic character of the input data regarding the

evaluation of the actual state of pollution;
• validated detailed spatial distribution of pollution

during its generation and transport;



• timeliness in providing the necessary input to the
decision-makers;

• accuracy in the amplitude and spatial-temporal profile
of pollution and its effects on humans and the
ecosystem;

• objectivity in the assessment of the sources,
distribution and impacts of pollution (especially when
environmental treaties and relevant legislation at the
national or Community level are implemented)

Earth observation can help reduce the errors inherent to
dynamic atmospheric transport models by calibrating and
validating the transport models using high resolution
satellite information and the appropriate information
processing algorithms (Sifakis and Deschamps 1992).
Furthermore, EO-derived information being a direct
depiction of reality, it can be used for the verification of the
degree of implementation of international environmental
treaties (e.g. LTRAP) and Community directives by
signatory parties and member states. Through the
development of a knowledge-base based on EO-derived
data and the appropriate inference engine the necessary
input to the users community can be provided timely and
economically with reduced uncertainty.

Inference System for Decision Support
The integrated air quality assessment and dynamic urban
system modelling methodology delineated above can be
linked with a multi-criteria-based Decision-Support
System (DSS) in order to couple in a cost-effective way
urban policy measures with the implementation of
international environmental treaties and EC legislation in
member states. The information deficiency that is
demonstrated by the current state of the art in
environmental observation technologies may be filled
through the use of knowledge inference systems such as
neural networks and case-based reasoning (Schocken and
Ariav 1994; Keller 1995). With regard to urban air
pollution assessment, neural networks can be used to
operationally couple the calculation of aerosol optical
thickness with forecasting of extreme pollution incidents in
local and regional applications. Inference methods may
support strategic environmental decision-making as well.
In the case of the optimisation of air pollution monitoring
networks at the urban and regional scales, inference
engines may support the analysis of the optimal solution
robustness. Network optimisation is better treated as a
multiple objective optimisation problem. Issues such as
network efficacy in signalling the alert necessary to reduce
the exposure of vulnerable population to extreme pollution
levels, or its efficiency in monitoring the effects of
pollution on sensitive natural or cultural monuments need
to be counterbalanced with cost and societal acceptance.
The overall network performance, however, depends on its
robustness to changing environmental pressure due to
evolving land use and technology deployment, its
reliability and interoperability.

The starting point of all multiple-criteria decision aid
methods is the identification of the criteria for problem

evaluation. In the case of integrated air quality assessment
an array of different environmental factors has been
identified as fundamental for the comprehensiveness of the
assessment:
• effect on human health
• toxicological damage to ecosystems
• effect on climate change
• threat to cultural heritage
• disruption of the socio-economic system

At least one indicator is needed for each impact
category. The valuation procedure defines the combination
of results of each impact category regarding the set of
questions posed in the multi-criteria assessment definition.
In normative analysis the multi-criteria decision analysis
problem can be interpreted as one of deriving a decision
rule according to the decision-makers’ preferences, and
applying this rule to determine the most desirable set of
decision alternatives.  This approach has two fundamental
assumptions. First, that the preference structure of the
decision-makers can be represented by a real-valued
function of attributes; and second, that the decision-makers
are able to reveal their preference among more or less
uncertain prospects with an adequate discriminatory power
(Wang 1994). Whatever the set of "optimal" solutions
revealed by the preference prioritisation scheme employed
in the multi-criteria decision analysis algorithm employed,
each solution has to be tested for robustness to changing
environmental pressure. Case-based reasoning may reveal
the sensitivity of the solutions to changing specific features
of the socio-economic system dynamics underlying the
pressure exercised on the environment.

In the application of ICAROS® for the computational
assessment of air quality at the urban and regional scale a
6x6x1 back-propagation neural network was built to
approximate the functional relationship between the aerosol
optical thickness and its concentration at each pixel of the
processed satellite image. The structure of the ANN is
shown in figure 4.
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Fig. 4: 6x6x1 ANN inferring the functional relationship
between the atmospheric aerosol concentration and primary
pollutants concentrations per satellite image pixel.

The algorithm employed here is the following:
a) Starting from the gaseous pollutants concentrations

measured by the existing monitoring network and from



the temperature and relative humidity of the air,
calculate the amount of aerosol formed by the
chemical transformation of primary pollutants. These
values are based on point measurements of gaseous
pollutants at the ground-based monitoring network.

b) Through appropriate satellite image processing,
calculate the amount of optical thickness of the
secondary atmospheric aerosol for each pixel of the
satellite image. The spatial resolution herein may reach
as low as 600 m (to ensure low data uncertainty).

c) Statistically correlate the calculated optical thickness
values with the amount of aerosol per image pixel
calculated by the chemical transformation model.
Linear multivariate regression has given very good
results (R2=99.98%).

d) Use the calculated values of aerosol optical thickness as
input to calculate the spatial distribution of aerosol
from the statistical model. These values are now
continuous in space.

e) Apply the 6x6x1 neural network to fit the functional
relationship between the total amount of aerosol
calculated in step d and the concentrations of
individual gaseous pollutants contributing to
atmospheric aerosol formation, namely NOx, SO2, NH3,
as well as fine particulate matter. Relative humidity
and temperature of air at the respective pixel are
auxiliary input variables. The neural network has
allowed us to calculate the inverse transfer function of
the more complex chemical transformation model used
in step a. The resulting error is reduced to less than 7%
after 45 epochs of training. Its evolution is showed in
figure 5.

Method Implementation and Results

The output of the algorithm described above is a
continuous in space distribution of several major primary
air pollutants such as PM10 (fine particulate matter with a
diameter lower than 10 microns), NOx, and SO2. The

algorithms calculating the aerosol optical thickness from
the visible and near-infrared channels of the sensors on
board SPOT and Landsat satellites have a standard error of
the order of 5%. The statistical model correlating the output
of these algorithms with the aerosol formed by the
measured concentrations of gaseous pollutants has an error
of the order of 0.02%. Finally, the error of the neural
network fitting the inverse function relating the aerosol
concentration with the individual gaseous pollutant
concentrations is on the order of 5-7%. The overall error of
the algorithm becomes approximately 12%.

The results of the neural network are fed into a multi-
objective optimisation algorithm which takes into account
the exposure of population to high levels of pollutants
concentrations (exceeding WHO and EC threshold
guidelines), protection of relatively more vulnerable nature
(including agricultural crops) and cultural monuments, and
cost. Using Monte-Carlo simulation to vary various factors
of environmental pressure (traffic flows, position of main
industrial activities, use of free space for residential
purposes, variation in land use classes, etc.) scenarios of
land use evolution are obtained. Using a historical time
series of satellite images and---through the above
algorithm---the spatial distribution of pollution in the area
of interest, the optimal solution set is obtained. Through
case-based reasoning the link between the robustness of the
optimal solutions and the variation of critical land use
classes is identified. Inference rules are derived by
normalising the outcome of alternative scenarios for air
pollution distribution in the fuzzy space of model
parameters. Using the relative semantic distance of
different alternatives of land use evolution and their
relationship with the pressure on air quality, the responses
of the optimisation algorithm with regard to changes in
land use are hierarchised. The optimal solution is then the
set of monitoring network configurations that presents
robustness in the same uncertainty class.

An example of a solution suggested by this algorithm
from its application in the case of the optimisation of the
air quality monitoring network in the larger area of Brescia
in Northern Italy is given in figure 6. Here, the dots
represent the location of the currently existing monitoring
stations, the small triangles the sites of major industrial
activity in the zone, and the large triangles the suggested
locations of the "optimised" network. The numbers given to
the large triangles represent the order of importance (i.e. of
information gain) of each of the monitoring stations
suggested by the algorithm. The “optimised” network
configuration departs somewhat from the one of the
original network. The location of stations 2 and 4
approximately coincides with the site of existing stations,
while station 3 could substitute for two existing stations
without any information loss. Stations 1, 5 and 6, finally,
are set towards the south-west of the city of Brescia in
areas where the prevalent wind field transfers pollution
produced in the city of Brescia and the industries found
between Milan and Brescia.
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Fig. 6: Optimal spatial configuration and typology of the air
quality monitoring stations network in the larger area of
Brescia as calculated by the JRC inference algorithm.

The new configuration represents an enhancement of the
information obtained regarding significantly poor air
quality by three orders of magnitude compared to the
existing monitoring network.

Conclusions

The need for advanced information systems supporting
integrated assessment of urban environmental quality and
the respective decision-making processes is widely
recognised nowadays. Research at the Joint Research
Centre of the European Commission in compliance with its
mandate to support Commission policies and regional
development in the EU member states through technology
and know-how transfer supports the development of such
information technology tools. Environmental data fusion
using object-oriented technology and neural networks as
inference engines are the main information technology
approaches employed. The methodology outlined here fills
the gaps in spatial and temporal information exhibited by
current air quality assessment methods. The inference
techniques employed (ANN and case-based reasoning)
account for the complexity characterising environmental
systems at large scale. Monte Carlo tests at the end of the
information processing chain ensure the robustness of the
algorithm against periodic and random change in the
environmental system. The functional integration of Earth
observation systems for strategic and operational
environmental management introduces an objective source
of synoptic information on the state of the environment.

The ICAROS® computational environment is designed
to address regional and urban scale problems regarding air
quality. Future research will focus on the effect of scale
variation in the computational assessment of environmental
condition produced by this methodology. Telematic links
between ICAROS® platforms should enable us to provide
early warnings of conditions leading towards extreme
natural and human-made pressure on the environment at an
inter-regional scale.

This advanced data fusion computational environment
is coupled with dynamically updated and calibrated
knowledge based on an urban model allowing the
simulation of the non-linear interactions between economic
activities, environmental pressure, energy and resource
flows, and human mobility (and transport) in cities.
Currently, this set of urban policy support tools is being
validated through a series of pilot projects in different local
settings, namely, the conurbation of Brescia (Italy),
Cayenne and Kourou (French Guiana). Future applications
of this comprehensive environmental information
processing and policy- and decision-support methodology
include peripheral cities of the European North (the Euro-
Arctic regions) and ex-Eastern European regions.
Integrated environmental knowledge assessment and
management is of primary importance for the
harmonisation of the environmental legislation in ex-
Eastern European countries with the current and future
legal framework in the European Union.
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