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Abstract

System dynamics is a mathematical modeling approach
widely used in environmental studies as a tool for
representing and simulating ecological systems, giv-
ing support to prediction and decision making. The
knowledge sources for model design are, essentially,
ecological data and human expertise. Interestingly,
however, the direct influence of data properties on
model design has been little explored. We hypothesise
that property descriptions of ecological data (ecological
metadata), such as functional, temporal and spatial re-
lations between variables, can be used to guide and to
substantiate structural modeling decisions. In this pa-
per we address the use of formal descriptions as an ap-
proach to representing ecological metadata, enabling us
to automatically draw links between these formal de-
scriptions and ecological modeling. A working example
is presented in detail to illustrate the approach.

Linking Metadata to System Dynamics
Model Design

Systems dynamics, in particular, is the ecological mod-
eling (Gillman & Hails 1997) paradigm whose automa-
tion we are investigating. A system dynamics model
represents a system by means of compartments, flows,
influence factors and influence links. Compartments
correspond to stocks of material or energy in the eco-
logical system being modeled. The amount ‘in stock’
depends on in-flows, which increase the amount, and
out-flows, which decrease the amount. For instance,
the compartment biomass can have as an in-flow veget-
ation growth and as an out-flow litter production. Flows
can occur between compartments, from the outside (i.e.
from somewhere in the ecological system beyond the
model’s scope) to a compartment, or from a compart-
ment to the outside. Each compartment has an associ-
ated state variable whose value represents the amount
of material or energy in the compartment. Running a
model consists of calculating the changes in the values
of the state variables, given initial conditions and math-
ematical equations governing the flows. Such mathem-
atical equations express how the flows are affected by
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compartments and other influence factors linked to it.
E.g., vegetation growth (flow) can be affected by biomass
(compartment) and rainfall (influence factor). Complex
nets of influence links can be represented in a system
dynamics model.

Designing a system dynamics model is not a one-off
task. Rather, it is an incremental process, comprising
various kinds of decisions and developments that can be
iteratively refined. A simplified outline of one iteration
of a typical system dynamics modeling process is given
below:

1. Model Purpose: The first decision taken, and one that
will influence all the others, is the model purpose: the
precisely defined question that the model is expected
to answer once built.

2. Model Structure: Next, the modeler represents the
ecological system at issue as interconnected compart-
ments, flows, influence factors and influence links.
Here, the model structure is designed and the func-
tional relationships between model elements (repres-
ented by influence links) are determined.

3. Equation Design: The structure above is expressed
mathematically. Each model element is defined as a
mathematical equation.

4. Derivation of parameters and estimation of initial
values: Parameters in the equations above are de-
rived and initial values to the compartment variables
are estimated based on a dataset and other sources
of information.

Complete automation of this process is impractical,
given the state of the art in automated modeling re-
search. Our initial focus is on derivation of paramet-
ers. This particular task has been chosen as a start-
ing point due to its smaller degree of subjectivity. We
understand better (for the time being) how paramet-
ers can be derived than, for instance, the reasoning
behind model structuring. So far we have had early
results on automating two parameters derivation tasks.
One, given declarative facts expressing structural (e.g.
branch weight of individual trees are measured), tem-
poral (e.g. measurements are taken in an annual basis),
and spatial (e.g. measurements are taken from each site
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in the experimental field) properties of a dataset and
common ecological functions (e.g. mean, max, etc.),
the system derives an exploration of the space of para-
meters supported by the dataset properties (e.g. the
max branch weight for each individual, each site and
each year; the year mean of the mean branch weight for
each individual and each site, etc.). Two, given a para-
meter to be derived, the system generates a progressive
sequence of intermediate derivation steps, starting from
the descriptions of the dataset properties. The example
that appears later in this paper is concerned with this
task.

Model structuring, usually the starting point of the
mental process carried out by human modelers, should
be the following focus. The degree of automation en-
visaged here comprises having the system indicating
candidate model elements and relationships to compose
model structure, again based on metadata descriptions
that characterise a certain dataset. Next, we plan mov-
ing on to equation design, where we envisage automatic
inference of potential interdependencies between vari-
ables.

Formalisation of Ecological Metadata

Descriptions of properties of actual datasets
(metadata), accompanied with some extent of model-
ing knowledge, compose the information substratum we
explore in order to partially automate and provide guid-
ance on the design of models which are appropriate to
those datasets. This can only be attractive if the mech-
anisms supporting it are not tied to specific datasets.
Pre-defining a detailed knowledge representation sys-
tem still general enough to express properties of every
ecological dataset is infeasible. Thus, what is needed
is a general framework for metadata description which
can be instantiated to specific datasets and model pur-
poses. We have a prototype ontology, named Ecolingua,
for such a framework, providing a vocabulary and ax-
ioms for ecological metadata description.

The Ecolingua Ontology
An ontology is a shared understanding of some domain
of interest, specified in the form of definitions of repres-
entational vocabulary. Axioms can be defined to con-
straint interpretations over the ontology’s vocabulary
(Uschold & Gruninger 1996). In a broader sense, and
beyond the scope of this research, an ontology to ex-
press ecological metadata such as Ecolingua can act as
an inter-lingua for knowledge sharing. People involved
with collection, organisation and analysis of ecological
data, designers of field sampling strategies and model-
ers are all potential users.

As initial resources for Ecolingua’s design we took, on
one hand, an informal methodology found in (Uschold
& Gruninger 1996), and on the other, a very diverse
dataset generated by a tropical forest logging experi-
ment in the Amazon, Brazil (Biot 1995). First, from
the dataset specifications, we abstracted its meta-level

structural, spatial and temporal properties. At this
stage we started using the Ontolingua Server, our third
resource, through which we described those ecological
meta-level properties by means of frame-system struc-
tures, the foundational theory underlying the architec-
ture of ontologies designed through the server. The On-
tolingua Server (Knowledge Systems Laboratory, Stan-
ford University, http://www.stanford.edu) (Farquhar,
Fikes, & Rice 1996) is one of the few available tools to
date for ontology construction and sharing. One of the
main resources provided is an extensive library of shar-
able ontologies whose definitions can be reused for the
development of new ontologies.

To illustrate the ontology and to give examples of
ecological metadata, let us present a small excerpt from
Ecolingua in figure 1.
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Figure 1: Excerpt from Ecolingua

Figure 1 shows part of Ecolingua depicted as a hier-
archy of classes and relations between them. Boxes
represent classes, with directed arcs (full lines) repres-
enting class/subclass hierarchy; e.g. Ecological Data
Entity is a subclass of Thing@Hpkb-Upper-Level. The
notation Class-name@Ontology-name is used for classes
defined in other ontologies rather than Ecolingua, which
are available in the ontologies library of the Onto-
lingua server; e.g. Thing is defined in the Hpkb-
Upper-Level ontology, Unit-Of-Measure is defined in the
Physical-Quantities ontology. Ellipses represent rela-
tions between classes. The directed arcs (dashed lines)
show the direction of the relation, from domain classes
to range classes; e.g. the relation Sampling Points gives
a Non-Negative-Integer (range) number of sampling
points of an Ecological Variable (domain).

Ontolingua, the representation language used by the
server, was created as an attempt to solve the port-
ability problem for ontologies. It adopts a translation
approach in which “ontologies are specified in a stand-
ard, system-independent form and translated into spe-
cific representation languages” (Gruber 1993). Our tar-



get language is Prolog, which we use to connect meta-
data descriptions to endorsements of model structure.
The server automatically translates Ecolingua plus all
the ontologies it refers to, into a file containing a very
large (5.3Mb) ill-structured knowledge base in a Kif-like
Prolog-readable version of the Ontolingua syntax. To
extract a manageable knowledge base from this file we
built tools for syntactic correction, consistency check-
ing, pruning and mapping of logical sentences into more
elegantly constructed Horn clauses. The target know-
ledge base contains vocabulary and axioms that belong
to three levels of abstraction: (1) definitions specific
to ecological metadata description (Ecolingua’s defin-
itions); (2) definitions inherited from other ontologies
through Ecolingua’s references to them; and (3) defini-
tions related to the meta-ontological frame-based prim-
itive terms (e.g. class, instance, slot, relation, etc.), im-
posed by the server. This is the knowledge base which
will form the basis for connections drawing between eco-
logical metadata and model design.

An Example
For illustration of automatic inference of modeling ele-
ments based on metadata (metadata↔model, for short),
we present here a simple example regarding the deriv-
ation of model parameters. This is a working example
implemented in Prolog.
Model Scope:
The scope for our example is a tropical forest logging
experiment where a system dynamics ecological model
is designed in order to assist on the prediction of timber
production and ecological impact (Biot et al. 1996).
Parameter to be derived:
Let us suppose that in one of the equations in the model
expressing timber production, a parameter is required
to quantify the average annual increment of dbh1 of
trees.
Dataset properties:
Baseline data of the trees is made available to the log-
ging experiment. A previous logging took place on the
same forest plots in 1987 and the DBH of 360 trees has
been measured once in 1990 and once in 1995. These
data properties can be expressed through Ecolingua’s
classes and relations in figure 1. Figure 2 shows part
of Ecolingua as graphically presented in figure 1 in first
order predicate calculus.
Inferences:
The drawing of metadata↔model inferences based on
the properties of a particular dataset, requires Ecolin-
gua to be instantiated, i.e., the metadata of the ecolo-
gical dataset under consideration needs to be described
using the vocabulary provided by Ecolingua.

The instances of the ontological classes necessary for
description of the example’s dataset are represented by
the facts shown in figure 3.

1DBH - Diameter at Breast Height

class(ecological data entity).
class(ecological variable).

relation(eco data composition).
domain(eco data composition, ecological data entity).
range(eco data composition, ecological variable).

class(attribute value).
class(unit of measure).

relation(eco variable value).
domain(eco variable value, ecological variable).
range(eco variable value, attribute value).
range(eco variable value, unit of measure).

class(non negative integer).

relation(sampling points).
domain(sampling points, ecological variable).
range(sampling points, non negative integer).

class(samples per time).
class(sampling times).

relation(sampling frequency).
domain(sampling frequency, ecological variable).
range(sampling frequency, samples per time).
range(sampling frequency, sampling times).

Figure 2: Excerpt from Ecolingua in a formal language

From the facts in figures 2 and 3 the relations’
instances in figure 4 are inferred. For example,
relation instance(eco data composition, tree, [dbh])
represents an instance of the relation
eco data composition, being tree an instance of the re-
lation’s domain class ecological data entity, and [dbh] a
list containing an instance of the relation’s range class
ecological variable (a relation can have more than one
range class, in which case the list contains more than
one element).

Figures 3 and 4 together depict the classes’ instances
and the relations that hold among them, expressing the
following (which is compliant with our example’s data-
set properties): “trees are one of the ecological data en-
tities sampled. The data about trees is composed by
ecological variables. One of these variables is the dbh
of trees, having values measured in cm. The number
of sampling points is 360, and each of them has been
sampled once in 1990 and once in 1995.”

Now, recall that the parameter whose derivation we
want to infer is the average annual increment of dbh
of trees. The metadata formally described tell us that
the variable dbh exists in the dataset, being an instance
of the class ecological variable. Moreover, the relations
in the metadata between the classes (and its instances)
provide the information needed for the derivation of the
parameter.



instance of(tree, ecological data entity).
instance of(dbh, ecological variable).
instance of(cm, unit of measure).
instance of(360, non negative integer).
instance of(times per year(1), samples per time).
instance of([year(1990), year(1995)], sampling times).

Figure 3: Instances of Ecolingua’s classes in a formal
language

relation instance(eco data composition, tree, [dbh]).
relation instance(sampling points, dbh, [360]).
relation instance(sampling frequency, dbh,

[times per year(1), [year(1990), year(1995)]]).

Figure 4: Instances of Ecolingua’s relations in a formal
language

The first question to pose is how a human modeler
would derive the average annual increment of dbh of
trees from a dataset with the characteristics of our ex-
ample dataset. One possible simple process would be:
1. Calculate the total increment of DBH of each indi-

vidual tree during the 5 year period between the two
measurements taken (1990 and 1995), which can be
expressed as:

total(increment(dbh, Indiv)) =

last value(dbh, Indiv) − first value(dbh, Indiv) (1)

Nested terms such as total(increment(... represent
composition of functions, which are applied one after
the other from the inner part of the term outwards.
E.g. increment is calculated first, and then, total is
calculated over increment.

2. Then, the modeler could approximate the annual in-
crement of DBH of each tree by dividing the total
increment calculated above by the number of years
in the period between the two measurements:

annual(increment(dbh, Indiv)) =

total(increment(dbh, Indiv))/5 (2)

3. And finally, have the average annual increment of dbh
of trees as the sum of the annual increment of DBH
of all the 360 trees divided by the number of trees:

average(annual(increment(dbh, tree))) =

sum(Indiv, 1, 360,

annual(increment(dbh, Indiv)))/360 (3)

One way of having a similar metadata↔model connec-
tion drawn automatically is to build a mechanism able
to perform the process enumerated above. That is:
given the metadata of an ecological dataset formally de-
scribed as above, as well as the parameter to be derived
average annual increment of dbh of trees, the mechan-
ism constructs (or infers) equations 1, 2 and 3. Figure 5

shows a Definite Clause Grammar (DCG) that has this
effect.

Let us explain the grammar’s clauses together with
some of the relations involved.

• construct’s first clause:
The first clause constructs as terminal expression,
with instantiated variables:

average(annual(increment(dbh, tree))) =

sum(Indiv, 1, 360,

annual(increment(dbh, Indiv)))/360

(which is equation 3) and as non-terminal ex-
pression a recursive call which will construct the
equation expressing how to derive, in turn, an-
nual(increment(dbh,Indiv)) (equation 2).
The relation:

entity term(X,Eco entity)

returns tree (in Eco entity) which is the ecological
data entity with which the parameter (in X) in ques-
tion is concerned. What tells the mechanism that it
is consistent to derive the average annual increment
of dbh of the ecological data entity tree is the fact in
the description of the dataset:

relation instance(eco data composition, tree, [dbh])

The relation:

about entity term(X,X1, Eco var, Indiv)

returns in X1 the term annual(increment(dbh,Indiv))
which specifies the relevant calculation for the ecolo-
gical data entity tree in the derivation of the aver-
age parameter, i.e., annual increment of dbh of trees
needs to be calculated intermediately to allow the de-
rivation of the average. By doing this, the relation
points out the ecological variable under consideration,
in this case dbh, and introduces the variable Indiv to
characterise the individualised dbh measurements of
trees.
The relation:

cardinality(Eco var, Eco entity,N)

returns how many values there are for the pair
(Eco var,Eco entity). From the description of the
ecological dataset it is known that “the DBH of 360
trees has been measured”, which gives a cardinality
of 360 to (dbh,tree). This knowledge is represented in
the relations below, which are part of the description
of the dataset:

relation instance(eco data composition, tree, [dbh])
relation instance(sampling points, dbh, [360])

• construct’s second clause:
The second clause constructs as terminal expression,
with instantiated variables:

annual(increment(dbh, Indiv)) =

total(increment(dbh, Indiv))/5



construct(Construction info, average(X)) −−>

{entity term(X,Eco entity) ∧
about entity term(X,X1, Eco var, Indiv) ∧
cardinality(Eco var,Eco entity,N)},
[average(X) = sum(Indiv, 1, N, X1)/N ],
construct([cardinality(Eco var,Eco entity, N)|Construction info], X1).

construct(Construction info, annual(X)) −−>

{cardinality(Eco var,Eco entity, N) ∈ Construction info ∧
total time span(year,Eco var, Eco Entity, Y ears)},
[annual(X) = total(X)/Y ears],
construct(Construction info, total(X)).

construct(Construction info, total(increment(Eco var, Indiv))) −−>

{cardinality(Eco var,Eco entity, N) ∈ Construction info ∧
first time(Eco var, Eco entity, T first) ∧
last time(Eco var,Eco entity, T last) ∧
for(Indiv, 1, N, value exists(Indiv,Eco var, Eco entity), T first) ∧
for(Indiv, 1, N, value exists(Indiv,Eco var, Eco entity), T last)},
[total(increment(Eco var, Indiv)) = last value(Eco var, Indiv) − first value(Eco var, Indiv)].

Figure 5: DCG generating the derivation of the parameter average annual increment of dbh of trees from ecological
metadata

and as non-terminal expression a recursive call which
will construct the equation expressing how to calcu-
late, in turn, total(increment(dbh,Indiv)) (equation
1).
The relation:

total time span(year,Eco var,Eco entity, Y ears)

returns the total time span in years that has passed
between the two measurements in 1990 and 1995.
This knowledge is represented by the fact:

relation instance(sampling frequency, dbh,
[times per year(1), [year(1990), year(1995)]])

• construct’s third clause:
The third clause finalises the construction of the
equations yielding the following terminal expression,
with instantiated variables:

total(increment(dbh, Indiv)) =

last value(dbh, Indiv) − first value(dbh, Indiv)

The relations:

first time(Eco var,Eco entity, T first),

last time(Eco var,Eco entity, T last)

give the time points (in this case the years 1990 and
1995) when the dbh measurements have been taken
first and last respectively. The relation instance for
sampling frequency in the dataset description is again
used here.
The relations:

for(Indiv, 1, N,
value exists(Indiv,Eco var,Eco entity), T first),

for(Indiv, 1, N,
value exists(Indiv,Eco var,Eco entity), T last)

check for the existence of a dbh value for each of
the 360 trees for the first and last measurement time
points respectively. Once more the relation instance
for sampling frequency in the dataset description
holds relevant knowledge as well as the relation:

relation instance(sampling points, dbh, [N ])

that tells how many measurements have been taken
in each time point.

Related Work
Logic-based approaches for ecological modeling have
been proposed in (Robertson et al. 1991). Emphasis
is placed on the use of domain knowledge to support
modeling automation, making model assumptions ex-
plicit to enable more informed model analysis. Our
work evolves from these ideas, adding to them by in-
vestigating how ecological metadata (which play a part
in domain knowledge) can be conducive to model con-
struction.

In (Uschold 1991) two key factors are pointed out as
responsible for clogging the way of model construction
in general: available modeling tools don’t “cater for
how users think about their problems (large conceptual
distance)” and “the vast modelling search space”. The
core of the approach presented to tackle these prob-
lems (using ecological modeling as an example domain)



consists of a language, Elklogic, based on typed lambda
calculus, which is suitable for representing both domain
and simulation modeling information. The representa-
tion requirements for Elklogic come from an ecological
modeling “knowledge ontology”, which is a point of ref-
erence to our work with Ecolingua. Elklogic also al-
lows for attributes induction. It uses higher order func-
tions to represent inferences such as ‘if there is the at-
tribute weight of a certain animal, it can be inferred
that the attributes average/total/maximum/minimum
weight apply to groups of the animal’. The outcomes
of our research can contribute to the easing of the
same problems addressed by (Uschold 1991). We be-
lieve that metadata (related to an ecological dataset
at hand) plays an important role in the way modelers
reason when modeling ecological systems, and that we
can automatically populate the search space with mod-
eling elements which can be justified in the metadata.

(Rickel & Porter 1997) reports on automated model-
ing of complex systems, having plant physiology as the
evaluation domain. The system built, called TRIPEL,
incorporates a new compositional modeling algorithm
which, given a prediction (what if) question, the vari-
ables of the physical system, the influences among them,
and other domain knowledge, outputs the simplest dif-
ferential equation model that can adequately answer
the prediction question. The domain knowledge used is
found in a large multipurpose biology knowledge base.
The novelty of our work, in comparison with the above
and other leading composition modeling approaches,
resides in having formal descriptions of datasets’ meta-
level properties as the core building blocks to the auto-
mated modeling task.

Discussion
The example presented, though exploratory, demon-
strates automatic inference of a parameter derivation
process based on ecological metadata and simple en-
coded knowledge about few ecological functions. By
means of a simple logic-based formalism, we are able to
reconstruct the inferences that a human modeler would
possibly perform to derive the parameter. Moreover,
this is all done relying on meta-level descriptions of the
dataset, without taking into account ecological data in
the conventional sense, i.e., actual values assigned to
the variables involved (in this case, dbh of trees).

The enterprise of building an ontology for ecological
metadata description through the Ontolingua Server,
re-using off-the-shelf definitions from several other on-
tologies, has been time and effort consuming. We
first started using the server as an experiment, be-
lieving that it would assist us in quickly construct-
ing a well-engineered ontology. The frame-based (or
object-oriented) representational language offered by
the server’s interface has been fairly expressive to cap-
ture the ecological concepts and relations we have con-
sidered in the design stage. However, for translating the
designed ontology into Prolog, it was necessary to build
additional tools to re-engineer the server’s output. Fu-

ture work will investigate to which extent a frame-based
axiomatisation can actually support inferences of mod-
els from metadata, as well as how useful the definitions
Ecolingua inherited from other ontologies are.

In summary, the class of problems addressed by this
research is concerned with finding and automating con-
nections between metadata and model substructure,
through formal knowledge representations and infer-
ences, having system dynamics ecological modeling as
experimental domain. Results are expected not to be
domain-dependent, and should be portable or adapt-
able across other physical systems modeling disciplines.
The ultimate implementational goal is a system that
semi-automates a range of system dynamics modeling
tasks and is able to furnish the user with the underlying
metadata support rationale. The system will infer pro-
totypical models (or parts of them) to be interactively
refined by human modelers.
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