
Towards conflict resolution in agent teams via argumentation

Milind Tambe Hyuckchul Jung
Information Sciences Institute, University of Southern California

4676 Admiralty Way, Marina del Rey, CA 90292
tambe@isi.edu jungh@isi.edu

Abstract

In a complex, dynamic multi-agent setting, coher-
ent team actions are often jeopardized by conflicts
in agents’ beliefs, plans and actions. Despite the
considerable progress in teamwork research, the
challenge of intra-team conflict resolution has re-
mained largely unaddressed. This paper presents
a system called CONSA, to resolve conflicts us-
ing argumentation-based negotiations. The key
insight in CONSA is to fully exploit the bene-
fits of argumentation in a team setting. Thus,
CONSA casts conflict resolution as a team prob-
lem, so that the recent advances in teamwork can
be fully brought to bear during conflict resolution
to improve argumentation flexibility. Further-
more, since teamwork conflicts often involve past
teamwork, recently developed teamwork models
can be exploited to provide agents with reusable
argumentation knowledge. Additionally, CONSA
also includes argumentation strategies geared to-
wards benefiting the team rather than the in-
dividual, and techniques to reduce argumenta-
tion overhead. We present detailed algorithms
used in CONSA and initial results from CONSA’s
application.1

1 Introduction
Teamwork is a critical capability in a large number of
multi-agent applications, such as virtual environments for
education and training[ll], robotic teams[6] and teams on
the Internet. In these applications, agents must act to-
gether despite the uncertainties of their complex dynamic
environment. Considerable progress has indeed been made
in teamwork research. For instance, recent advances in
teamwork models[5; 11], which explicitly outline agents’
commitments and responsibilities in teamwork, have signif-
icantly improved flexibility in teamwork coordination and
communication. However, this research has so far not ad-
dressed the challenge of resolving conflicts within a team.

Yet, as agent applications advance to meet the require-
ments of scale and autonomy, inter-agent conflicts become
increasingly inevitable. For instance, while autonomously
reacting to dynamic events, agents may unintentionally in-
terfere in others’ actions, or faulty sensors may provide
them with conflicting information or lead them to conflict-
ing inferences. While such conflict resolution is difficult in

1A modified version of this paper is to appear in the AI
magazine, Spring 2000 issue.

general, it is even more problematic in teams if intra-team
conflicts are not anticipated.

This paper focuses on a system we have developed to
resolve conflicts in agent teams, called CONSA: COllab-
orative Negotiation System based on Argumentation. In
argumentation, agents negotiate by providing arguments
(which may be justifications or elaborations) in support
of their proposals to one another. CONSA builds on past
work in argumentation[l; 7; 9; 10], but advances the state
of the art by fully exploiting the benefits of argumenta-
tion in a team setting. Thus, one key idea in CONSA
is to cast conflict resolution as an explicit common team
goal. As a result, the recent advances in teamwork models
are brought to bear during conflict resolution, improving
negotiation flexibility. For instance, if a team member pri-
vately discovers an event that renders the current team
conflict irrelevant, it will be committed to informing its
team members -- it will not just withdraw privately from
negotiations. Additionally, with an explicit common team
goal, novel argumentation strategies emerge, e.g., agents
may attempt to improve the quality of teammates’ argu-
ments. Furthermore, since team conflicts are often rooted
in past teamwork, CONSA enables agents to argue effec-
tively about teamwork, by exploiting the teamwork models
in a novel way, i.e., not only as a guide to agent behav-
ior during conflict resolution, but as a source for reusable
argumentation knowledge. Finally, CONSA is integrated
within existing agent teams in complex environments, and
has focused on practical issues, such as minimizing the re-
sources consumed in negotiations.

2 Domains and Motivations
The motivation for current research on negotiation is based
on our previous work in complex, multi-agent domains
such as real-world battlefield simulations[Ill. We have
built different teams of synthetic pilot agents that partic-
ipate in combat simulations in these environments. These
pilot agent teams include companies of attack helicopter
pilots and divisions of transport and escort helicopter pi-
lots. The second domain is Robocup[6] where we have
twice successfully participated in the ttoboCup tourna-
ments. These agent teams have been developed based on
a teamwork model called STEAM[ll]. STEAM is based
on the joint intentions[2] and SharedPlans[4] theories of
teamwork, but with practical extensions for monitoring
and replanning as well as decision-theoretic communica-
tion selectivity. STEAM has provided significant team-
work flexibility in all of these applications. Yet, STEAM
does not address the problem of conflicts in agents’ beliefs
and relevant negotiations to resolve such conflicts, limiting

From: AAAI Technical Report WS-99-08. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

teamwork flexibility in key instances. We describe here just
a few key examples that outline some of the basic issues
for collaborative negotiations:

¯ The firing position case: Individual pilots in a heli-
copter team typically attack the enemy from firing
positions. These positions are planned by a comman-
der agent, who ensures that they do not conflict, i.e.,
the positions are planned to be at least one kilome-
ter apart from each other. However, despite careful
planning, individual pilots may autonomously react
to unexpected enemy vehicles, and end up in conflict-
ing positions (e.g., much less than 1 km apart).

¯ The proceed case: In planning the positions described
above, the commander pilot plans one position(e.g.
position to hide behind a small hill) per team member,
and communicates it to the relevant team member via
radio. In one run, a message was lost due to radio in-
terference, i.e., the commander thought the position
was communicated, but a team member M1 never re-
ceived it. Thus, when the commander asked the team
to proceed because it believed all of the positions were
successfully communicated, there was a conflict with
M1.

¯ The enemy position case: Two scout helicopter agents
may have conflicting beliefs about the closest enemy
unit seen. For instance, one scout may report com-
pletion of scouting and the closest enemy unit seen as
part of this report, while the second scout may see an
even closer enemy unit than the one reported.

¯ The ball position case: In our player team in RoboCup
soccer simulation, defenders inform each other if the
ball is close by and hence a threat. However, the play-
ers’ belief of the bali’s threat may differ, leading them
to have conflicting beliefs about whether the ball is a
threat.

In addressing such conflict resolution problems, our goal
is to avoid any specialized solutions, and focus instead on
a general approach that would be applicable to a wide
variety of conflicts.

3 Teamwork Model
Before we discuss CONSA, it is useful to briefly overview
teamwork models, particularly the STEAM[ll] model,
since it is the basis of our team implementations. STEAM
consists of two components, both currently realized in the
Soar[81 architecture. The first is an enhanced agent ar-
chitecture with explicit representation of team’s joint in-
tentions, mutual beliefs and team goals. Figure 1 shows
an operator hierarchy (i.e., a reactive plan hierarchy) for
synthetic helicopter pilot developed using STEAM. Team
operators (reactive team plans), which explicitly express
team’s joint activities, are shown in ~, such as [Engage]. At
any time, one path through this hierarchy is active. This
active hierarchy of operators is the team’s joint intentions
(team operators) and individual intentions (individual
erators).

The second component of STEAM is the domain inde-
pendent teamwork knowledge to enable individual agents’
flexible teamwork. Of particular importance here are two
of the classes of domain-independent actions. The first

[EXECUTE-MISSION]

[Fly-flight-p~n] ~’

[~r~eZrrlxol]

(Engage] r Prepare-to 1
L retum-to-base j

" mploy Rl %~

[Tmve,~..

MFsk Unmask ~.veapons cond~rog.~int

Figure I: Portion of pilot operator hierarchy.

is coherence-preserving actions, derived from the joint in-
tention theory[2]. These require agents to jointly activate
and terminate team operators, by establishing mutual be-
liefs in their initiation and termination; individual opera-
tors are executed without such mutual beliefs. The sec-
ond class of domain-independent actions is maintenance
and repair actions, for re-planning and team reorganiza-
tion. These actions require an explicit specification of the
dependency relationship of the joint intention on individ-
ual team members’ activities, based on the notion of a
role. A role constrains a team member Mi to some sub-
operator opMi of the team operator lOP]. Three primitive
role-relationships (and their combinations) can currently
be specified in STEAM. An AND-combination implies that
the achievement of team operator requires achievement of
each one of the roles. An OR-combination requires success
in at least one role for the team operator to be achieved.
The role-dependency relationship states that an opMi de-
pends on opMj.

4 Argument Representation
Evaluation

This section describes CONSA’s underlying representation
and algorithms to evaluate arguments, which are embed-
ded in a larger CONSA process, discussed in the next sec-
tion. CONSA’s representation of arguments is based on
Toulmin’s[12] argumentation pattern (henceforth TAP),
chosen for its generality. In a TAP, an argument consists
of the following elements: (i) claim: a conclusion whose
merit an agent seeks to establish. (ii) data: the facts that
are a foundation for the claim. (iii) warrants: the author-
ity (e.g., a rule) for taking the step from the data to the
claim. (iv) qualifications: degree of force which conferred
on the claim based on the data and warrant.

In CONSA, claims are agents’ individual or mutual be-
liefs. During argumentation, these claims form the pro-
posals, with the supporting TAP as the argument for the
proposal. For example, in RoboCup soccer, a claim (pro-
posal) may be that "the ball is a threat," supported by
data that "the ball is 30 meters from own goal," and a
warrant that "if the soccer ball is within 35 meters of own
goal, then it is very likely a threat." In CONSA, the data
may itself be another claim (belief), with its own support-
ing TAP, so that a recursive tree of TAP structure may
emerge in support of a claim. Finally, in CONSA, the
qualifications on claims determine the strengths of argu-
ments. Currently, claims have qualitative strengths: high,
medium and low. Thus, a strong warrant and data will
lead to a "high" strength for the claim.

2

When an agent sends a proposal to its team, team mem-
bers must determine if their own beliefs conflict with the
proposal. Figure 2 presents CONSA’s algorithm to make
this determination. The input is a proposed TAP tree O,
which forms the proposal (claim), with supporting argu-
ments. The output is a set ft of tuples ({reject(claimi)
accept(claimi) }, justification). Here, a reject tuple implies
an agent’s conflict with the claim~ E O, while an accept
tuple implies an improved justification in support of the
claim. The justifications consist of TAPs. If ~ is empty,
then no conflicts or improvements are found.

In the algorithm, step 1 ch~cks the input TAP tree O
for conflicts with the agent’s own claims. If a conflict
is found, step 2 compares the strengths of the conflict-
ing claims, rejecting the other agent’s claim if own claim is
found stronger. Step 3 now compares the input claims from
O for coincidence or agreement. For simplicity, this algo-
rithm assumes a single coincidence. If coincidence is found,
then the supports of coincident claims are compared, to de-
termine the stronger support. If one is found, it is added
to ft. When no coincidence or conflict is found in O itself,
CONSA will not immediately accept O. Since leaf nodes in
O may hold undesirable implications, CONSA derives im-
plications from e(step 4). While in general checking unde-
sirable implications is difficult, CONSA currently executes
one iteration of such derivations, checking for conflict or
coincidence and adding the result to ft.

Evaluate-proposal(Input: TAP-tree O; Output: G)

I. In parallel, for all claims ai in TAP-tree O do:
{ Check ai for conflict with own claims;

If a~ conflicts with own claim flj,
add tuple (a~,3#) to conflict-set CS;

2. For all tuples (a~,3#) E CS, starting from tuple with lowest
ai E 0 do:
{ Compare-strengths(a/,/~j);

If 135 is stronger, add (reject(cri),3j) to f~;

3. In parallel, for all claims ai in TAP-tree O do:
{ Check ai for coincidence with own beliefs;

If coincidence with own claim 3i,
{ Compare-strertgths(support(c~i), support(~

If support(3i) is stronger,
add (accept(ai,support(~i)) to n; } }

4. If f~ is empty, check derivations of leaf claims in O;

5. Output f~; if f/is empty, no conflicts or coincidence found.

Figure 2: CONSA’s algorithm for evaluating proposal.

To determine the strengths of claim in the compare-
strengths procedure in Figure 2, CONSA relies on the sup-
porting TAP structure. Given that the TAP structure
can itself be recursive, claim strengths are evaluated re-
cursively. For leaf-level claims, evidential rules are used.
Here, CONSA exploits the benefits of argumentation in a
team setting, by relying on the following rules of evidence:
assertions from a team member regarding its own role and
capability are judged to provide high-strength claims.

5 CONSA Approach
Figure 3 presents the overall CONSA negotiation process.
Step 1 is a proposal generated by a team member. Steps
2, 3 and 4 are the opening, argumentation and termina-
tion stages of CONSA’s negotiation. In the opening stage,
agents agree to jointly resolve the current conflict. In the
argumentation stage, they cycle through proposals and
counter-proposals, terminating arguments in the termina-
tion phase.

1. A team member Mi generates a proposal a.
2. Opening stage:

(a) A team member Mj detects a conflict with
(b) If Mj believes joint action not beneficial to resolving

conflict, terminate, return;
(c) Else Mj communicates with team members to estab-

lish teazn operator to resolve current conflict.

3. Argumentation stage

(a) Any member Mk in the current team operator may
generate proposal to resolve conflict;

(b) Other team members evaluate-proposal (see Figure
2).

(c) If no conflict/coincidence found, accept the proposal
and go to step 4;

(d) Else if proposal found to conflict/coincide; continue
axgument if cost-benefit-wise useful, else accept the
proposal and goto step 4:

4. Closing stage

(a) If suggested proposal accepted, then terminate
conflict-resolution team operator;

(b) Else if the conflict resolution found unachievable or
irrelevant, terminate conllict-resolution team opera-
tor;

Figure 3: Three stages of ar,um,’ntation in CONSA.

Opening and Closing Stagt,s: lu CONSA’s opening
stage, the conflict detection st,.p (2-a) requires it to ad-
dress two different types of coallicl.~. In particular, based
on the description of the teamw,,rk model (Section 3), con-
flicts can be of two types: (1) "i;.am members may have
conflicting beliefs about joint ly init iating or terminating a
team operator, e.g., one agen! h~,liovos the team operator
must be terminated, while the t,I ht,r believes it cannot be
terminated; or (2) Agents CXCClltillg individual operators
may unintentionally conllic! wit It oach other’s role perfor-
mance. Thus, in the exatnph~s from Section 2, the "firing
position case" is a type 2 conflict, but the rest are type 1
conflicts. To detect a type 1 conflict, an agent must eval-
uate proposals sent by their teammates to jointly initiate
or terminate team activities, detected via the Evaluate-
proposal algorithm in Figure 2. In contrast, to detect
type 2 conflicts, CONSA uses role constraints, that explic-
itly specify the maintenance goals for the successful per-
formance of the role. For instance, in the firing position
case, the lateral-range (distance) between Mj (the agent
performing this role) and any other teammate must be at
least one kilometer.

Having detected a conflict in Step 2-a, we temporar-
ily skip over step 2-b to focus on step 2-c. Here, a team

3

member Mj, who has detected a conflict, initiates estab-
lishment of a team operator to resolve the current conflict.
If the conflict is of type 1, Mj initiates the establishment
of resolve-joint-conflict as a team operator, involving the
entire team from the original joint activity. If the conflict
is of type 2, Mj initiates the establishment of resolve-role.
conflict as a team operator, but the involved team here
is only Mj and the agent that caused a conflict for Mj’s
role. For instance, in the firing position case, resolve-role-
conflict is established as a team operator between Mj and
Mk(the agent that caused the role conflict).

By casting conflict-resolution itself as a team operator,
all of STEAM’s flexible teamwork capabilities are brought
to bear, to guide agents’ behavior during conflict resolu-
tion. For instance, agents jointly establish the conflict-
resolution team operators, using protocols that ensure syn-
chronization and agreement among team members. In par-
ticular, teammates may disagree about the existence of the
conflict, or they may be unable to negotiate if they are per-
forming another higher priority task. However, by using
a team operator for conflict resolution, an agent Mj be-
gins negotiations only after ensuring its teammates agree
to and are able to engage in negotiations. Furthermore,
STEAM’s reasoning about commitments leads team mem-
bers to behave responsibly towards each other. If a dy-
namic event causes a team member to privately discover
that their conflict is resolved or unresolvable or irrelevant,
it will be committed to make this mutually believed in the
team. A team member cannot just on its own drop out
from participation in the conflict resolution. The utility
of such flexibility can be seen in the firing position case.
If a team member sees enemy vehicles approaching, it will
terminate the current on-going negotiations, but do so re-
sponsibly while informing teammates of the situation.

Argumentation Stage: The argumentation stage in-
volves an agent (sender) making a proposal to the agent-
team (receiver) with an attached justification (argument).
The receivers evaluate the proposal taking the justification
into account, and either accept or refute it. If refuting the
proposal, a receiver may send back a counter-proposal to
the team, who may continue this cycle of proposals and
counter-proposals. Refutation may be done via rebutting
or undercutting[9]. Briefly, rebutting refutes the team-
mate’s claim (proposal) directly, with some justifications.
In contrast, undercutting attacks the justification provided
with the proposal, rather than the proposal itself.

In this argumentation stage, the teamwork setting pro-
vides two key novel ideas. First, it enables and requires a
third strategy in addition to rebutting and undercutting,
which we call "improve support." In particular, an agent
receiving a proposal from its team member may accept the
proposal, but may have a better justification for the pro-
posal than the one offered by the sender. For instance, in
the "enemy position" case from Section 2, the second scout
detected a closer enemy unit. The second scout agrees
with the top-level claim that the scouting is completed,
but it offers a higher quality solution about the closer en-
emy unit, which allows the helicopter team’s performance
to improve. It is to enable this "improve-support" strategy
that the Evaluate-proposal algorithm (Fig 2) checks for
claim coincidence.

Second, teamwork models provide reusable argumenta-

tion knowledge. In particular, team conflicts are some-
times rooted in past teamwork, as for instance in the pro-
ceed case. To argue effectively about teamwork, agents
must be knowledgeable about teamwork. Here, STEAM
provides general, reusable warrants for constructing TAPs.
For instance, the warrants shown below, extracted from
STEAM’s role relationships, are employed in CONSA.
Here, warrant wl states that if a team operator r is an
AND-combination, and all of its roles are not achieved,
then the team operator is not achieved, w2 is a varia-
tion for an OR-combination and w3 is that for an AND-
combination.

t ~1: Team-Operator(r) A AND-combination(r} A -~ All-
roles-fulfilled(r) --, -- achieved(r)

¯ w2: Team-Operator(r) A OR-combination(r) ̂ -~
roles-unachievable(r) ~ -- unachievable(r)

¯ w3: Team-Operator(r) A AND-combination(r) A
roles-fulfilled(r) ---, achieved(T)

Real-time, Efficient Argumentation: There are
three techniques used in CONSA to reduce resources uti-
lized in argumentation and enhance its real-time perfor-
mance (shown in steps 2-c and 3-d of Figure 3). One
technique is decision-theoretic reasoning of the cost-benefit
analysis of argumentation. For instance, in the "ball posi-
tion case" in Section 2, the cost of arguing may outweigh
the benefits (e.g., the ball may be shot into the goal by the
time the defenders complete their negotiations). There-
fore, an agent will not negotiate with teammates even
though it detects a conflict in the teammates’ proposal.
The second technique is ordering of arguments. If there are
multiple arguments applicable, CONSA will communicate
the strongest first, in order to speed up the argumentation
process. CONSA also uses pruning (see below) to avoid
communication of commonly held warrants.

Detailed Example of CONS.& application: For a
detailed example of CONSA’s application, we take the sim-
ple "proceed case" from Section 2. Figure 4 shows the ini-
tial warrants and claims that are mutually known by the
pilot agent team (of five agents), r is the current team
operator, an AND-combination. The initial proposal is
generated by the commander agent (Step 1 of Figure 3)
suggest termination of the team operator r. This proposal
is a3 ~= a2, where a3 is the claim "achieved(v)" and
stands for a justification.

=~Mutually believed waxrants: wl, w2, w3 and w4: -~Role-
fulfilled(self) --, -,All-roles-fulfilled(r)
=:.Commaatder pilot agent’s initial claims: claim a2: All-roles.
fulfilled(r), claim 3’1: AND-combination(r)
=~Pflot agent Ml’s initial claims: claim /~4: -. Role-fulfilled
(self), claim 3"1: AND-combination(r)

Figure 4: Initial state: Commander believes all-roles-
fulfilled, M1 believes own role not fulfilled.

M1 evaluates the proposal from the commander agent to
detect conflicts (step 2-a of Figure 3). During this evalua-
tion, using the Evaluate-proposal algorithm from Figure
2, no direct conflicts are found (steps 1 through 4 of Figure
2). However, deriving implication of a2 leads to "P~le-
fulfilled(self)", which conflicts with j34, Ml’s own belief.

However, /34 is evaluated to be stronger, as M1 is an ex-
pert in its own role. M1 next uses w4 and ~1 to construct
an argument: --~3 ¢:: -~2 ¢:: 84. (Warrants wl and w4
are pruned.) Essentially, M1 informs the commander agent
that it disagrees that the team operator is achieved, since
its own role is not fulfilled. Since this is a type 1 conflict,
the argument from M1 is communicated to the entire team
of pilot agents. This causes all members (including M1)
establish a team operator (resolve-joint-conflict); the team
has thus entered the argumentation stage of CONSA. In
this case, since/34 is in the area of expertise of M1, the com-
mander (and other team members) evaluate 84 to have
high strength and accept it. They subsequently also accept
-~3 and -~2 based on the support offered by f14. Thus,
the proceed case is resolved by the commander accepting
Ml’s assertion, and it communicates this acceptance to
teammates.

6 Preliminary Evaluation
CONSA is currently realized in the Soar architecture in
109 rules. In the following we attempt a preliminary qual-
itative evaluation of CONSA. Our implementation has en-
abled agents to negotiate to resolve conflicts in all the cases
from Section 2, with the following results:

¯ Firing position case: An agent detects a conflict in
its firing position due to its role-constraint violation
(one kilometer lateral range). It then establishes
team operator (with the teammate that violates the
role constraint) to resolve role conflict. It generates
proposal to suggest an equidistant move by each agent
(500 meters) to meet the lateral range role constraint.
This proposal is accepted by the second agent. (How-
ever, if the second agent can not move, it rejects this
proposal, causing the first agent to move 1 km on its
own.)

¯ Proceed case: As discussed previously, M1 persuades
teammates that the current team activity is not
achieved.

¯ Enemy position case: The second scout finds an
"improve-support" argument to inform the team that
it has better support (i.e., a higher quality solution),
in the form of closer-range enemy that it spotted.

¯ Ball position case: As the cost of negotiation exceeds
the likely benefits, agents avoid negotiations, and act
based on own (divergent) beliefs.

We also attempted to test CONSA’s flexibility by creat-
ing some surprise variations of the above cases.

¯ proceed-l: The role relationship for the team oper-
ator r was changed from AND-combination to OR-
combination. Here, despite team member Ml’s role
not being fulfilled, M1 did not detect a conflict, and
no arguments were generated. This is correct, since
an OR-combination does not require all roles to be
fulfilled.

¯ proceed-2: We gave one pilot agent (M1), two argu-
ments to attack the commander’s proposal, one based
on own role, and one based on another teammate M3’s
role. Here, M1 correctly selected the stronger argu-
ment based on own role to communicate first to the
team.

¯ firing-position-l: When the pilots established the
resolve-role-conflict team operator to resolve firing po-
sition conflicts, enemy vehicles were suddenly placed
close by to them. The pilot who noticed these vehicles
first, terminated the conflict-resolution team operator
as it was irrelevant, and informed its teammate.

¯ firing-position-2: In a similar situation as above, we
had one helicopter destroyed. The second terminated
the negotiation, as this team operator had become
unachievable.

7 Related Work
Previous work in argumentation-based negotiation has of-
ten assumed non-cooperative agents. For instance, [7; 10]
uses several argument types borrowed from human ar-
gumentation in non-cooperative situations, e.g., threat,
promise of a future reward, and appeal to self interest.
An example from [7] is negotiation among two robots on
Mars. Here, to persuade a robot R2, a robot R1 threatens
it (R2) that R1 will break l:t2’s camera lens or antenna,
if R2 does not comply. Such arguments appear inappro-
priate in team settings, e.g., if ttl and R2 are a team,
and if R1 carries out its threat, then it will have a team-
mate (R2) without a lens or antenna. Other explicitly
non-collaborative argumentation work appears in the legal
domain, e.g., DART[3], which is also based on Toulmin’s
representation schema. In contrast, [9] does not explic-
itly assume collaborativeness or non-collaborativeness in
agents.

CONSA differs from this work in its explicit exploitation
of the team setting in argumentation. As seen earlier, it ex-
ploits teamwork models: (i) to guide flexible agent behav-
ior in negotiation and (ii) as a source of reusable argumen-
tation knowledge. It also adds argumentation strategies so
agents can collaboratively improve each other’s arguments.
Also, CONSA includes techniques to avoid high overheads
of negotiations.

Chu-Carroll and Carberry’s work in argumentation does
assume collaborativeness on part of the participating
agents[l]. While they use SharedPlans[4] in negotiations,
they appear to treat SharedPlans as a data-structure,
rather than a teamwork model. Thus, unlike CONSA,
they do not use SharedPlans either for prescribing agents’
behaviors in negotiations, or as source of reusable argu-
mentation knowledge.

8 Summary and Future Work
Multi-agent teamwork in diverse applications ranging from
planning, design, education and training, faces the prob-
lems of conflicts in agents’ beliefs, plans and actions. Col-
laborative negotiation is thus a fundamental component of
teamwork. To address the problem, this paper describes
an implemented system called CONSA for collaborative
negotiation via argumentation. While CONSA builds on
previous work in argumentation, it advances the state of
the art via the following key ideas: (i) CONSA casts con-
flict resolution as a team problem, bringing to bear some
of the recent advances in flexible teamwork to improve the
flexibility of agent behavior in conflict resolution; (ii) Since
team conflicts are often about past teamwork, CONSA ex-

ploits teamwork models to provide agents with reusable
argumentation knowledge; (iii) CONSA focuses on collab-
orative argumentation strategies such as improve-support;
(iv) As an implemented system in a dynamic environment,
CONSA uses a decision theoretic approach, argument or-
dering and pruning to reduce the cost of negotiation. We
have presented detailed algorithms and initial results from
CONSA’s implementation. Areas of future work include
understanding CONSA’s implications for argumentation
in self-interested agents.

Acknowledgements
This research was sponsored in part by AFOSR contract
no. F49620-97-1-0501, and in part by a subcontract from
the Boeing Corp. We thank Zhun Qiu who implemented
portions of the CONSA system described in this paper.

References
[1] J. Chu-Carroll and S. Carberry. Generating informa-

tion sharing subdialogues in expert-user consulation.
In Proceedings of international joint conference on Ar-
tificial Intelligence, 1995.

[2] P. R. Cohen and H. J. Levesque. Teamwork. Nous,
35, 1991.

[3] K. Freeman and A. Farley. Towasds formalizing di-
alectical argumentation. In Proceedings of the Con-
ference on Cognitive Science Society, 1993.

[4] B. Grosz. Collaborating systems. A1 magazine, 17(2),
1996.

[5] N. Jennings. Controlling cooperative problem solv-
ing in industrial multi-agent systems using joint in-
tentions. Artificial Intelligence, 75, 1995.

[6] H. Kitano, M. Asa~la, Y. Kuniyoshi, I. Noda, and
E. Osawa. Robocup: The robot world cup initiative.
In Proceedings of the first international conference on
autonomous agents, 1997.

[7] S. Kraus, K. Sycnra, and A. Evenehik. Reaching
agreements through argumentation: a logical model
and implementation. Artificial Intelligence, 104:1-70,
1998.

[8] A. Newell. Unified Theories of Cognition. Harvard
Univ. Press, Cambridge, Mass., 1990.

[9] S. Parsons and N. R. Jennings. Negotiation through
argumentation -- a preliminary report. In Proceed-
ings of the International Conference on Multi-agent
Systems, 1996.

[10] K. Sycara. Persuasive argumentation in negotiation.
Theory and Decision, 28(3), 1990.

[11] M. Tambe. Towards flexible teamwork. Journal of Ar-
tificial Intelligence Research (JAIR), 7:83-124, 1997.

[12] S. Toulmin. The uses of argument. Cambridge Univ
Press, London, 1958.

6

