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Abstract

Increasingly, models are being built that include the
expertise of multiple experts. An important issue
with such models is "when are the representations of
those multiple experts in conflict with each other?"
If the expertise conflicts then there are a number of
concerns: Is there an error?; Do the experts belong
to different schools?; Or is this conflict just a
"signal" that there is a need for additional
knowledge acquisition?

The existence of conflict is particularly critical in
those situations where expert evaluations are
"averaged." For example, what would it mean to
average the assessments of supply and demand
economists, or surgeons and chemotherapists?

Accordingly, the focus of this paper is on the
identification of conflict situations, with particular
emphasis on probability evaluations in multiple
agent systems. Correlational statistics are used to
identify conflict situations. In addition, a new
approach, referred to as cutpoints, is developed to
determine if probability distributions of multiple
agents are in conflict. A ease study is used to
illustrate the problems of combining expertise in
multiple agent systems and to demonstrate the
approach.

1. Introduction

Increasingly, there has been an emphasis on the
generation of knowledge-based systems that include
multiple knowledge bases (e.g., Botten et al., 1989 and
Jennings, 1994). For example, researchers (e.g.,
Gelemter, 1992) are developing multiple agent models of
organizations that "mirror" their real-world counterparts.
These mirror worlds can be used to assist in decision

making, to make sense out of the large amounts of data
that flows into an organization, to anticipate the outcome
of sets of events, and a variety of other activities.

Storage of these multiple knowledge bases can take a
number of different approaches, including multiple
different rule sets (Ngwenyama and Bryson, 1992), 
multiple sets of weights on the same set of rules (e.g.,
Reboh, 1983). or some combination. In such multiple
knowledge base systems it often is necessary to determine
if knowledge is nonconflicting or conflicting (e.g.,
Reboh. 1983). If the knowledge is nonconflicting, then
the knowledge can be combined or one of the models can
be used without concern with conflict. However, if there
is conflicting knowledge, then steps can be taken to
either choose one judgment, take alternative steps to
combine the conflicting judgments (e.g., using
negotiation) or search out new information (perform
additional knowledge acquisition). As a result, a critical
step in such systems is the determination of when the
different knowledge bases are in "conflict." The focus of
this paper is on those situations where probability
distribution knowledge for multiple agents, on the same
rules or arcs in influence diagrams, might be in conflict.

Consider a system where two experts have probability
judgments of 1 and 0 for the same event x and 0 and I
for the other event ~x. Such disparate judgments
generally would signal that the experts have different
models of the world. Alternatively, it may signal that
there is an error in one of the assessments. In either
case, combining these judgments, using approaches such
as averaging, is likely to simply camouflage the disparate
nature of the judgments. The resulting combination is
unlikely to be representative of either agent, or the state
of the world that the system is trying to capture. Thus,
the purpose of this paper is to investigate methods for
identifying those situations where multiple agent
probability judgments are in conflict.
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1.1 Importance of Determination of Conflicting
Knowledge

The determination of conflicting knowledge is an
important issue in the development of multiple agent
knowledge-based systems for a number of reasons. First,
unless such conflicts are investigated, system behavior
may be affected. The combination of conflicting
judgments is likely to result in system behavior that is not
sensible. For example, if there are two schools of
thought as represented by mutually exclusive probability
distributions, what does it mean if the system combines
them and uses the average. Second, the existence of
conflicting judgments by multiple experts suggests that
the system has been misspecified. If the system contains
conflicting knowledge, one explanation is misuse or
misinterpretation of information. If the system has been
misspecified in one aspect, then it may be misspecifled in
others. As a result, it is critical to determine the
correctness of those specifications. Third, the existence
of multiple disparate probability judgments is likely to
result in difficulties when the system is verified and
validated. Tests of the data at the extreme points (e.g., 
and ~x) will result in different responses from the system
and the comparative human experts. Fourth, if a set of
distributions is found to be conflicting, then the system
needs to have abilities to account for such differences.
For example, the system can have users or developers
choose which distribution should be used. Alternatively,
if the system is provided with knowledge about the
experts, then it might be able choose, say, the more
expert agent.

1.2 Outline of This Paper

This paper proceeds as follows. Section 2
provides a brief background on multiple agent
knowledge-based systems, including rule-based systems
and Belief Network/Influence Diagram. Section 3
summarizes the case study from which the data used in
this paper is generated. Section 4 investigates two
metrics for determining if the distribution estimates of
two agents are in conflict. Section 5 briefly summarizes
the paper and its contributions, and analyzes some
extensions.

2. Background

2.1 Rule-based Systems and Belief Nets

Rule-based systems and Belief Nets are similar in their
structure. In addition, both use of probabilities, either as

weights on rules or directly. Rule-based expert systems
represent knowledge using "if a then b" rules. Often
those systems employ probability measures of uncertainty
on the rules. Inference through the rule base is done
using heuristic approaches.

Belief Nets (also called Bayes’ Nets and Influence
diagrams) are graphical structures that facilitate Bayesian
reasoning (Pearl, 1988). They are acyclic graphs that are
used to represent any decision problem that can be
captured as a decision tree. Roughly the arcs mean that if
you know the state of the node at one end then you can
infer about the node at the other end. Typically, Belief
Nets have probabilities associated with each arc, in a
manner similar to the probabilities or uncertainty factors
associated with rules. Probability inference through the
network is done using Bayes’ Theorem or some heuristic
approximation.

2.2 Timing Integration of Judgments in Multiple
Knowledge Bases

Multiple agent systems can combine or choose between
the judgments of multiple experts at two different times:
the time the system is built or at the time the system is
run. The first approach uses assessments from multiple
agents to establish a single system. Dungan (1983) and
Dungan and Chandler (1985) built a rule-based system
that integrated the judgments of multiple experts at the
time it was built. Weights for those rules were gathered
from four different sources and then combined into a
single estimate on each of the rules through a process of
averaging.

The second approach provides more flexibility, allowing
for evolving sets of agents. In this approach, e.g., the
weights or probabilities on the rules would be captured as
the system was being built. Then on compilation, the
system would combine (e.g., average) the weights at the
time or the user would chose which weights should be
combined. This would permit the ability to change one
subset of weights or probabilities, without making major
changes in the system. Such an approach would
facilitate an evolutionary system design. For example,
Garvey et al. (1981) suggested that the knowledge 
specialists, with different information, should be
integrated in the system. Reboh (1982) used a similar
approach, integrating different sets of rules. LeClair
(1985) developed a system that permitted the user 
choose from or average different experts represented in
the system.



2.3 Agent Probability Distribution Judgments

This paper focuses on those situations where probability
judgments are generated from multiple agents, for
multiple knowledge bases, for expert systems and
influence diagrams. In particular, it is assumed that
multiple agents provide an estimate of a discrete
probability distribution, for each expert system rule or
influence diagram arc. As is often the situation with
influence diagrams, experts would provide a discrete
probability distribution across a number of "categories."
In the example in the introduction, experts provided
probability estimates of x and -x of 1 and O, and 0 and 1,
respectively.

The previous research in artificial intelligence on the
existence of conflicts is very limited. In one of the few
discussions on the topics, Reboh (1983) described how
the well-known expert system Prospector, determines and
processes the effect of conflicts. Reboh (1983, p. 149))
defines rules to be in conflict when there are "conflicting
rule strengths." In the case of the Prospector system, this
meant that the point-estimate Bayesian-based AL/X
weights (e.g., Duda et al., 1979) are of different
strengths. As noted by Reboh (1983, p. 149), "... when
Prospector discovers conflicting rules with identical left-
and right-hand sides, .. it declares an inconsistency; the
knowledge engineer must then resolve the situation by
talking to the experts .... " However, Prospector was not a
multiple agent system, and thus did not have conflicts
between multiple agents.

3. Case Study: Pathf’mder

Pathfinder is a Bayes Net that uses a large
number of disease - feature pairs (related by probabilities)
to facilitate diagnosis of pathologies of the lymph system.
The system reasons about approximately 60 malignant
and benign diseases of lymph nodes. Pathfinder has been
discussed in detail, in a number of sources (e.g.,
Heckerman et al. 1992 and Ng 1991).

According to Hcckerman et al. (1992), pathologists apply
knowledge about features on a slide to determine the
likelihood of alternative diseases. That diagnosis is then
given to an oncologist who, based on this
recommendation, directs a patient’s therapy.
Accordingly, the therapy is greatly dependent on the
accuracy of the diagnosis.

Pathfinder is a multiple agent system that incorporates
the judgment of multiple pathologists. As such, it

provides a model of the diagnosis process. Ng and
Abramson (1994) list the multiple agent probability
distributions associated with a small portion of the
system. In particular, the distributions for thirteen
different disease - feature "arcs" are summarized in Table
1.

An examination of the probability distributions in table 1
finds that in some cases the distributions are very similar,
while in other cases they appear to bc quite different. For
example, the distributions for arc l appear to bc about the
same for both experts, while, the distributions for arc 9
appear substantially different (in conflict) for each of the
agents. However, these arc qualitative assessments,
quantitative measures of the extent of similarity would be
helpful in determining when the distributions of the
agents are similar and "substantially different."

Table I: Complete Set of Probability Assessments @

Arc # Category
1 2 3 4 5 6

1. .990 .010 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

2. .990 .010 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

3. .985 .015 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

4. .985 .015 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

5. .990 .010 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

6. .990 .010 .000 .000 .000 .000
1.000 .000 .000 .000 .000 .000

7. .000 .010 .400 .500 .090 .000
¯ 000 .200 .600 .200 .000 .000

8. .000.000 .000 .000 .000 1.000
¯ ~0 .~0 .600 .200 .200 .000

9. .980 .015 .~5 .0~ .000 .~0
¯ ~0 .~0 .~0 .2~ .000 .000

10. .900 .090 .010 .000 .000 .000
1.000 .000 .000 .000 .000 .000

11. .980 .015 .005 .000 .000 .000
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.900 .100 .000 .000 .000 .000

12. .900 .090 .010 .000 .000 .000
1.000 .000 .000 .000 .000 .000

13. .000 .010 .400 .500 .090 .000
.000 .800 .200 .000 .000 .000

.........................

@ For each "arc" the first (second) line
corresponds to expert #1 (#2)

Categories - Lacunar SR: l = Absent; 2 = Rare; 3 = Few;
4 = Many; 5 = Striking; 6 -- Sheets.

Source: Ng and Abramson (1994)

The developers choose the approach of generating a
single probability for each are, at run time. Thus, the
development of the system required the integration of
probability information from two expert agents (or more),
by the system. This generally meant averaging the
probability distributions. Although in many cases the
expert agents generated virtually identical distributions,
in some cases there was question as to the similarity of
the judgments. In these cases of conflict, it likely is
inappropriate to average distributions. As a result, it is
necessary to determine if the distributions are disparate,
in order to determine if one of the distributions should be
chosen (e.g., because of greater expertise) or in order 
determine the need for additional information (e.g.,
through knowledge acquisition or from the user as to
their preferences).

4. Analysis of Agent Probability Distributions

The purpose of this section is to investigate
methods for identifying whether or not two agents’
probability distributions are in conflict. Two approaches
are employed. First, a traditional statistical correlation
analysis is employed. Second, an approach based on
Kolmogorov-Smirnov, referred to as outpoints, is
developed and discussed.

4.1 Correlational Analysis

Assume that for each of two agents, for each rule or arc,
there is a probability distribution across a set of n points.
We can use the correlation to measure the extent of
similarity. The statistical significance of the correlation
can be used to determine if the agents’ distributions are
"in conflict" or are "similar."

In terms of the case, the Pearson correlation coefficients,
between the two experts’ distribution estimates are as
follows: arcs 1-6.999; arc 7, .686; arc 8, -.349; arc 9, -
.345; arcs 10-12, .995; and arc 13, -.219. In the case of
ares 1-6, and 10-12, the arcs’ correlations are highly
statistically significant, at .03 and .01, respectively.
Thus, we reject the hypothesis that the distributions are
not correlated.

The correlation coefficient for arc 7 was not
statistically significant. The correlation coefficients for
ares 8, 9 and 13 were negative and found not statistically
significant. Thus, we reject the hypothesis that there is a
correlation between the distributions, for arcs 7, 8, 9 and
13. As a result, this metric signals that the distributions
on ares 1-6 and 10-12 are not in conflict. However, the
correlation coefficients for arcs 7, 8, 9 and 13 suggest
that those agents’ probability distributions are in conflict.

Unfortunately, the analysis of the statistical significance
of the correlation coefficient has some limitations in the
context of multiple agent systems. First, in the
generation of most multiple agent systems, the number of
categories n, will be small. However, as n approaches 3
the measure of statistical significance approaches 0, since
the factor (n-3) is used in the determination of the
statistical significance (e.g., Freund 1971). Second, this
test of statistical significance of the correlation coefficient
assumes a bivariate normal distribution. Unfortunately,
that assumption is not always valid (e.g., Freund 1971).
As a result, consider an alternative approach.

4.2 Cutpoints

This section presents an approach based on the
Kolmogorov-Smirnov (K-S) test (Ewart et al. 1982).
This approach, referred to as outpoints, requires no
distribution assumptions. Basically, the outpoint
approach compares the cumulative frequencies associated
with different categories for two discrete distributions
being compared. The difference between the
probabilities of those two distributions is calculated at
each category. If the maximum value exceeds a specified
level then the hypothesis that the two distributions are
the same is rejected, and the agents distributions will be
said to be in conflict.

For the discrete probability distributions on the
individual arcs, such as those listed in table 1, each
category will be referred to as an index number. Some of
those indices have interesting properties that will help us
determine if the distributions of the two experts are in
conflict.
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Define a maximal cutpoint as an index (in the example
ranging from 1 to 6) such that the difference in the
cumulative probability ("distribution difference"),
between the two distributions, at that index, that is
maximal. For example, in the case of arc 7, at category 3
the distribution for expert 1 has probability of .410, while
that of expert 2 has probability of .800. The difference of
.390 is larger than that of any other cutpoint, for n = 1,
.... 6. The complete set of maximal cutpoints, for the
case, is given in table 2.

Define a zero cutpoint as an index where the cumulative
probability for one distribution is zero and the cumulative
probability for the other distribution is nonzero. There
may be more than one zero outpoint for a distribution.
For example, in the case of arc 8, zero cutpoints occur at
indices 3, 4, and 5.

Define a double zero outpoint as a maximal outpoint,
where the nonzero probability equals one. In that case,
there is an index where all the probability for one expert
is on one side of the index and all the probability for the
other expert is on the other side of the index. For
example, as shown for arc 8 there is a double zero
eutpoint at the index 5. There may be multiple double
zero cutpoints.

4.3 Use of Cutpoints

Cutpoints can be useful in the analysis of the similarity of
two probability distributions on an are. First, the
occurrence of a double zero cutpoint is probably the most
critical. Zero and double zero cutpoints define
alternative ways to define the entire distribution, with
two indices, say x and -x. That revised distribution, with
a double zero outpoint, has zero probability associated
with x and -x for each of the two experts. This implies
the two experts see certainty of mutually exclusive sets of
events. Thus, rather than just defining level, there can be
implications for structure: A zero probability between
two events indicates no relationship between events.

Table 2: Maximal Cutpoints for the Sample of
Probability Assessments

Arc # Expert #1 Expert #2

Amount
x x’ x x’ Location

1. .990 .010 1.000 .000 1 .010

2. .990 .010 1.000 .000 1 .010

3. .985 .015 1.000 .000 1 .015

4. .985 .015 1.000 .000 1 .015

5. .990 .010 1.000 .000 1 .010

6. .990 .010 1.000 .000 1 .010

7. .410 .590 .800 .200 3 .390

8. .000 1.000 1.000 .000 5 1.000

9. .980 .020 .000 1.000 1 .980

10. .900 .100 1.000 .000 1 .I00

11. .980 .020 .900 .100 1 .080

12 .900 .100 1.000 .000 I .100

13. .010 .990 .800 .200 2 .790

Source: Ng and Abramson (1994)

"Location" refers to category at which maximal
cutpoint occurs.

"Amount" is the absolute value of (Pr(x for expert
I) - Pr(x for expert 2))

Second, the maximal cutpoint provides insight into the
similarity of the distributions of the two experts. The
maximal cutpoint value provides a measure that allows
us to assess the point of maximal difference between the
experts. One approach would be to suggest that a
maximal cutpoint of .10 or lower (or .05 or .01, as in
classic probability theory) would be viewed as similar,
while outpoints with distribution differences larger than
.10 would be viewed as in conflict. This approach
indicates that arcs 7, 8, 9 and 13 would be viewed as in
conflict at the .I0 level. In this case the results are the
same as the use of the correlation coefficient analysis.

Third, maximal cutpoints are useful in describing the
index number behavior. In particular, the maximal
outpoints for a set of arcs provides a distribution of
cutpoints. In the example, "1" is a maximal outpoint ten
times, "2," "3," and "5," (arcs 7, 8 and 13) are each
outpoints one time. As a result, we might assert that the
comparison of the probabilities distributions for arcs 7, 8
and 13 behave differently than the comparison of the
other arcs. This could suggest that the distributions of
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the two agents tbr those arcs are sufficiently different
than the other distributions.

Practically, the correlational and cutpoint approach are
substantially different. Whereas the correlation approach
provides a point to point comparison, cutpoints provide
more of a distribution to distribution analysis.

4.4 Additional Criteria

Although this paper has focused on two primary
approaches (correlation analysis and cut points),
potentially other approaches could also be used to
investigate potential conflict. Decision theory and
information theory potentially could be used to compare
the distributions.

Decision theoretic approaches that employ utility
functions could also be used to determine the existence of
conflicts. This approach would require additional
information to generate the utility function. In the case
of the example system there is no data available
regarding the utility of particular estimates or conflicts to
illustrate the use of a utility function.

One information theory measure, I, uses the following
formula to compute expected information, given two

distributions of probabilities qi and pi.

I = g qi log (qi/Pi).

Unfortunately, I is not defined for virtually each of the
distributions in table 1 because of the zero values.

5. Summary

This paper has investigated the issue of when
probability assessments of multiple experts in the
generation of rule-based systems and Belief Networks are
similar or in conflict. Particular interest was in
identifying those situation were the probability
assessments of multiple experts were in conflict. For
example, in the situation where one expert identifies the
probability of x (-x) as 0 (1) and the other expert
identifies the probability of x (~x) as 1 (0), there 
conflict. Two approaches were used to identify conflict:
correlation coefficient and cutpoints. Cutpoints are a
new approach that do not have some of the same
limitations of correlation analysis.
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