
Matching Conflicts: Functional Validation of Agents

George Cybenko and Guofei Jiang

Thayer School of Engineering, Dartmouth College
Hanover, NH 03755, USA

gve@dartmouth.edu, guofei.jiang@dartrnonth.edu

Abstract

in most working and proposed multiagent systems,
the problems of identifying and locating agents that can
provide specific services are of major concern. A broker
or matchmaker service is often proposed as a solution.
These systems use keywords drawn from application
domain ontologies to specify agent services, usually
framed within some sort of knowledge representation
language. However, we believe that keywords and
ontologies cannot be defined and interpreted precisely
enough to make brokering or matchmaking among agents
sufficiently robust in a truly distributed, heterogeneous,
multiagent computing environment. This creates
matching conflicts between, a client agent’s requested
functionality and a service agent’s actual functionality.
We propose a new form of interagent communication,
called functional validation, specifically designed to
solve such matching conflicts. In this paper we introduce
the functional validation concept, analyze the possible
situations that can arise in validation problems and
formalize the mathematical framework around which
further work can be done.

1.0 Introduction
Several efforts are underway to build multiagent

computational grids, such as Globus (Foster and
Kesselman 1998), Sciagents (Drashansky, Joshi and
Rice, and 1995), Infospheres (see http://www.infospheres.
caitech.edu/). Such "grids" will be populated by server
agents and services that are available to user-defined
simulations and applications (Kotz et al. 1997).
Computational resource agents will include distributed
components such as databases, document repositories,
mathematical software packages, sensor feeds, online
simulations and even some hardware for computing. For
example, a grid agent may implement a specific
computational service such as solving specialized
structured linear systems of equations or performing
complex data transformations. In addition, a grid agent
may offer data products as a service, such as an ocean
model performing real-time modeling that makes its state
estimates available upon request.

A fundamental capability required in such a grid is a
directory service or broker agent that dynamically matches
user requirements with available resource agents. On the
web, this capability is provided by search engines that

index web pages and implement retrieval services.
Whereas humans are typically the consumers of web
information, grid agents will be the producers and
consumers of grid resources with humans occasionally
steering or interpreting the computations.

A grid agent that needs a computational service, such
as for example the solution to structured linear system or a
multidimensional Fourier transform, will locate the
required service by consulting a distributed object request
broker agent or a matchmaker service agent. For example,
CORBA is an infrastructure for implementing distributed
applications and provides a broker agent as a key
component (Natan 1995). An object request broker agent
(ORBA) not only locates a component or object that
performs the required service but also mediates
communications between the client agent and the service
agent. In standard terminology, a matchmaker agent is an
ORBA with reduced capability. A matchmaker agent
merely locates remote agents or services but does not
mediate communications between client and server agents.
In the matchmaker agent framework, a client agent and the
remote agent that it invokes communicate directly once
their locations are made known by the matchmaker service
agent.

2.0 The Functional Validation Problem
Server agents will advertise their services catalog on

ORB’s or matchmaker agents. Just like web search
engines, ORB’s and matchmaker agents will use keywords
and ontologies to specify agent services. Ontologies
specify a domain and keywords specify functionality
within that domain. For example, ontologies are
envisioned for signal processing, ocean modeling, image
processing, weather modeling and so on. Within an
ontology, keywords such as "Fourier transform" and
"linear system solver" will have possibly domain specific
meanings. Several systems have been proposed for
implementing such ontologieai matchings (see http://logic.
Stanford.edu/kif/specification.html and http://www.cs.
umbe.edu/kqml/).

Note however, there are literally dozens of different
algorithms for implementing Discrete Fourier Transforms
(Brigham 1988). Different algorithms make different
assumptions about the symmetries of the input vector and
order the output in a variety of ways. Some algorithms

14

From: AAAI Technical Report WS-99-08. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

may be only able to transform the input vector of some
certain dimensions. The actual numerical computations
carried out vary from algorithm to algorithm so that
different round-off errors are accumulated leading to
slightly different answers. Moreover different numerical
implementations of some basic computations in an
algorithm such as integration and derivation always lead to
different computational speed, different accuracy and so
on. The same is true of linear system solvers, other
numerical algorithms and data products. In some
complicated computation tasks, the possible situations are
more challenging. For example, there are many different
system modeling algorithms developed for different
control systems such as ARMX or ARMAX system, time
variant or invariant system, noisy or non-noisy system,
linear or nonlinear system, and so on. So in this case it is
more difficult for keywords and ontologies to precisely
describe the real functionality of the agent algorithms.

Keywords and ontologies cannot be defined and
interpreted precisely enough to make brokering or
matchmaking between grid agents’ services robust in a
truly distributed, heterogeneous computing environment.
This is the basis for matching conflicts between client
agents’ requests and service agents’ responses. Some form
of functional validation of resource agents will be required.

Functional validation means that a client agent presents
to a prospective service agent a sequence of challenges.
The service agent replies to these challenges with
corresponding answers. Only after the client agent is
satisfied that the service agent’s answers are consistent
with the client agent’s expectations is an actual
commitment made to using the service. This is especially
important in mission critical applications. In fact we can
find the same idea of functional validation in our daily
lives. For example, a demo is often used to show the
functionality of some software.

Our ongoing research on agent-based systems (see
http://actcomm.dartmouth.edu and http://www.es.
dartmouth.odu/-agent/) has led us to the conclusion that
brokering at the purely symbolic level will not be
sufficient to implement truly distributed, heterogeneous
multi-agent computing. Two steps are required before
agents commit to each other:

1. Service agent identification and location;
2. Service agent functional validation.
3. Commitment to the service agent.

These steps are shown in Figure 1. Identification and
location will be performed by ORBA’s or matchmaker
agents and is already an area of active research. However,
functional validation of distributed components and agents
is a new subject of research that is essential for the future
success of truly heterogeneous, distributed computing
grids.

3.0 An Example
Suppose a grid resource agent has been developed to

model and predict a regional ocean circulation. It requires
a variety of grid-based, distributed data products
(measurement results for example) and a three-
dimensional Discrete Fourier Transform to implement a
spectral method. The grid computation is dynamic - it uses
the best available resources at any time.

During runtime, a request is made to an ORBA or a
matchmaker agent for an appropriate Db-T. This request is
made based on keywords and possibly parameter lists for
invoking the remote agent. The ORBA or matchmaker
agent consults its service catalog and returns with several
candidate remote agents and specifies their returning value
structures. This is Step 1. outlined above.

With this information, the ocean circulation model
must validate the functionality of the remote DFT agent,
typically written, maintained and updated by another site.
This validation is done at the beginning of the run or
whenever a previously validated agent has failed and a
new agent must be located to continue operation. This
functional validation is entirely different from issues of
authentication and certification. The performance and
correctness of the remote agent’s service may have been
authenticated and certified by an authoritative procedure
or person. However, the actual functionality of the remote
agent must be validated before the client agent’s ocean
simulation commits to using it. This is because what was
"correct" and "sufficient" in the eyes of the certifying
authority may not be enough for the client agent to
conclude that the service is "correct". Moreover, the
keyword description of the service may be incomplete or
inconclusive in the eyes of the client process.

The fundamental question asked by agent functional
validation is:

Do all parties involved in the computation agree
on the actual agent functionality?

Is the functionality of the remote DP’r agent what the
simulation agent requested? This cannot be answered by
keyword matching or certification alone.

Our approach to functional validation is to allow the
client agent to challenge the service agent with test eases,
x~, x2 Xk. The service agent provides corresponding
responses/answers, fR(xt), fR(x2) fR(Xk). The client
may or may not have independent access to the correct
responses/answers, fc(xO, fc(x2) fC(Xk). Depending on
the sequence of responses, the client agent may or may not
commit to using (and therefore possibly paying) the
service agent. To implement such agent functional
validation, several questions need answering:

¯ How large should k be?

15

’- !I~ r I I

+

iqm

m

dD

+’+ +!~./~. ~"

O+P

+~ I I

16,

¯ What iffc(x) is not known by the requesting client
agent?

¯ What if the service agent is fee based and so
answers, fR(X), are not given away freely before
commitment?

¯ How do we implement the validation process
online?

These questions lead to important, novel mathematical
investigations into functional validation.

4.0 Possible Agent Functional
Validation Situations

We will formalize the functional validation program
for a computational and data service as follows. Denote the
client agent’s calling simulation by C and the remote
agent’s service component by R. C requires the evaluation
of a function, fc(x), where x is the input parameter.
Assuming compatibility of input and output parameter
structures and types, which has already been checked by
ORBA or matchmaker agent’s services, the remote agent’s
service is expected to provide fR(X). There are several
possible situations that can arise.

4.1C"knows"fc(x) .ndR provides fR(x)

This is the simplest case. Here the word "knows"
means that C itself has the correct value fc(x) for the
selected samples. For example, suppose the client agent, C,
needs to complete a complicated computation such as a
huge dimension matrix inverse operation. In this case, C
has precomputed or otherwise has available correct
responses fc(x) /br some simple test eases such as some
low dimension matrix inverse operations (which are easy
to compute by the client agent itself), and that the service
agent, R, provides responses fR(X). challenges R with
these simple sample inputs. After the service results,

fR (x), are returned, we must determine whether R
implementing the "correct" service by comparing fR (x)

and/c()-
Basically we can formalize these problems and answer

them using PAC (Probably Approximately Correct)
Learning Theory (Kearns and Vazirani 1994) as a starting
point. We believe that semantic or symbolic level
brokering can be used to achieve agreement about which
function class the client and service functions belong to.
Traditional software testing (Beizer 1990) and
certification by other experts can be viewed as verification
that the service belongs to the function class. Functional
validation establishes a high level of confidence that the
actual functions themselves match. More details of this
approach are offered in Section 5.0.

4.2 C "knows" fc (x) but R does not provide fR (x)
In the above case, the remote service agent, R, may not

be willing to offer the exact results for the challenges that
C poses. This is the case when, for example, R is a fee-
based service and cannot be sure if C will use these free
responses in its actual application and not for validation
purposes. So service agent R could offer hashed results,
g(f~(x)), where g is a secure hash function specified by

C, R or an intermediary. For example,
g(fR(x))=Y.fR(x), where Y is a singular matrix.

Because y-i doesn’t exist, C will not be able to compute
f~(x) out from the returned g(fR(x)) and Y,

y-l g(fR(x)) = y-i . y . fR(x) = fR(x) is not defined.

By comparing g(fc(X)) and g(fR(X)), we can

formalize this case in the same way as 4.1 using ideas from
Zero Knowledge Proof theory (Goldreich and Oren 1994).
Zero Knowledge Proofs have been used to securely
exchange information between corresponding parties
without giving away any unnecessary knowledge. For
example, the challenge here would be to "prove" that a
service agent "knows" how to compute DFT’s without
actually giving away any information that could be useful
to the client agent presenting the challenges.

4.3 C does not "know" fc (z) but R does provide

JR(x)
In the above, we have discussed situations where C

"knows" fc (x). In fact, in some cases C itself will not be

able to "know" fc (x). Nonetheless, it may be possible for

C to verify R’s service in an "indirect" way.
For example, C may request weather forecast data from

a service agent, R. C cannot verify R’s responses without a
time delay, namely recording the predictions and
evaluating them at the time that the actual weather is
known. This is a simple case of "simulation-based"
validation. Let’s think about the matrix inverse operation
example again. Now assuming that C even doesn’t know

fc(x)=x-l of the test samples, C can still verify R’s

service by multiplying the input matrix x with the
returned fR (x) and checking whether x. fs (x) is equal
an identity or not.

In a more complex example, suppose the calling
component, C, is controlling a plant with some internal
states that are unobservable by C directly. Based on the
observed state and time solely, C is not able to
independently observe or validate directly the internal
states or parameters, fc(x), of the plant. Instead, C
consults a system identification service from the remote
agent R. By using the returned parameters, fR (x), as

inputs to its control policy and observing the plant’s

subsequent performance, C can try to verify whether R is
offering the desired service by evaluating its own control
performance.

In this case, the goal is to employ simulation-based
learning, reinforcement learning, and/or unsupervised
learning techniques for functional validation (Jiang 1998).

4.4 C does not "know" fc (x) and R does not
provide fR (x)

This case can arise, for example, when the client agent
C requires a certain service but the service agent R
provides a related (derived or hashed values, for example)
service. This is the most difficult situation. For the matrix
inverse operation example here, C doesn’t know what
fc (x) is and just like in case 4.2, R may be only willing

to offer the hashed result g(fR(x))=x-! .Y. But even in

this case, like the validation approach in the case 4.3, C
can still verify R’s service by checking whether
x. g(fR (x)) is equal to -l. Y = Yornot.

In this way, we believe this situation can be reduced to
a combination of 4.2 and 4.3.

5.0 A Mathematical Model for Agent
Validation - PAC Learning

In general, we can formalize the problems arising in
the above four situations and answer them using PAC
learning theory. The goal of PAC learning is to use as few
examples as possible, and as little computation as possible
to pick a hypothesis concept which is a close appro-
ximation to the target concept. Then by the PAC learned
hypothesis, the client agent can conclude whether the
service agent is offering the "correct" service.

For convenience, let us consider the simplest eases in
situation 4.1. Here assume the input space X is a fixed

set, either finite, countably infinite, [0,1] n, or En

(Euclidean n-dimensional space) for some > I. In the
agent functional validation problem, we are concerned
with whether the service agent can offer the "correct"
service, so we define a concept to be a boolean mapping
c : X ---> {0,1}, with c(x) = 1 indicating that x is a positive

example of c, i.e. the service agent provides the "correct"
service for challenge x, and c(x) - 0 indicating that x is a
negative example, i.e. the service agent does not offer the
"correct" service for challenge x. A concept class C over
X is a collection of concepts c over X. So here the single
unknown target concept is either that the service agent
does offer the "correct" service, i.e.

llf fR --- r

(where y is the allowable computational error) for all x,

that the service agent does not offer the "correct" service,

i.e. IIf~(x)-f,(~)llx ->rfor somex.

Let P be a fixed probability distribution on X and
assume that examples are created by drawing challenges
independently and randomly according to P. Define an
index function

F(x)={10 if llfc(x)- f"Cx]l<- rotherwise

Then the client agent can randomly pick m samples
Sm ={(xI,FCxI) ~ (x2,e(x 2)~..-, (Xra,FCXm))} tO learn a

hypothesis h ~ H about whether the service agent offers
the "correct" service, where H is the hypothesis space
and usually is the concept class C itself. Here let Ac.tt

denotes the set of all learning functions A : Sm --~ H. We

claim that A~ Ac.H is consistent if its hypothesis always

agrees with the samples, that is h = A(Sm). Thus based on

the PAC learned hypothesis that is a close approximation
to the real target concept, the client agent can conclude
whether the service agent can offer the "correct" service
with the desired level of confidence.

Now consider the problem of how many samples or
challenges are needed to make a decision about whether
the hypothesis is a good enough approximation to the real
target concept or not. Define the error between the target
concept C and the hypothesis h as

error(h) = Prob~e[c(x) ;~ h(x)]

where Prob~e[.] indicates the probability with respect

to the random draw of x according to P. Then
mathematically we can formalize the above problem as
follows: How large must the number of challenges, m, be
so that

Pr obm {error(h) < e}>>. 1-6
where ~ is the accuracy parameter and 6 is the
confidence parameter.

Blumer et.al (1989) solved this problem with the
following powerful result

Theorem (Blumer et al. 1989) Let H be any well-
behaved hypothesis space of finite VC dimension d
contained in 2 x, p be any probability distribution on X
and the target concept c be any Borel set contained in X.
Then for any 0 < e., ~ < 1, given

(4 2 8d 13~
m _> max~-log ~-,-~-- log -~-- J

independent random examples of c drawn according to P,
with probability at least 1-6, every hypothesis in H that

"3

is consistent with all of these examples has error at most
E.

In the above theorem, the Vapnik-Chervonenkis
dimension (VC dimension) is a combinatorial measure
concept class complexity which assigns to each concept
class C a single number that characterizes the sample size
needed to PAC learn C. See its detailed definition in
(Blumer et al. 1989).

Thus by determining the boolean concept’s VC
dimension over X and selecting an accuracy parameter e
and a confidence parameter t~, according to the above
theorem, the client agent can pick m samples to PAC learn
a hypothesis which is close enough to the real target
concept, thereby deciding whether the service agent can
offer the "correct" services. However, with regard to
special situations in the agent functional validation
problem, for example, sometimes one negative example is
enough to say that the service agent can not offer the
"correct" service, we believe that we can get some better
results by further work on this problem.

6.0 Conclusions
In a multi-agent grid, a broker or matchmaker agent

will use keywords and ontologies to specify grid services.
However keywords and ontologies cannot be defined and
interpreted precisely enough to make brokering or
matchmaking between resource agent services sufficiently
robust in a truly distributed, heterogeneous computing
environment. This creates matching conflicts between
client agents and service agents. Agent functional
validation is proposed and studied in this paper. It appears
to be promising approach to resolve matching conflicts in
distributed multi-agent grids.

Drashansky, T.T., Joshi, A. and Rice, J.R. 1995. SciAgents
- An agent based environment for distributed, cooperative
scientific computing. In Proc. Of the 7th International
Conference on Tools with Artificial Intelligence. IEEE
Computer Society, 452-459.

Foster, I., and Kesselman, C., 1998. The Grid Blueprint for
a New Computing Infrastructure, Morgan Kaufmann
Publishers, San Francisco, California.

Goldreich, O., and Oren. Y.,1994. Definitions and
Properties of Zero-Knowledge Proof Systems. Journal of
Cryptology 7(1):

Jiang, G., 1998. Reinforcement Learning Methods Based
on Dynamic Programming, Ph.D. thesis, Department of
Automatic Control, Beijing Institute of Technology.

Kearns, M.J., and Vazirani, U.V., 1994. An Introduction to
Computational Learning Theory, The Mrr Press,
Cambridge, Massachusetts.

Kotz,D., Gray, R., Nog,s., Rus D., Chawla, S. and
Cybenko,G. Agent Tel: Targeting the needs of mobile
computers. IEEE Internet Computing, 1 (4):58.

Natan R.B.,1995. Corba-A Guide to Common Object
Request Broker Architecture, McGraw-Hill, New York.

Acknowledgements: This work was partially
supported by Air Force Office of Scientific Research
grants F49620-97-1-0382, National Science Foundation
grant CCR-9813744 and DARPA contract F30602-98-2-
0107.

References
Beizer, B., 1990. Software Testing
Nostrand Reinhold, New York.

Techniques, Van

Blumer, A. et al., 1989. Learnability and the Vapnik-
Chervonenkis Dimension. Journal of the Assocation for
Computing Machinery 36(4):929.

Brigham, E.O., 1988. The Fast Fourier Transform and Its
Applications, Prentice Hail, Englewood Cliffs, New
Jersey.

