
Model-Based Specification and Generation of Programs

Takumi Aida and Shuhei Kawasaki and Setsuo Ohsuga
Department of Information and Computer Science

Waseda University
3-4-10hkubo, Shinjuku-ku, Tokyo, 169-8555, JAPAN

Abstract

A new modeling scheme named multi-strata model-
ing is discussed. A model represented in this scheme
stands between persons and computer software sys-
tems, and connects them directly. It is also possible
for users to represent his/her intention to the detail
by means of this model. It establishes a new human-
computer relation and enables users to represent com-
plex problems and systems including human being.
The concept and the basic ideas on this modeling are
discussed with an application to the enterprise mod-
eling. In particular it is used to specify programs. It
is quite natural because computer program is a part
of an enterprise and therefore must be included in the
enterprise model.

Introduction

The objective of this paper is to discuss a new method
that enables people an easy specification for program-
ming using an advanced information technology. Spec-
ification is considered in this paper as an intermediate
stage of problem solving. The term problem is used
here in a wide sense to mean what a person wishes to
know or wants to do. For example, a requirement for
making computer program is a problem. This case is
discussed in this paper.

Requirement engineering stands almost on the same
viewpoint. Requirement engineers should always con-
sider different perspectives of a diverse set of system
stakeholders. This is the one of the characteristics of
all problem descriptions. Multi-perspective approach
is necessary, especially for collaborative works with
many people whose background knowledge and rep-
resentation styles are different. Viewpoint framework
is one of the approaches. It advantages consistency
checking [FIN94] that is commonly necessary for all
problem descriptions. But viewpoint-oriented require-
ment engineering methods are not widely used because
they may be conceptually sophisticated but too strict
for all practical purpose. The method that is based on
a flexible model of viewpoint and is adaptive for wide
range of industrial settings was proposed as PREview
[SOMM98].

Requirement engineering is specialized to problem
description in the field of programming. In this paper a
more general form of problem description is discussed.
It leads us to requirement description for programming
when it is applied to problem of programming. A new
model-based method of problem solving including hu-
man being is introduced and program specification is
created using this model.

A modeling scheme plays a key role in the method.
It must be comprehensive for both persons and com-
puters. It must also be able to accept wide class of
problems. Thus modeling scheme satisfying such re-
quirements is discussed first in this paper. It is shown
that with such a new method computer systems can
not only be intelligent but also be able to deal with
wide problems.

This scheme is applied to modeling enterprises. An
enterprise is an organization including human being
and activity of an enterprise is becoming more and
more complex and dynamic. It is a good example for
testing the usefulness of the method discussed in this
paper. An enterprise modeling and program specifica-
tion as a part of the modeling are discussed.

Model Building as Problem
Representation

Roughly speaking problem solving is formalized as
problem creation, problem model building, making
a plan of problem solving, finding problem-solving
method, (translating the method into a program if
necessary), execution of the method (or program)
computer, displaying the result and acceptance of the
solution by the person. Since problems originate from
persons, there is intrinsically a problem of human-
computer relation. Currently computers can commit
only a small part of this process around program execu-
tion because of the difficulty of specifying and solving
problem. It is necessary to establish the more intimate
relation between them in order to ease programming.

Let the above process be divided into two stages; one
is creation and representation of problem by persons
and the other is computer’s problem solving. Let the
formal representation of problem by person be called

From: AAAI Technical Report WS-99-09. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

the problem model. The first part and last part of
problem solving are connected by the problem model
and called here externalization of person’s idea, or sim-
ply externalization, and exploratory problem solving,
or simply exploration, respectively. Problem solution
is obtained by a sequence of model transformations.
Thus every problem solving style can be represented,

Human Problem Creation

[Externalization]

Problem Model

[Exploration]

Solution

The location of transferring problems from person to
computer depends on the problem solving style. In the
conventional style, the problem model is represented
in the form of program. Making program is a large
burden to persons. In order to reduce it, it is necessary
to change this style and to put the location of problem
transfer to the uppermost position as far as possible.

Representation of problem model must be decided
depending on the problem-solving capability of com-
puters. The capability depends on the problem solv-
ing style. In this paper a knowledge-based, exploratory
problem solving is used.

In many cases it is required to the exploratory
problem-solving system to generate programs instead
of generating solutions directly. In this case the prob-
lem model representation becomes a program specifi-
cation. Thus the followings are the major issues to be
discussed.

1. How to represent the problem model.

2. How to support persons to externalize his/her idea
(Externalization).

3. How to deal with the problem model to get solution
and generate program (Exploration).

The requirement for externalization is easiness of de-
scribing problem by person while that of exploration is
autonomy, generality and practicality of problem solv-
ing [ROS97].

Generality requires the system not only to cover dif-
ferent domains of problems but also to deal with dif-
ferent types and maturity of problems. It requires sys-
tems to provide a large knowledge base covering the
different types and domains of problems.

Practicality contradicts very often to generality. If
only a necessary subset of rules are provided in ad-
vance for solving the given problem instead of using
large knowledge base, then this problem can be re-
solved considerably. Furthermore, if redundancy is dis-
pelled completely, then it is equivalent to a procedu-
ral program. Ohsuga proposed a way of generating a

problem solving system that is specific to the prob-
lem in [OHS96]. It leads us further to generation of
programs because program is a special form of an au-
tomatic problem solver [OHS98].

Problem model plays many roles. First of all, it is
a representation of a problem as a requirement to be
satisfied. It must be comprehensive for persons. Next,
it is modified in a computer system until a solution
is reached and must be computer readable. Thus the
model represents a state of problem solving process
at every instance of time and a solution in its final
state. Every decision is made on the basis of the model
representation.

In general problem is created concerning with an ob-
ject by person who has some interest in it. Thus it is
necessary to describe the object precisely for represent-
ing the problem. It is not to represent everything of
an object but of some aspects in which the person has
interest. It is called an object model. Even with the
same object, the object model can be different by the
interest of the person to the object. Hence, the in-
terest must also be included in the problem model as
well as an object model. Thus there are two different
schemes for modeling. A real model is represented by
their combination. A language suited for represent-
ing these models was necessary and developed. It had
to be suited for representing predicate including data-
structure as argument and also for describing higher
level operation such as knowledge for selecting object
knowledge. KAUS (Knowledge Acquisition and Uti-
lization System) has been developed for the purpose
by our research group.

Modeling Scheme

Object model as a bottom-up model

An object model is a formal representation of an ob-
ject in the world. Every object model is represented
as a related collection of the conceptual constituents
included in the scope of personal interest. There are
two types of constituents; a structural component and
functionality. The former forms a whole-part structure
of the object. A structural component and a structure
of the components are called here the conceptual entity
or simply entity inclusively. An entity is not always a
physical object but also can be a non-physical one.

Every entity has some functionality. The term func-
tionality is used to mean inclusively attribute, prop-
erty, function, behavioral characteristic of the object
and of its components and relation with the other ob-
jects/components. Functionality is defined with re-
spect to some entity and is represented by a predi-
cate. Let such an entity in the predicate be called an
argument. When two or more entities are combined
to form a compound entity, a new functionality is cre-
ated to the resultant compound. It is decided uniquely
depending on the functionality of its components and
the structure of the entities. Let a whole-part relation

be represented as a hierarchical structure. Then an ob-
ject model is represented as both a structure of entities
and a related structure of functionality. The predicates
as representations of functionality are related to each
other indirectly through the structural relation of the
entities that they contain as arguments.

If a structure of entities and functionality to every
entity in this structure in the aspect in which a person
has interest can be represented explicitly, a complete
object model can be made. If some part of the model
is left unspecified, it is an incomplete model. If there
is some way to get the unspecified part based on the
specified part, it represents a problem. An activity to
fill up the unspecified part is problem solving. Different
types of problems are defined depending on what part
is unspecified in a model.

In addition to object knowledge, knowledge for se-
lecting the object knowledge from a large knowledge
base such that the problem solving process reach the
goal as fast as possible is also provided.

Multi-strata model (MS-model) --
top-down model including human being

A modeling scheme that describes not only an object
but also a subject, which deals with the object, in the
context of a relation between them is necessary. Func-
tionality of the subject defines a scope of model repre-
sentation. More-than-one subjects can be included in
a model. Sometimes person may have interest not in
an object directly but in a problem solving by others.
Then a problem solving activity by others is an ob-
ject for this person. This is a problem solving too. In
this case a problem solving is represented as a nested
structure. Let it be called a multi-strata object. A
new modeling scheme is necessary to represent such
multi-strata objects as shown in Figure l(b).

Modeling for automatic programming is a typical ex-
ample. It requires three strata model. A program is
what generates a solution (output) to a given problem
(input) in relation with an object. It is therefore a spe-
cial type of automatic problem solver. It must be the
same as the work done by a person Sl(in Figure l(a)).
A requirement such as "process transactions -" may
be given to a subject. Programming is an activity of a
higher level (second-stratum) subject $2 to create such
an automatic problem solver. A requirement such as
"make a program for 9 may be given to this subject.
An automatic programming is an activity by a still
higher level (third-stratum) subject $3 to generate au-
tomatically an automatic problem solving system. It
corresponds to a person who makes the program. A
requirement such as "automate programming of the
second subject" may be given to this subject. Thus
a multi-strata model is also a hierarchical model but
there is a substantial difference between the meanings
of object hierarchy and subject hierarchy. Different
from the former, functionality of the latter is decided
freely without being constrained by the lower stratum

functionality. Rather the higher stratum functionality
(requirement) can affect the lower stratum function-
ality or, in some case, creates the lower functionality.
Thus a multi-strata model is processed top-down.

R3

R2

~modeling~

(a)

l (o2
¯

--®
[~modeling ¯

(~)~.
¢

Q* Rl

02

¢

(E)- R2

O3
¢

Q. R3

(b)

Figure 1: Multi-strata object and multi-strata model-
ing

Enterprise Modeling as an Example

Many organizations including persons, for example en-
terprises, can be represented by means of a multi-strata
model. An organization can be seen in the different
ways in making a model. It can be seen as an orga-
nization of persons who have their own roles. Or it
can be seen more abstractly as a structure of activi-
ties. The former view is popular but the latter view is
adopted here because it is more intrinsic than the for-
mer. In fact, persons can be changed without changing
the activity of an enterprise but the reverse is not true
in enterprises.

Every enterprise has an objective. In order to
achieve the objective, various activities have been de-
fined such as business planning, sales planning, pro-
duction planning, sales management, stock order ar-
rangement, material arrangement, and so at the upper
part and production, sales, processing transactions in
the field in the bottom through the long experiences.
If these are not enough for representing the objective,
some specific activities to the objective must be defined
and knowledge for representing them must be created.

Modeling is a dynamic activity to build up an orga-
nization depending on the decision made at the upper
level subjects. For example, ’management planning’ is
a role of the subject at the top (i.e. executive board).
If the scale of the enterprise is large, it is difficult to
make every decision directly here but the work is de-
composed into parts. For example, it is decided to
separate production planning and sales planning from
the total management planning and make the separate
divisions that are responsible to make these decision as
well as the framework (regulation, environment, condi-
tion etc.) and budgets of the activities and the rights

given to them. Some activity is remained by subtract-
ing these parts from the original management plan-
ning. This is the actual activity of the top subject.

In this way, a multi-strata object is formed. Even
though the lower stratum activities depend completely
on the upper subject’s decision, they can work indepen-
dently after the decision is made and an organization
has been settled for the remained activity. An activ-
ity is in reality composed of many small tasks. What
tasks are assigned to a subject is decided referring to
the past cases.It is not an easy task to do everything
from scratch but it is easier for persons to modify the
similar model. It is possible to refer to the similar mod-
els that have been made before and accumulated as the
domain specific knowledge. The effectiveness of mak-
ing an incipient model, even though it is not correct
enough, is that it can be a base of thinking of persons.
Knowledge is used as much as possible.

Let an activity be represented by a predicate in
such a form as activityName (Vat1, Vat2, ..., VarM,
condition, budget), where ’activityName’ is a pred-
icate to represent the activity, Varl, Var2, ..., and
YarM are the variables included therein.

If the activity is what has been established before,
then its interpretation rule in the knowledge base and
retrieved easily. In general a rule to represent an ac-
tivity must be of such a simple form as,

activityName(Varl, Var2, ... , VarM) :

primitiveOpl (Varil,. . . , Varir)

primitiveOpn(Varkl," " , Varks).

where primitiveOpn is a predicate to represent a
primitive operation to construct the activity and
Varkl,’" , Varks a subset of (Varl, Var2, ..., VarM),
are the variables included in this primitive operation.

Program Specification and Generation
All activities in a model are classified by the rela-
tionship between variables. Let some variables that
are specified by the other activities or by the exter-
nal world directly and that are referred by the other
activity or the external world be called the inputs and
output respectively. The remaining variables are called
the auxiliary variables.

For a predicate representing an activity, if the re-
maining variables can be evaluated based on the in-
put in such a way that the predicate becomes logically
true, it is called computable. Otherwise the predi-
cate is non-computable. The auxiliary variables are
used for evaluating the output together with the in-
put variables and must be obtained by the separate
method from the evaluation of the predicate. For ex-
ample, some additional activities are necessary to get
information that is required for making decision in an
enterprise. Let these be called the supporting activi-
ties. These activities are added to the main activities

and classification proceeds including them. The com-
putable predicates are also classified into two classes.
The one class is of activities that are completely spec-
ified to the detail and the remaining ones. These are
called programmable and non-programmable. Thus
the activities including supporting activities are classi-
fied into three classes; programmable, computable but
non-programmable and non-computable. The classifi-
cation of activities is the role of person.

In the main activities, those that concern to the low-
est strata subject are mostly in the computable class.
Many activities of high-strata subjects on the other
hand are of the non-computable.

The computable class is the object of programming.
Some computable activities are collected to form a
macro activity that is a candidate to be translated
into a program. The different collections of the ac-
tivities are made. If all activities in a collection are
programmable, this set of activities can be translated
into a program. That is, a program specification is
made from this set. A new predicate is generated for
the set to represent a program to be generated there-
from. It includes the variables that come into this set
from outside as input and the other variables going out
of this set as output. Then a rule is made of which the
conclusion is the new predicate and the premises are
the predicates in the set. This is a program specifica-
tion.

If a (or a few) activity is computable but non-
programmable in this set, then an interactive program
is generated from the collection. A program specifi-
cation together with the specification for the human
interface is made. In these cases, if an activity refers a
(part of) structure in an object model, the predicate
represent the activity includes this structure as a data
structure. This becomes a data structure of the pro-
gram. A computer program can be developed from the
specification directly. Programming starts by issuing
a question on a predicate to its specification.

The outline of the automatic program
generation

If there is enough amount of knowledge to interpret ev-
ery activity included in the specification, it is processed
as an ordinary knowledge-based problem solving. It is
considered that a succeeded path to solution is a pro-
cedure for deducing the solution. In the following, the
method of program generation from problem solving
process of knowledge-based system is described.

1. A sample task is made by substituting arbitrarily
selected constants into variables. This sample task
is processed actually.

2. A deduction tree is generated by tracing the prob-
lem solving of the sample task by a knowledge-based
system. The deduction tree generated from sample
task is called an instance tree.

3. An instance tree represents a program structure
suited for processing the sample task. Another sam-
ple task in the specified domain may generate an-
other deduction tree. Therefore it is necessary to
generate a generalized deduction tree that covers all
sample tasks in the domain. The instance tree is gen-
eralized for the purpose by restoring the constants to
the variables with the originally specified domains.
The deduction tree thus generated is called a general
tree.

4. The basic program structures such as a straight pro-
cedure, a branch, a loop corresponds to the spe-
cific structure in the deduction tree. These program
structures are identified in the tree and are marked.
These are macro components. Every terminal node
(leaf) represents an atomic procedure and those that
have no marked node along the path from the top
to the nodes are also marked. The order of these
marked nodes being called decides the sequential or-
der of the macro-components, and therefore a pro-
gram structure in a program. A program results by
arranging the components according to the sequen-
tial order. The same procedure is achieved within
every macro-component to generate the structure in
the lower level.

Application to an Actual Problem

This method of program specification and generation
has been applied actually first to a real problem, a con-
trol unit programming for car electronics system, be-
fore applying directly to the more complex problems
like enterprise programming. The characteristic of the
car control system is that the hierarchy of activities is
shallow with the programmable activities as the leaves.
Some activities are collected to form a macro and ac-
cordingly a hierarchy is formed. The hierarchy is made
for the purpose of making the control system compre-
hensive for human designer. A program specification in
an ordinary style has been generated from this model.
The characteristics of the control system are rather
well known through the experiences so far and it is
easy to select sample tasks to cover every necessary
program structure. Therefore an interactive method
of programming has been adopted in making a gen-
eral deduction tree. Some sample trees are generated
and merged to a larger tree instead of generalizing an
instance tree by a rule-based operation. The latter ap-
proach is necessary for automating the programming.
Except these, the modeling concept is substantially the
same as the one discussed before. In the following the
method of analyzing the deduction tree for making the
program structure is discussed for the case of gener-
ating a branch because a branch structure is a funda-
mental component in order to compose other kinds of
basic program component.

Generalization of an instance tree
Every node is created as the deduction of a query pred-
icate using rules. There are two kinds of node, AND
node and OR node, in a general deduction tree. An
AND node is created when a query predicate is de-
duced by a conjunctive rule, i.e. the rule of which the
body is a conjunction of predicates. These predicates
are the children nodes of the AND node. If the pro-
cessing fails during unfolding a child node, the other
children nodes are not processed but a backtracking
occurs. The AND node is erased and the other rules
are explored for deducing from the original query.

On the other hand, an OR node is created either
when a rule includes disjunction explicitly like,

predicate(X Y Z)

:- { cond_l(X), body_l(Y Z)

+ (cond_2(X), body_2(Y

+ body_3(Y Z)

or when there are rules with the same head but with
the different bodies, like,

predicate(X Y)

:- p_l(X), p_2(X), q(X Y).

q(X Y) :- cond_l(X), r_l(X

q(X Y) :- cond_2(X), r_2(X
q(X Y) :- cond_3(X), r_3(X
q(X Y) :- cond_4(X), r_4(X

the different instance tree are generated by selecting
the different rule for the different sample task and these
are merged.

An OR node corresponds either to a loop or a branch
depending on the predicates in the lower nodes. If the
predicate with the same predicate symbol as the origi-
nal query predicate appears in a lower node, the struc-
ture starting from the query node to the lower node is
translated into a recursive program or a loop program.
Otherwise it corresponds to a branch. The former type
OR node can appear in an instance tree but the latter
type node appears by merging the different instance
trees for the different sample tasks. In this case what
rules are selected, and therefore what OR structure is
made, depends on the domain of variable(X) in the
original predicate. In the former case, on the other
hand, the OR structure is decided uniquely by the rule.
Therefore it is desirable that for the first type the rule
is represented in a disjunctive form while the latter
case is represented by a set of separate rules. KAUS as
mentioned before allows a disjunctive representation of
a rule and has been used for the application.

Procedures generation from general tree
A program is generated from the general tree obtained
in the previous step. The process of generating a gen-
eral tree and extracting program is stratified. In the

general tree the node corresponding to the basic pro-
gram structures like branches and loops are marked.
The predicate at the leaf node that has no OR node
along the path from the top to the leaf represents a
primitive operation and also marked. Then the marked
nodes(predicates) are chained from the left most node
in the tree. A sequence including macro operations are
generated. Then, for each OR node corresponding to
this macro a lower structure is generated, a sequence
of predicates is generated for this structure and the
resultant sequence is connected to the previously gen-
erated sequence of predicates. The same procedure is
repeated until every path from the top node comes to
the leaf(Figure 2). Finally, the result is translated into

" S(k)

Figure 2: The set of primitive tasks which execute suc-
cessively

program code. It is now in the intermediate form and a
program to translate it in a C-code is being developed.

This method of program specification and automatic
generation of program has been applied for generating
a program of an engine control system.

First, a specification in the traditional style has been
generated from this internal specification. This proved
that the making an internal specification as mentioned
above can be connected to the ordinary process of pro-
gramming. In this process, a program has been gen-
erated at the same time. At the moment, there are
still many problems. The generated program is not
an optimal one and its optimization is necessary for
real application. In particular there is time require-
ment for this kind of control programs. It must be
included in the specification. Nevertheless the author
believes that this is an important step toward a new
era because a computer control is recent tendency for
not only car electronics but also many other industrial
products and necessity for the rational method of de-
veloping this type of software is rapidly increasing.

stands between persons and computer software sys-
tems, and connects them directly. It is also possible
for users to represent his/her intention to the detail
by means of this model. It establishes a new human-
computer relation and enables users to represent com-
plex problems and systems including human being.
The concept and the basic ideas on this modeling were
discussed with an application to the enterprise model-
ing. A part of this idea has already been implemented
and used to represent generation of a program specifi-
cation for a car electronic system in cooperation with
a car production company. A program has been gener-
ated based on this system. The modeling scheme can
be extended further in many directions to represent
and deal with complex problems.

References
[FIN94] A. Finkelstein, et. al.; Inconsistency Handling
in Multi-Perspective Specifications, IEEE Transac-
tions on Software Engineering, Vol.20, No.8, 1994

[OHS96] S. Ohsuga; Multi-Strata Modeling to Au-
tomate Problem Solving Including Human Activity,
Proc.Sixth European-Japanese Seminar on Informa-
tion Modelling and Knowledge Bases,1996
[OHS98] S. Ohsuga; Toward Truly Intelligent Systems
- From Expert Systems to Automatic Programming,
Knowledge Based Systems, Vol.10, No. 3, 1998

[ROS97] F. H. Ross; Artificial Intelligence, What
Works and What Doesn’t ? AI Magazine, Volume
18, No.2, 1997
[SOM98] I. Sommerville, P. Sawyer and S. Viller,
Viewpoints for requirements elicitation: a practical
approach, International Conference on Requirements
Engineering, 1998

[SUM96] Y.Sumi, et. al.; Computer Aided Communi-
cations by Visualizing Thought Space Structure, Elec-
tronics and Communications in Japan, Part 3, Vol.
79. No.10, 11- 22, 1996

Conclusion
A new modeling scheme named multi-strata modeling
was discussed. A model represented in this scheme

