
Dressing AI in COTS Clothing

Robert M. Balzer Neff M. Goldman
USC/Information Sciences Institute USC/lnformation Sciences Institute

balzer @ isi.edu goldman @ isi.edu

Abstract
Although, the benefits of "domain specific" languages and
development environments are widely recognized,
constructing a design environment for a new domain
remains a costly activity, requiring expertise in several
areas of AI, software development, and the targeted
domain. We’ve simplified this task by combining a design
editor generator with a COTS product (Microsoft
PowerPoint) that provides both the graphic middleware and
end-user GUI for the generated design editors.

Introduction

Domain-specific languages & development environments
are frequently proposed as a means to improve the
productivity of designers [1]. Although prototypes of such
languages and environments proliferate in conference
proceedings, commercially viable examples remain rare.
We believe that the reason for this is primarily the
difficulty of implementing, not of designing, a high-quality
design environment for a new domain.

There are two major parts of a domain-specific design
environment for an engineering domain. The first is a
graphic user interface that lets an engineer intuitively
manipulate the objects constituting a design, create
reusable sub-designs, and navigate within and between
designs. The second is an integrated toolset that provides
the engineer with feedback on a design - problems,
metrics, scenario animations, etc.

We believe that the first portion - the GUI - requires
only shallow knowledge of the application domain on the
part of the environment builder. The second problem,
although it may have graphical presentation aspects, relies
on a much deeper understanding of the domain.

The ISI design editor generator addresses these two
areas in disparate ways. It simplifies the GUI-building
task by extending a high-quality commercial, but non-
domain-specific, platform for constructing and presenting
graphics - Microsoft PowerPoint - rather than some
lower-level graphic library such as Motif or GUI
constructors such as VisualWorks or Visual Basic. The
generator’s "specify by example" paradigm casts the
creation of the GUI for a new domain as a graphical task
in its own right, rather than a programming task.
PowerPoint itself provides the preponderance of the
design editing GUI, which is common across engineering
domains.

The design environment generator provides a flexible
runtime architecture for incorporating feedback programs

(called analyzers) into the generated environments. These
analyzers can be written in the programming language,
and run on the machine, of the implementer’s choosing.
The communication protocols used by the analyzers and
the design editor allow analyzers to be written using either
batch-oriented or incremental algorithms. This flexibility
should make it relatively easy to import preexisting
domain-specific feedback programs into the generated
design editor environments.

The analyzer-editor protocols also support common
graphical presentation requirements of feedback,
permitting the design editor to reflect analyzers’ results
directly onto a graphical design, rather than requiring an
analyzer to provide its own GUI for that purpose.

Figure 1 shows the roles of the domain expert, the
analysis programmers, and the GUI designer in producing
a domain-specific design environment for engineers.

Domains and Designs

Common to numerous engineering domains is the "box-
and-arrow" character of visual designs. Boxes represent
components of a design artifact. Each component denotes
an instance of some component type - resistors and
capacitors, tasks and workers, cargoes and vehicles - the
types used are highly domain specific. Each arrow
represents a relationship between the components at the
ends of the arrow. These relationships may be physical,
temporal, or neither. A single design may reflect several
different relationship types - such as control flow and data
flow in a software algorithm. In most domains, not all
instances of a given component type are identical. So the
types are parameterized by properties -- such as the
capacity of a storage tank or the power of a lens. Like
components, relationships may also have properties - such
as the gauge of a wire or the delay of a communications
link. We currently support properties with boolean,
integer, real, and string values, as well as with values from
domain-specific enumerated types. A property value may
consist of a single value from one of these types or a set of
values.

The units of a design are the component and
relationship instances in the design. Knowing the unit
types of a domain and the properties of each constitutes
the shallow syntactic knowledge of the domain. By itself,
it is not sufficient to produce a semantically meaningful,
much less useful, design.

13

From: AAAI Technical Report WS-99-09. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

I Design Environment Generation I

i
............................

!

i
!i
!

I Design,Enviromnent Execution I

Figure 1. Design environment generation

Nevertheless, this shallow knowledge is significant 3. Generate the domain model for these analysis
because this is the level of information exhibited in programs [see Generating Design Editors for New
graphic designs. This simply reflects the fact that this Domains section]
level of representation is sufficient for two crucial
purposes:

¯ Engineers (or software) with a deeper Analyzers and Analyses
understanding of the domain can derive the

Although graphical designs are often used solely for theirinformation they need from it. It thus serves as the
value for human visualization and communication, they

basis for analysis and communication between become more valuable if software tools can also provide
engineers, analyses and/or implementations of a design. Informally,

¯ Other people (or software) can construct artifacts we consider an analysis to be any body of information
from it (i.e. implement the specified design) without derived from a design. Examples of analyses are:
the need for a deeper understanding of the domain. * Design correctness feedback

Our work focuses on leveraging the central role of these
shallow domain models within in a design environment.
Our contributions are:

1. Generate a domain-specific design editor for a
domain without any traditional programming [see

.

Generating Design Editors section]
Provide a framework for analysis programs to track
an evolving design and provide feedback. [see
Analyzers and Analyses section]

¯ Cost and performance analyses
¯ Automatically generated implementations of

software designs
¯ Animating a usage scenario on a design
Each domain has its own idiosyncratic analyses, whose

requirements for design data, synchronization, and
feedback mechanisms may vary substantially. To
accommodate these variations the design environment
architecture allows analyzers to be independent

14

components that communicate with the editor through an
object-oriented protocol for exchanging design
information and analysis feedback. The design editor
provides an analyzer with incremental updates to the
design state. An analyzer may also query the editor to
find out about particular aspects of the design state. This
allows a variety of implementation techniques to be used
in analyzers.

An analysis may be parameterized. The parameters of
an analysis are just like the properties of a design unit,
with one exception. An analysis may be "focussed".
What this means is that it has a parameter consisting of a
set of units from the design being analyzed. An analyzer
will typically use this focus parameter to restrict its
analysis to the portion of the design designated by the
focus set.

Analyzers execute as separate processes, possibly not
even on the same machine as the design editor itself. The
relative independence of analyzers means that an analyzer
could implement its own GUI for presenting analysis
results to a designer. However, to simplify the
implementation of analyzers, and provide for graphical
presentation of feedback on the design itself, analyzers
may make use of a predefined reporting mechanism in the
analyzer-editor protocol.

An analyzer may send the editor an analysis consisting
of one or more results. Each result consists of a textual
explanation together with a (possibly empty) set

markups. The markups provide graphic feedback to
augment the explanation. Each markup can specify:

¯ that a unit be highlighted
¯ that a unit be hidden
¯ that a component port or arrow terminus be

labeled with specified text.
For example, a report might have the explanation "Only

one input is allowed at the control port of a thermostat."
The accompanying markups might call for highlighting
two arrows terminated at the same control port of a
thermostat, and labeling that port with the text "too many
inputs".

We divide analyses into two categories: snapshot
analyses and incremental analyses. An incremental
analyzer that uses the report/markup mechanism for
presenting feedback is expected to update the analysis
each time that it receives an update to the design state.

Updates to the design state are actually grouped into
transactions in the editor-analyzer protocol. Incremental
analysis updates are expected to follow each transaction.
A designer might select several components through the
editor GUI and delete them all with a single command.
The editor groups the deletions into a single transaction to
report to analyzers. This avoids the need to report
analysis updates relative to ephemeral states that are
meaningless to the designer.

Figure 2 Domain Specification - satellite communication

15

Specifying New Domains and Generating
Design Editors for them

The GUI described below in the Design Editor GUI
section contains no novel features. We wish to reiterate
that there is only a superficial understanding of the
domain represented in the GUI itself, excluding the
content of the analysis results. The novelty comes from
two sources, the first of which is the means used to
generate that GUI. The second, extending a widely used
COTS product, is discussed in the next section.

The "Satellite Communications" GUI was generated
with no traditional programming. Its specification,
created through another graphic interface, is shown in
Figure 2. The (green) rectangles labeled "Comsat",
"Sensor", "User", etc. determine the domain’s component
types. The cross shapes attached to them by dashed
connections are their graphic templates. This determines
the appearance of an instance of the type when an
engineer instantiates it in a design. The GUI designer
either chooses a graphic template from a large library of
shapes, or may import an image, in any of a variety of
image formats, as a graphic template. The GUI designer
tailors the template’s color, border, and label text in this
graphic domain specification.

A type specified may be connected (via a curved solid
connector) to an image that serves as the tool icon for the
type in the generated domain toolbar. Tool icons, like
graphic templates, may be selected from a shape library or
use an imported image. If no tool icon is specified, a
scaled version of the graphic template is used as the tool
icon.

The (gold) arrow shape labeled "Link" provides the
sole relationship type in this domain. The dashed, double-
headed arrow attached to it is the graphic template for the
"Link" relationship type. The GUI designer tailors the
color, dashing and arrowhead styles of a relationship
template in the graphic domain specification just as he
tailors component type templates.

Single-inheritance hierarchies of unit types can be
specified by placing abstract types, such as "Satellite", in
the design. Properties can be associated with either
abstract or unit types. Property definitions are entered
through a dialog like the one in Figure 3. A specification
consists of a name, a type selected from a drop-down list,
optional upper/lower bounds for numeric types,
required/multiple indications, and a textual explanation.
The explanation will appear in a small pop-up window
when the designer hovers the mouse on the "tab" for that
property in a property-editing dialog.

Any unit or relationship type may have initial property
values specified through a property-editing dialog,
identical to the ones used by designers. The default values
are assigned when new instances of the type are created.

Figure 3 Property specification dialog

Figure 2 contains the specification of two global root
analysis groups, "Designer Studies" and "Path Studies",
and eight analyses. The color and styling of the border of
an analysis specify the means used to highlight
components and relationships directed from markups in
the feedback from the corresponding analyzers.
Analogously, the text characteristics - font, face, size,
color - of the label of an analysis specify the textual
characteristics of any on-design markup text found in
feedback from the analysis.

Generating Design Editors for New Domains

The specification-by-example editor is little more than
a domain-specific editing environment specified with its
own (partially bootstrapped) graphic domain specification
for the "domain-definition domain". A PowerPoint
presentation file created by editing a design in the
domain-definition domain serves as the specification for a
new domain. Currently, the file name itself serves as the
new domain’s name. When a designer begins editing a
design for a domain D, D’s graphic specification is loaded
in an invisible, read-only, mode into PowerPoint The
design editor then extends PowerPoint’s GUI by
interpreting the content of that graphic domain
specification.

We have implemented two "analyses" for the domain-
definition domain. The first reports various errors such as
unnamed types, circular inheritance, types without
templates, etc. The second "analysis" is a generator that
produces an ASCII file containing definitions (in
CommonLisp) for classes that correspond to those defined
in the domain definition. A domain-independent
CommonLisp module provides a mapping between this
OO model and the editor-analyzer protocol. CommonLisp
analyzers can then be implemented for this domain by
programmers without any knowledge of DCOM and with
all of the classes of that domain suitably defined.

16

Design Editor GUI

The central component of the design editor is its GUI.
The editor’s GUI provides the interactive user with means
to load/save designs, navigate within designs,
create/delete/copy components and connectors, view and
modify properties of components and connectors, and
request analyses.

Figure 4 below is a screen shot of an editor generated
for a "satellite communications" domain. Everything in
the figure is part of the GUI with the exception of the
caliouts highlighting specific elements.

Readers familiar with Microsoft PowerPoint will
immediately recognize many elements from that product’s
GUI in this figure. This is discussed in detail in the
Advantages of Extending PowerPoint section. Here we
focus on the domain-specific aspects of the GUI.

In the central canvas is the design of a "satellite
communications" configuration. The various labeled
shapes represent instances of satellites, terminals,
switches, processors, and users - the component types of
the domain. They are connected by arrows representing
communication links - the only relationship type used in
this domain.

The designer created these design units through unit
creation tools on the domain toolbar, seen near the upper
right of the figure. To the immediate left of these tools is
a drop-down list box displaying the name of the domain
("Satellite Com"). When a designer starts a new design,
this box allows him to choose a domain. This triggers
creation and display of the appropriate domain toolbar.
Manipulation of units on the canvas - positioning,
resizing, selecting, attaching/detaching links - is carried
out through conventional mouse gestures and/or keyboard
shortcuts.

The window displays a list of reports. In this example,
there was just one report. Its explanation reads "User U3
is directly connected to user U2." When the designer
selects a report, its associated markup instructions are
carried out. Their effect is reversed if the report is
deselected, or the analysis window is closed. In this case,
the only markup instruction called for highlighting the
communication link between U2 and U3. That is why that
link has an appearance (a thin red arrow) different from
the others.

Property values are viewed and assigned through
dialogs, displayed on demand from the unit context
menus.

!

!

Figure 4. Design editing GUI - satellite communications domain

17

Figure 5. Property value dialog
Figure 5 exhibits the dialog for a sensor satellite. The

dialog contains a "tab" for each property associated with
the type in the domain specification. The details of a tab
depend on the value type of its property and on of the
domain specification. Identical dialogs are used to
gather the parameter values for parameterized analyses.

Implementing the Design Environment with
a COTS product

The design editor is implemented as an extension to
Microsoft PowerPoint, programmed in Visual Basic.
Technically, this extension is a COM [] server that
receives "events" as the user modifies a design. The
same module acts as a COM client of PowerPoint
enabling it to navigate through a design and to paint
analysis feedback directly onto the design. For
efficiency reasons, this module runs as an "in-process"
server. This means it is actually part of the PowerPoint
process itself. Method calls are extremely fast when
both client and server are part of a single operating
system process. Greater efficiency could be achieved by
implementing the extension in C++, but the performance
of the Visual Basic code has been acceptable to us to
date.

Design editor - analyzer protocol

When an analyzer process starts, it registers its interest
in one or more domains, and registers as the provider of
one or more analyses. As designs are loaded into the
design editor, or modified, the design editor receives
events from PowerPoint, interprets those events in terms
of changes relevant to analyzers, and notifies registered
analyzers. This portion of the editor, which we call the
Design Monitor, is described in further detail in
paragraph 0.

When a designer requests an analysis and provides its
parameters, the design editor notifies the registered
analysis provider. That analyzer is subsequently
expected to send the design editor an analysis. The
design editor then presents the analysis to the designer.

Every update sent to an analyzer is marked with a
monotonically increasing transaction count. When an
analyzer reports an analysis, it includes the transaction

18

count at which the analysis was computed. Any visible
analysis based on a non-current design state is visibly
marked as out-of-date by coloring the background of its
report window.

When an analyzer has provided an incremental
analysis, it is expected to update the analysis each time it
receives a design update from the editor. When the
designer closes an incremental analysis, the analyzer is
notified and ceases to transmit updates.

The protocol allows an incremental analysis to be
updated either by total replacement or by selective
deletion and addition of reports

Communication between the design editor and
analyzers takes place via distributed COM (DCOM).
The rationale for choosing DCOM over, say, CORBA,
to implement communication between the design editor
and analyzers is only that Visual Basic, the language in
which we implemented the design editor, trivializes the
implementation of DCOM clients and servers. The fact
that PowerPoint itself exposes (D)COM interfaces is not
a factor, because currently the design editor does not
pass analyzers direct references to any PowerPoint
objects..

Although we have not done so, it would be reasonable
to further categorize analyses as synchronous vs.
asynchronous. Synchronous analyzers could use a
simpler protocol (no need for transaction counts) and
allowed to run as "in-process" servers for high
performance.

Advantages of Extending PowerPoint

PowerPoint is marketed as, and known to most of its
users as, a presentation graphics editor. As such, it is
viewed as an interactive editor of presentations
consisting of multiple slides. However, it is also a high
level graphic server, permitting independently written
modules to read and update almost any aspect of its state
and invoke numerous methods through an object-
oriented COM interface. But what does PowerPoint
offer that is missing from traditional "visual interface"
authoring tools?

Primarily, PowerPoint offers a highly functional GUI
for interactively designing presentation graphics.
Virtually every part of that GUI is useful, without
modification, as part of our design editor. This includes:

¯ Scrolling, zooming, scaling, multi-slide designs
Loading/Saving/AutoSaving designs, multiple
windows, multiple views.

¯ Object deletion, selection, grouping,
cut/copy/paste, and text formatting.

¯ Object positioning, alignment, rotation,
reflection, resizing, graphic formatting.

¯ Connectors - self-routing lines/arrows whose
ends attach to other objects, and adjust
automatically to repositioning and resizing.

We emphasize that it is not simply the fact that
PowerPoint has a library with methods for
accomplishing these operations, but that it has a
functional GUI that allows the designer to invoke them
conveniently. If one thinks of an engineering design as a
specialized PowerPoint presentation, it is not surprising
that we have found no reason to remove any of
PowerPoint’s standard GUI. For example, any graphic
object created through conventional PowerPoint tools
may be placed in a design. Such annotations will persist
with the design but will be invisible to analyzers -just as
comments in programming languages are invisible to
compilers.

One other feature of PowerPoint, though not part of
its GUI, has also leveraged our implementation.
PowerPoint allows arbitrary information to be associated
with presentations, slides, and graphic objects in the
form of string-valued tags. This is sufficient for the
design editor’s needs to store its own non-graphic design
information, such as the property values that a designer
has assigned to a unit. PowerPoint ensures that this
information persists as part of the saved presentation
document - no additional persistence mechanism had to
be implemented for these extensions.

Finally, we note that the PowerPoint GUI is already
familiar to many engineers, who use PowerPoint to
present designs to clients and other engineers. In fact,
some of them have commented that they have existing
PowerPoint presentations they would like to import into
our design editor.

Disadvantages of Extending PowerPoint

We should not give the impression that extending
PowerPoint’s GUI provides the same flexibility as
building a hand-tailored design editor GUI.

The biggest impediment was the lack of "event"
notifications in PowerPoint. Most of the design editor’s
activity must be triggered by some event in the GUI -
or, more specifically, by a state change initiated from
some GUI event. For our own GUI extensions (such as
our dialog for editing unit attributes) there was no
problem providing suitable notifications to the editor.
However, detecting events initiated through the native
PowerPoint GUI was a serious problem. Although a
COM interface could make relevant events available, the
interface implemented by PowerPoint97 does not. We
developed a Design Monitor that employed two
mechanisms to overcome this limitation.

The menu items and control buttons in the
PowerPoint GUI are objects in the documented model.
We found a way to replace them with equivalent ones
whose reactions invoked our own code, which internally
synchronously invokes the original reaction. The
mechanism is obscure, but relies only on documented
operations and is fully general. For menu items, this
method works independent of whether the invocation is
by mouse or by keyboard shortcut.

However, "wrapping" the action associated with a
command does not always provide an efficient means to
determine the design-relevant events performed by the
action. An extreme example is the "Undo" command.
Although we may have control both before and after
PowerPoint executes that action, we have no effective
means, short of a complete comparison of before and
after states, to determine the relevant state changes. The
best we can do is simply remove such tools from the
GUI, which is trivial. However, removal is undesirable,
because the tool provides useful functionality for design
editing, just as it does in editing presentation graphics.
We have not found a satisfactory solution.

Events initiated by mouse clicks and motion within a
design window were far more problematic. PowerPoint
provides its extenders with no insight into those events
or, more interestingly, into the changes to its state that
result from handling them. Like any Windows program,
mouse events are communicated to PowerPoint by the
operating system through a message queue. Like other
Windows programs, PowerPoint often responds to the
lowest level mouse events by placing other, higher-level,
events into its own message queue. Mechanisms
independent of PowerPoint allow us to monitor
messages being removed from this queue. Based on
observations from a "message spy" program, we have
developed ad-hoc rules to determine localized bounds
(generally the currently "selected" units) for what may
have changed in a design. We can then efficiently
determine what design-relevant changes actually
occurred by comparing our cached old state with
PowerPoint’s current state within the affected locale.
The fact that we are not concerned with most graphic
details speeds up this comparison significantly.

Visio is a commercial product with many similarities
to PowerPoint, including the mechanisms it uses to
provide extensibility. Since Visio provides extensive
visibility into its state-change events, it might provide a
better technical fit to our needs.

Version considerations
Using a COTS product as a system component makes
version upgrade concerns more significant than is the
case with conventional runtime library components.
How will a new version of PowerPoint impact the design
editor? Because our designs and domain definitions are
fully standard presentations, the new version will
certainly automate any file format changes required to
make them work. All our code that relies on the
advertised (D)COM object model should require
change, because numerous other third party PowerPoint
extensions rely on the same model. Existing menu items
and controls in PowerPoint’s GUI might be removed,
relocated, or renamed, but adapting to those changes
would be trivial. New controls or menu items might

19

appear, but our ability to wrap their actions simplifies
dealing with them. However, because our rules for
interpreting the significance of messages in the message
queue are based only on observation of the current
version, there is reason to expect they might have to be
revised in potentially non-trivial ways.

Where is the AI?

enormous body of valuable domain-independent GUI
capability at no development cost. Careful separation of
editing concerns from analysis concerns allows analysis
algorithms (including correctness analysis) to
implemented independent of the editor. Analyzers
access a design through an abstract syntax derived from
the domain specification and provide abstract feedback
that can be presented by the editor.

The AI used in this effort is hidden behind the COTS
GUI. This insight is the inspiration behind the title
chosen for this paper.

It resides in two places. The first is in the generators
used to automatically build the domain-specific design
editor and analyzer domain model from the shallow
domain specification. These generators operate during
the construction of the domain-specific design editor and
analysis framework to automate the construction of the
domain-specific design environment within the host
COTS product. Thus, only the results of this automation
are visible during the execution of the generated design
editor.

The second place that AI resides is in the domain
specific analyzers employed by the generated design
editor. While these analyzers could have been written in
any language, as described in the Analyzers and
Analyses section, we chose to write them for the
domains that we’ve created to date in AP5 [8]. AP5
extends Common Lisp with an active database that
supports inferencing, constraints, and triggers. These
features allow us to define rule-based analyzers that are
largely declarative.

Related Research

Much recent work in graphical editor generation
[2,3,4,5] has centered on the use of graph formalisms for
specifying a class of diagrams and layout constraints.
Such grammars are difficult to compose and, we suspect,
will find their use primarily in the analysis, not in the
generation, of designs. This has been the experience
with textual language grammars, which are almost
universally used in the parsing of programs, but have
shown little leverage (despite considerable effort at
syntax-directed editing) in aiding source-code editing.

VisPro [6] and DoME [7] demonstrate that the
construction and editing portion of a design environment
can be specified far more concisely (and graphically),
someone with no knowledge of graph grammar
formalisms. Correctness and semantics (in our view,
two forms of analysis) are specified separately.

Our design environment generator extends this work
in two areas. We have shown that modern COTS
products provide a readily extensible platform for the
implementation of a generated editor, saving
considerable programming effort and providing an

References

[1] The Conference on Domain-Specific Languages,
Proceedings, The USENIX Association, Santa Barbara, Ca.
October, 1997. http://www.usenix.org/publications/iibrary/
proceedings/ds197/index.html

[2] M. Minas and G. Viehstaedt, "DiaGen: A Generator
forDiagram Editors Providing Direct Manipulation and
Execution of Diagrams", 1995 IEEE Symposium on Visual
Languages, Darmstadt, Germany. IEEE Computer Society,
pp.203-210.

[3] J. Rekers and A. Schtlrr, "A Graph Grammar

Approach to Graphical Parsing", 1995 IEEE Symposium
on Visual Languages, Darmstadt, Germany. IEEE Computer
Society, pp. 195-202.

[4] D. Lewicki and G. Fisher, "VisiTile -A Visual
Language Development Toolkitl", 1996 IEEE Symposium
on Visual Languages, Boulder, Colorado. IEEE Computer
Society, pp.114-121.

[5] D-Q. Zhang and K. Zhang, "Reserved Graph
Grammar: A Specification Tool for Diagrammatic
VPLs", 1997 IEEE Symposium on Visual Languages, Capri,
Italy. IEEE Computer Society, pp.284-291.

[6] D-Q. Zhang and K. Zhang, "VisPro: A Visual
Language Generation Toolset", 1998 IEEE Symposium on
Visual Languages, Halifax, Canada. IEEE Computer Society,
pp. 195-202.

[7] "Domain Modeling Environment" (DOME)

http://www.htc.honeywell.com/dome.

[8] D. Cohen and N. Campbell. "Automating Relational
Operations on Data Structures." IEEE Software, pages
53-60, May 1993.

2O

