
Data Flow Analysis of IntelligentPad - A Basis of Reusing
Synthesizing Component Pads

Makoto HARAGUCHI 1, Atsushi HIRATA 1, Ken SADOHARA2
1Division of Electronics and Information Engineering, Hokkaido University

N-13, W-8, Kita-ku, Sapporo 060-0813, Japan
E-maih{makoto, atsushi} @db-ei.eng.hokudai.ac.jp

2Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-0045, Japan
E-maihsadohara@etl.go.jp

and

Abstract

This paper introduces a notion of data flows and mode
declarations for IntelligentPad, a kind of component
sofl~,ares. The mode specifies how compo~ent pads
are used for testing the behavior of composite pads.
Under the constraints obtained from a family of mode
declarations, we present an expansion procedure to
generate hypothetical composite pads. An experimen-
tal result shows that the usages of mode declarations
can reduce the size of search space of composite pads
admissible with respect to the mode declarations.

Introduction
The lntelligentPad system (Tanaka 1996) is a kind
component software, and has been desinged so that
user can produce a complex software, called a com-
posite pad, by combining primitive components, called
primitive pads. Each primitive pad can be regarded
as a collection of data items and procedures operating
on them. To access the data stored in a pad from an-
other pad, every pad is designed to have several slots,
through which data items should pass from and to an-
other pads.

For IntelligentPad is a kind of compone~(t softwares,
it is usual or natural to consider a framework for
reusing existing pads to build new pads based on the
composition structures of the former pads. One possi-
ble approach is to use a notion of "patterns" (Hirano
1995). A pattern in the case of pads means a common
composition structure that works as a prototype pad in
synthesizing a more complex pad. Although the usages
of patterns is a promising approach, it is not yet suffi-
cient to present a framework in which we can answer
who provides patterns and in what ways they can be
extracted from object bases of pads. The latter would
be a kind of learning meta-knolwedge.

Another relevant studies can be found in (Sadohara
1997; A.Hirata 1998) in which a theoretical frame-
work for analogical reuse of logic programs (,’epresent-
ing pads) in synthesizing target programs is presented.

Given a source composite pad with a fixed data flow,
represented by a moded logic program, they use a top-
down search method of Inductive Logic Programming
(F.Bergadano 1995) to find a hypothetical composite
pad consistent with a test data presentation. However
the problem is that the search space of possible hypo-
thetical pads is too huge to find an appropriate one in
a realistic time and space. A key to solve the problem
seems to regard composite pads as data flow genera-
tors and to make a constraint that various data flows
should be realized in a single composition structure.

A composite pad can generates various data flows
depending on input events user makes. Conversely an
composite pad is designed and to be synthesized so that
a single composition structure of pad can realize sev-
eral data flows occurred in it. From this viewpoint, we
introduce in this paper a notion of admissible flows of
pads with respect to a mode declaration specifying how
users make input events and observe output events on
pads. Furthermore an algorithm that generates pads
whose flows are admissible is presented, given an exsit-
ing pad whose composition structure is reused to build
the structure of expanded pads. Finally we present an
experimental result based on which we discuss a re-
search plan under developing. The result shows that
using several flows can reduce the number of possible
pads.

IntelligentPad

Before presenting a formal description of pad, we show
a simple example. The example pad is supposed to cal-
culate addition of three integers, and will be composed
from a primitive pad, ADD, that executes binary addi-
tion. ADD has three slots. The first two slots, Slot1 and
Slot2, are used to store input integers, and are sup-
posed to have internal methods performing the opera-
tion Slotl+Slot2. When a user makes an input event
on Slotl or on Slot2, the method associated with the
slot is then invoked, (to the addition, and put the re-
sult in Slot3. To make an input/output events, Intel-

29

From: AAAI Technical Report WS-99-09. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

u~ ~i /

lw IF

Slot1 Slot2 Slot3

o

INT

ADD

Figure 1: A composite pad for binary addition

ligentPad system provides us another primitive pad,
INT, with just one slot Int. So the overall composition
structure is shown by Figure 1, where the horizontal
lines and the dotted circle denote pads and the slots in
them, respectively.

The verti,’al lines in the figure show slot connc: {,ions
according to which data items in the slots are passed
from and to another slots. For instance, suppose user
puts his/her mouse on the leftmost INT and types an
integer x. Ih’T receives x as its Intl value, and sends
an update request to any primitive pad connceted to
Intl. Then ADD receives the update request with the
value x to be stored in $1o¢ l. When a pad receives an
update request for its slot s, it stores the value in s,
and invokes a method m’, associated with the slot, for
the value. In the case of ADD, the slot method mst°t1

takes x as its host object, uses Slot2 as its parameter
input, and output the result Slotl+Slot2 in $1ot3.

Now the content of $1ot3 is changed, so hDD sends
another update request for any pad whose slot is con-
nected to Slot3. Consequently the rightmost pad Ih’T
receives the request with the value of addition. For
In¢l slot has no method associated with it, and for
the pad is not connected to other pad any more, the
update process terminates at this pad.

The fundamental behavior of primitive pads, the up-
date process, can be summarized as follows:

1. The initial update request is given by an input event
users make.

2. A primitivo pad, when receives an update req~,est
with a value, it stores the value in the corresponding
slot so, and apply its slot method m if it is defined.
sc is called the update slot for the request.

3. The pad sends update requests to all the pads whose
slots are connected to the output slots of m. If the
update slot sc is connceted to another pad p except
the original pad sending the update request, another
request is also sent to p to share the value of so.
Consequently the update process does not "go back"
to the original pad.

4. The update process terminates if there exists no con-
nection through which update request is furthermore
sent. Any composite pad should be organized as a
tree of pads so that the update processes always ter-
minate.

Now we formally introduce IntelligentPad (IP) sys-
tem. A primitive pad (PIP for short) a can be repre-
sented as a frame structure of the form:

0 0 ,a[...; .., sj , .., ...1,

where a is a pad ID, sj is a slot, aSY is a procedure,
called a slot method associated with sj in a. Its host

iobject is a slot value of sj. s~.l,.. , sin~ are the list of
input parameter slots for asy, ands il,° .., sjmio is the
list of output slots. We assume here that the set of
input parameter slots, the set output slots and {sj}
are disjoint. The number of slot methods is at most
one, for each slot. A description of slot ID not followed
by method specfication indicates that no method is
defined. Among those slots, just one slot is designated
as a primary slot, and is used to connect with another
slot of another pad called a master pad. A slot s in
a except primary slot is also connected with another
slot of another pad. In this case, a works as a master
pad of the latter (See tit," definition of composite IP
below.), ps(a) denotes the primary slot. In addition,
we often use the notation s E a meaning that s is a slot
of a. For instance, in a PIP a[sl;s2[aS~@sl =¢, sz];s8],
Sl has no special method, s2 has a method receiving s2
value and changing the value of s3 under the parameter
value of sl.

A composite pad (CIP) is a collection of PIPs in-
terlinked each other by slot connections. A composite
pad c is inductively defined as an undirected graph
(PIP(c), Con(c)), where PIP(c) and Con(c) are sets
of nodes (PIPs) and slot connections, respectively.

1.Let a be a PIP, then ({a}, ¢) is a CIP.
2.Suppose c is a CIP (PIP(c), Con(c)), a new

PIP a ~ PIP(c), and s E b E PIP(c). then
(PIP(c) {a}, Con(c) U {(ps(a), s)}) is a CIP
where ps(a) is the primary slot of a. a and
b are called a sub and a master pad, respec-
tively. This sub/master relationship between
PIPs forms CIP as an undirected tree (Figure
2).
Now we show an interpreter (Figure 3) to theoret-

ically describe how a CIP behaves. It runs on the
assumptions we have just made in defining PIPs and
CIPs. First the interpreter is invoked by an input event
that updates the value of ,:lot in a PIP. By using slot
methods and slot connections, the change of slot values

3O

P~) new PiP

a master ~ad of a ~

PIP b in e ~, ~

v
root PIP of c

CIP c

Figure 2: Composite pad in the form of tree

will update another slots of another pads. Such a pro-
cess of updating slot values spreads over (~IP through
the slot connections.

Data Flow and its Block Representation
As we have discussed in Introduction, IntelligentPad
is regarded as a data flow generator. In fact, given an
input event that yields an update request (the vari-
able Update in the procedure update), the process of
updating slot values and visiting another pad via the
connections can be viewed as a dataflow caused by the
input event. This section introduces a notion of blocks
that represent data flows formally.

In the definition below, each data flow is a series of
data passing and procudre calls that can be organized
serially. First we define an atomic block representing
the behavior of PIP, and then introduce how we com-
bine atomic blocks, by serial compostition, to obtain a
composed block representing the behavior of CIP.

When a PIP a receives an updata request specified
by (s, a, V), a performs the following three operations:

(1) a receives V as an input to the slot
(2) a passes V to another slot whenever it is con-

nected to s.
i ..., o is in-(3) A slot method aS@s/1,...,sn ::~ s~, sm

voked and produces the values V1°, ..., V,] as outputs
for s~,..., s,n,° where the values V], ..., V~ tor s/l,..., s/n
are supposed to be provided as parameter inputs.

As a result, PIP a, when updating s E a, can
be a procedure call with 1 + n inputs V, V~,..., Vn/

¯ i and 1 +m outputs V, V1°, V° forfor s,s],...,sn
s, s~, ..., sm. We denote the procedure call as an atomic

s " i S~, i,.., " ,,,~ 8Vt~)block Ba = (p~(s;s~, sn,
(v; v~,..., v,; v~,..., v~),

8, i
i81, ..., 8n}, {8, 8O, 80}),

where B~ obeys the following syntax of block in gen-
eral:

procedure update(s,a,v)
Inputs: a CIP c = (PiP(c), Con(c))

an input event specified by (s, a, v)
begin
Update :-- {(s,a,v)}

/meaning that the content of s in a should be
updated to the new value v./

while Update ~ ~b do
begin
choose (s, a, v), mark s, and remove it from Update
/the marking is used to prevent
the update process from going back/

set the value v in the slot s in a ;
for each non-marked s’ E a’

such that (s, s’) Con(c) do
add (s’,a’, v) to Update
/ if there exists no such a slot s’, do nothing /

if a’@si, si o is defined for s then
¯ .., n =} s~, ...,sin

begin
apply a8 to the present value v

’ i haswith the pmameter values that s~,..., s,
to obtain new values vl, ..., vm for s~, ...,sin, ° "

set the value v~ to the slot s~ for each j ;
for each j, add (s’, a’, vj) to Update

whenever (s’, s~) E Con(c), where s’ ¯ a’.
end

end
end

Figure 3: A theoretical interpreter of pads

block ::= (list of procedure calls,
input slot list, output slot list).

Each procedure call has the form of:
update slot s ; parameter slot list;
output slot list),
corresponding variable list).

Note that the value of slot in each procedure call is
obtained by accessing the corresponding variable. Fur-
thermore, if thc :~lot method a~ is not defined for s, B~
is simply denoted as (p~(s; ;)(Y;;), {s},

J 1
as @si

~o _ yo s=V

The above figure shows an atomic block B~ =
(p~(s; si; s°)(V; Vi; V°), {s, si}, {s, s°}) for a slot s. It
represents both the invocation of slot method a~ and
a data passing shown by an empty procedure ¢ that
simply passes the data value.

Now we describe how we combine atomic blocks into
a composed block..%ppose we have two blocks B and
B~ that have an output slot s and an input slot s’,

31

respectively. If If the slots s and s’ are connected, the
value of s, represented by a variable V, is forwarded
to #. As a result, the variable V~ of s~ and V share
the same value. The act of sharing values is simply
realized by unifying two variables.

Definition (Block Composition): Suppose
have two blocks B = (B1, I, O)) and B’ = (B2, I’,
and s E O and s~ E I~ are given so as to be connected.
Then the composed block is defined as

con(B, B’, s, s’)
((B1, B20), I U I’ - {s’}, O’ U

where ~ is a substitution unifying two variables corre-
sponding to s and #.

The following figure shows a data flow occurred in a
composite pad and the corresponding block represen-
tation. We suppose a flow caused by updating the slot
sl in the PIP al.

2 \to another pad
paraam~4

in-ut L/ update

~t82 81o another pad [

((p~’ (81; 82; 83)(X; Y; Z),p~4 (84; ;)(X;

{sl, s2}, {sl, s3, s4})
It should be noted here that the slot sl is remained

in the output slot list even after the composition. This
is because we still have a possibility to make some PIP
to be a subpad of a1 by connecting to sa. In this case,
Sl works as an output slot.

Now finally in this section, we procedurally define
a dataflow caused by update request. In the proce-
dure in Figure 4, the variable Visited denotes a set of
primitive pads whose slot is marked in the procedure
in Figure 3

From the definition of DF(s, a, c), the block repre-
senting data flow caused by an update for s in a, its
input slot list always contains s, the initial update
slot, as one of its input slot. Moreover, parameter
slots used in each slot method encountered in the data
flow DF(s,a,c) are added to the input slot list I of
DF(s, a, c) = (B, I, 0). As a result, I - {s} shows the
set of all slots that are used as parameters.

Testing Composite Pads
User makes an input event by keyboard or by mouse
operation on one of primitive pads in a composite pad.

begin
let block variable B := Bs a;
Visited := {a} ;
while there exists a PIP a’ ~ Visited whose slot s’ is

connected to some output slot So E 0
in B = (Body, I, O)

do
begin

St
B := con(B, B~,, so, s’)
Visited := {a~} tO Visited ;

end
return B

end

Figure 4: Definition of data flow DF(s, a, c)

INT1 INT2

~ I? ~--INT4

-- w ADD v

Figure 5: A composite pad calculating
INT1 +INT2÷INT3=INT4

Then the data flow by the input event occurs, and the
contents of slots are updated through the flow. When
the update process terminates, he/she can check by
his/her eyes to confirm that the desired result is shown
on some particular pads he/she likes to check.

For instance, for a composite pad in Figure 5, using
four INT pads and calculating INTI+INT2+IICr3 =INT4,
there exists a flow shown by Figure 6.

Thus the act of testing composite IPs stm’I.s from a
single input event and is accomplised by a data flow
caused by it.

The selection of slots on which user makes some in-
put event can be changed according to each particular

i
INTJj/u ~ 2 i o

T INT3// ~NT4

TADD~

Figure 6: A possible data flow to obtain INT4,
given INT1, INT2, INT3

32

i i
INT~/ / INT2 o u

NT4

1, ADD I,

Figure 7: A Possible Data Flow to obtain INT3,
given INT1, INT2, INT4

test. For instance, suppose we are checking if the com-
posite pad computes substraction of integers. For this
purpose, firstly update INT4, and invokes the method
associated with the third ::lot Int3 that calculates Int2
= Int3 - Intl among the slots in INT. The corre-
sponding data flow is shown in Figure 7.

Although the composition structures are the same
one, the usages of slots in testing composite pad may
be changed. For instace, the primary slot of IlCrl is
used for both "update" and "parameter input" slots.
The slot in II¢r3 is used as parameter input in the flow
in Figure 6, while it works as an output in the flow in
Figure 7

Here the notion of "mode" is introduced to specify
how each slot is used in a possible flow.

Definition Mode Declaration (1) A composite pad
c with input/output slots {st,, s, } is simply defined
as a CIP c such that the slots sj are declared to be used
by user. c is now denoted as C(Sl, ..., s,).

(2) A mode declaration for a composite pad
c(sx,....,s,~) is a list of moded slots sj : mj, where
mj is one of following symbols:

"u": a slot updated by a user event.
"i": a slot served as a parameter input.
"o": a slot to be checked as an output.
"-": a slot of no concern,

and "u"-moded slot is supposed to appear just once.
A composite IP with the mode declaration is denoted
as C(Sl : ml, ...,s, : m,~), anal is simply called a moded
CIP.

While updating each slot in a composite IP, several
slot methods may use some parameter inputs. One way
to handle parameter inputs encountered in the data
flow is to assume their default values that are provided
when the pads are newly created. Other way is to ask
the user to specify their exact values as long as the
parameter values are parts of his/her whole input.

In this paper we require !,hat the user should be re-
sponsible even for parameters. This motivates the no-

tion of coverability meaning that each parameter input
in a data flow caused by an input event should be cov-
ered by another data flow triggered by another input
event. We restrict our consideration to data flows that
meet this notion. Similarly we assume that any out-
put slot for which user shows his/her interests should
be updated via data flow caused by input event.

For instance, the declaration c(sl : u,s~ : i, s3
o, s4 : -) indicates the following procedure for our test.
Before testing the behavior of c by updating the slot
Sl of "u"-mode, it is supposed to make an input event
on s2 : i and to provide adequate values for parameter
slots that are needed to execute slot methods in the
data flow given by updating Sl : u. In addition, the
output slot s3 is also expected to appear in the data
flow from the input event on sl : u.

In the following figure, the u-moded input on a4 trig-
gc~s off the flow from a4 to a5. This ,..ill be called a
basic flow covering the output on a5. The slot method
associated with the u-moded slot of a4 is using a pa-
rameter input. The another flow caused by an i-moded
input on a3 reaches a4 via a2 and al, and provides a
necessary value to the parameter slot. The latter flow
will be called a supplementary flow covering parame-
ters.

output
i-moded input

a2~ u-moded input ~ a5\ p r m tor//
’ "/(2) /’ a4

A basic flow and a supplementary flow.

Definition (Coverability of parameter slots).
S~ippose c(s~ : u, sl : ml ,sn : -~,~) is a moded
CIP, and let DF(su, a, c) = (B, I, be thedataflow
caused by updating su in a E c. Then c is said to satisfy
Coverability Condition w.r.t, the mode declaration, if,
for any slot s E I - {s~}, there exists an i-moded slot
sj such that s E Oj, the output slot list defined by
DF(sj, aj, c) = (Bj, Ij, Oj). That is, the value of s,
worhing as a parameter in the data flow ~’nused by the
u-moded slot su, is defined in the data flow caused by
some i-moded slot sj. In this context, DF(su, a, c) and
DF(sj, aj, c) are called a basic flow and a supplemen-
tary flow, respectively. It could be a case that there
still remains some parameter slots that are used in the
supplementary flow. This happens when Ij - {sj} ~ ¢.
In such a case, apply the coverability condition recur-
sively to the supplementary flows themselves.

Def~niti0n (Confirmation of outpuf, slots). Un-
der the same precondition of Coverability, c(s~ : u, sl

33

ml,...,s, : ran) is said to satisfy Confirmation Con-
dition, if any output slot sj : o is an element of O
of DF(su, a, c) -" (B, I, 0). That is, any output slots
should be reached by the basic flow.

Definition (Admissibility):. A moded composite
IP c = c(s~, : u, sl : ml, ..., Sn : mn) is called admis-
sible, if c satisfies both Coverability and Confirmation
Conditions. In what follows, we consider only admis-
sible CIPs w.r.t a given set of mode declarations.

Building Admissible Composite Pads

Based on the definition of admissibility, we now go
on to the topic of generating possible admissible pads.
This will be a basis of reusing and synthesizing CIPs.
First we show such a method, given a single mode dec-
laration, and then extends it to satisfy a set of several
declarations.

Under just one mode declaration

The generation method presented here is desinged not
to make unnecessary PIPs as well as linkages between
them. Thus we make some additional conditions that
meet our method.

Conditionl: For any parameter slot s E I - {su}
of DF(st,, a, c) = (B,I,O), there exists exactly one i-
moded slot s~ E a’ that covers s. This is equivalent
to asking user to select exactly one slot as an i-moded
slot. If we have some parameter slots in DF(s~, a’, c),
then apply the assumption recursively.

Condition2: Any parameter slot sz E a’ of the basic
flow or a supplementary flow, sI appears as an update
slot in the flow caused by some i-moded slot s : i.
Intuitively speaking, the value of sI is supplied by some
slot connection, l~ot by a method of another slot in the
same primitive pad of sI. This definition prohibits
circular references between parameter inputs.

Now, given a mode declaration c(.... ,mj,....), we
start with an initial composite IP Ctop in which u-

moded slot S~op is already specified to determine the
basic flow at least partially. The Crop, in the case of
flow in Figure 6, can be the CIP in Figure 1. Observe
that both the composition strucutre and the flows of
the target CIP in Figure 6 can be extended from the
structure and the flow of the Crop. In fact, by connect-
ing the output slot, Slol~3 of ADD in Figure 1, with
a slot Slotl of ADD1, newly created ADD pad, and by
determining the slot in the middle INT in Figure 1 as
an i-moded slot, we realize that both the flow and the
composition structure are partially obtained. Thus the
expansion procedur~ extend the composition strucutre
so that initial data flow of Crop is extended.

The processes of connecting new PIPs to the present
CIP and of determining which slots are i-moded or o-
moded are described by the following expansion oper-
ators.

Determination of i/o-moded slots:
First we suppose the present basic flow DF(s~,, a, c)
(B,I,O).

1. Determining o-moded slot: Simply choose a slot
s E 0 - {su} whose pad appears as a leaf node of
the present basic flow.

2. Determining i-moded slot: For a parameter in-
put slot s E I - {su } of basic flow, when any sup-
plementary flow is not yet formed, we can non-
deterministically choose s itself as the i-moded slot.
If some supplementary flow DF(sI, aI, c~) covering s
is already formed, then choos,,, s’ as the i-moded slot
to cover s.

Additing new pad at input side:
Let B~’ and DF be a block representing a PIP and
a present supplementary flow, respectively. Then re-
place DF with con(B~, DF, sout,Sin), where Sour and
sin is an output slot of Bas and an input slot of DF,
respectively. If the Sour is not a primary slot, the pad
aI containing sin should be a .oot pad. If the Sour
is a primary slot, there exists two ways to put a into
DF: put it as a master pad under some conditions, or
put it as a subpad. In both cases logical behavior of
the composed pad are the same. So we assume that
a is connected to DF as its subpad, without loss of
generality.

Similarly, we define the introduction of new pads at
output side so that we futhermore extend the basic
flow.

Temination Condition:
We repeat applying the above two operators until all
i-moded or o-moded slots are decided. An admissible
CIP c w.r.t, a mode declaration c(s,~ : u,...,sj
mj, ...) is synthesized after every i-mode or o-mode slot
is decided. No more application of expansion operators
for the admissible CIP is made. Conversely, it is proved
that, for any mode declaraton mode = e(Su : u, sl
ml, ...Sn : ran) and a CIP c such that c is admissible
w.r.t, mode and that c is an extension of the initial
CIP Crop, c can be obtained by applying two expansion
opeators.

Under a set of several mode declarations

Suppose we have a family of k mode declarations
modei= c(mi,1,...mi,n) for i = 1,...,k (k < n) and
an initial CIP Crop in which a slot s~ is specified as a

34

U

\

w

Slot l Slot2 Slot3 add new pad
i choose i-~oded slot ~at output side

\/

add ,~ew pad
at input side

-\
Figure 8: Expansion process

u-moded slot for each modei, s~ can work as i-moded
or o-moded slot in another mode modej (i ~ j). For
instance, for the two declaration,: model = c(u,i,-)
and mode2 = c(i, o,u), the slot s~ should provide a
supplementary flow of another flow caused by s~. So
we firstly check if s~ is an i-moded or an o-moded slot
in another data flow caused by s~’. If the test fails, the
crop is rejected by the reason that there exists no ex-
tension that meets the mode declarations. If the test
succeeds, then we begin to examine an extension of ctop
by the exapnsion operators, and to determine a slot st
for each g such that no mi,e (i= 1. ,...k) is "u".

The expansion operators are modified to take the
relationship between several declarations into account.

1. Apply the rule of determining o-moded or i-moded
slot in one mode declaration modei such that the
determination satisfies the condition for every other
mode declaration modej (j ~ i).

2. Apply the rule of adding new pad for some mode
declaration modej. Note that the creating connce-
tion to new PIP to extend one data flow caused by st
does not effect on another data flow under another
model, so the operation is safe in this sense.

3. Termination Condition is the same as in the case of
single declaration.

The number of possible composition strucutre is not
reduced by the operation 2, adding new pads and con-

nections. On the other hand, the determinations of
user slots are constrained by the family of current data
flows corresponding several declrations.

For instance, suppose we have two flows for the same
composition structure in which some user slots are not
yet specified.

us3

us1

sl s2 s3 s4 ROOT

The user slot us2 is not yet determined.
o]j us3

T1\-
sl s2 s3’ s4

A data flow DF1 under the declaration
rnl(USl : u, us2 : o, us3 :o)

u/, us3i

\us1

TT\
sl s2 s3 s4

A data flow DF2 under the declaration
m2(usl : i, us2 : i, us3 : u)

For the root pad ROOT, we suppose two blocks treat-
ing slots as in the following table:

sl s2 s3 s4
in DFI update output output output

parameter parameter
in DF2 input output input update

Suppose further that we try to determine the
user slot us2. For us2 has the mode pattern

(° inDFl)there exists just °ne sl°t’ s3, thati in DF2 ’
meets this pattern. The another slot, s2, does not sat-
isfy it, so the possiblility is cut off.

An Experimental Result and Future

Research

We have implemented a test algorithm for expanding
CIPs to see how the mode declarations can reduce the
number of possible CIPs that meet the declar;~tions.
Here we show a table, where we suppose three mode

35

declarations ml = c(i, o, u, o, i), m2 = c(o, o, o, i,
and m3 = c(i,u,i,i,o). The table entry shows the
number of expanded CIPs under the mode declara-
tions, where the number of new pads added in the
expansion process is limited up to N.

N none {ml~ {ml, m2} {ml, m2, m3}
1 21 5 2 1
2 1765 138 28 14
3 162021 4427 521 257
4 167834 15268 6402

For the CIPs have various data flows according to
mode declarations, we can do a partial test to check
if the present CIP in the expansion process satisfies
the test data or not. If the test fails, any admissible
CIP that can be expanded from that CIP also fails the
test. Thus we have a pruning method, given a test
data presentation. Thus the number of possible CIPs
is expected to be furthermore reduced under the test
data.

From the viewpoint of reusing existing CIPs, it is
unrealistic to suppose a very large N. This is because
synthesis using a large number of pad creations might
be faster than reusing inadequate existing CIPs. For
this reason, we are now investing a system consisting
of two components: One is a pad retrieval system that
provides an initial CIP. The other one is a pad genera-
tio~ system, as described in this paper, ~"or expanding
the retrieved pad by adding relatively smaller number
of primitive pads.

References

A.Hirata. 1998. On moded functional ip syntheses by
reusing composition structures. In Proc. Workshop
on Applied Learning Theory, DOI Technical Report,
59-63. kyushu Univ.

F.Bergadano. 1995. Inductive logw programming,
from Machin Learning to Software E~gineering. The
MIT Press.

Hirano, R. 1995. A methodology of supporting soft-
ware development for a synthetic media architecture.
Master thesis (in japanese), Hokkaido University.

Sadohara, K. 1997. Using abstraction schemata in
inductive logic programming. In 7th International
Workshop on Inductive Logic Programming, Lecture
Notes in Artificial Intelligence Vol. 1297, 256-263.
Springer-Verlag.

Tanaka, Y. 1996. A meme media architecture for
fine-gain component software. In 2nd International
Symposium on Object Technologies for Advanced Soft-
ware.

36

