Business Rules for Automating Business Policy

From: AAAI Technical Report WS-99-09. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Srinivas Krovvidy
Thomson Labs
1375 Piccard Drive, Suite 100.
Rockville, MD 20850

Abstract

Business policy can be defined as the guidelines and
procedures by which an organization conducts its business.
Organizations depend on their information systems to
implement their business policy. It is important that any
implementation of business policy allows faster application
development and better quality management and also
provides a balance between flexibility and centralized
control. This paper views business rules as atomic units of
business policy that can be used to define or constrain
different aspects of the business. It then argues that business
rules provide an excellent representation for business
policy. Finally, it presents KARMA, (Knowledge
Acquisition and Rule Management Assistant) a system that
can be used to specify, verify, validate and implement
business rules. KARMA was developed and deployed at
Fannie Mae.

1 Introduction

Business policy can be defined as the guidelines and
procedures by which an organization conducts its business.
Business policy is often documented in manuals and
business guidelines and is reflected in an organization's
information systems. Organizations depend on their
information systems to implement this policy. Often
application developers are expected to understand and
implement information systems from the documented
policy. It is important that any implementation of business
policy allows faster application development and better
quality management while providing a balance between
flexibility and centralized control.

This paper presents business rules as a means of
specifying, verifying, and implementing business policy. It
shows how business people can specify and implement
their business policy as business rules. The paper also
demonstrates how to ensure that implemented policy
matches exactly with the documented policy by generating
executable code from business rules.

Section 2 presents an overview of business rules and
different paradigms to implement them. Section 3

Copyright © 1999, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Colleen McClintock
Infinite Intelligence, Inc.
1155 Connecticut Avenue, #500
Washington 20036

37

Jacqueline Sobieski
Fannie Mae
3900 Wisconsin Avenue
Washington 20016

introduces KARMA while sections 4 and 5 describe
KARMA's verification and validation methodologies for
business rules. Section 6 presents code generation
techniques followed by conclusions in section 7.

2 Business Rules Overview

The GUIDE (IBM user group) Business Rules project
(http://www.guide.org/ap/apbrules.htm) was organized in
November 1993 to formalize an approach for identifying
and articulating business rules. The final report of this
project was released in October 1997. In this report, a
business rule is defined as "A statement that defines or
constrains some aspect of the business and is intended to
assert business structure or to control or influence the
behavior of the business." The report also indicates that a
formal logic based specification language can be used to
express various types of business rules. This report
categorizes business rules as follows:

A STRUCTURAL ASSERTION - a defined concept or
a statement of a fact that expresses some aspect of the
business.

An ACTION ASSERTION - a statement of a constraint
or condition that limits or controls some aspect of the
business.

A DERIVATION - a statement of knowledge that is
derived from other knowledge in the business.

There are primarily two types of technologies that
dominate current business rule implementations:

e Data-Oriented Business Rules

e Object-Oriented Business Rules

2.1 Data Oriented Business Rules

Data-oriented business rules use a relational model to
define the application's data model. Business rules are used
to specify the application's behavior as operations on this
relational model. Relational theory allows these operations
to be defined as declarative statements. Data-Oriented
business rules are also known as repository-driven business
rules. Ross (Ross 1997) describes a business rule as a user
requirement, and he implies that rules can be seen as
database constraints. He suggests extensions to data
modeling techniques to represent business rules

diagrammatically. Herbst (1995, 1996) defines and
structures business rules as a main component of systems
analysis and presents a meta-model for business rules. In
this approach, business rules are extracted by defining a
meta-model consisting of an Event, some Conditions, a
Then-Action, and an Else-Action.

Two commercial products, Vision Builder from Vision
Software and Usoft Developer, from Usoft Corp support
data-oriented business rules. They support business rules
defined as constraints on the data. While Vision Builder
implements business rules as triggers and stored
procedures, Usoft generates application code for all tiers,
and uses the repository as a parameter for controlling the
environment.

2.2 Object-Oriented Business Rules

Object-Oriented business rules technology is a new
adaptation of an existing technology, namely, expert
systems. In this methodology, an object model is defined
for the application domain and operations are defined on
this object model as business rules. These business rules
are typically expressed as IF-THEN-ELSE production
rules. Traditionally, expert systems have been used for
real-time systems, process control systems, and network
management systems. However, as embedded information
systems have become more popular, expert systems have
also been found to be very useful, as they can be easily
embedded into conventional business applications.

Currently, nearly all expert system shell vendors (including
Brightware, [LOG, Intellicorp, Neuron Data, and
Platinum) claim to support business rules in their products;
in fact, expert system shells are frequently called "Business
Rules Engines" by vendors. However, in most cases, the
business rules they support are in the native rule language
of the shell. Most business users cannot understand these
rules. While these tools allow Al programmers to write
production rules, they lack the following kinds of support
needed by business users to implement policy:
e They are not easy to define, read, and understand
* They do not provide any tools to verify the logic of
the rules
e They lack any tools to manage the rules from
specification through implementation
» They create a dependency on the product they
support
The next section describes KARMA: a tool that addresses
some of these issues faced by business users in
implementing business policy.

3 KARMA: A Tool for Automating Business
Rules
KARMA was designed, developed, and deployed at Fannie

Mae. Fannie Mae is the largest supplier of home mortgage
funds, America's largest corporation in terms of assets, and

38

the second largest borrower in the capital markets,
exceeded only by the U.S. Treasury. To ensure that the
loans that they purchase are of the highest quality, Fannie
Mae establishes underwriting guidelines and eligibility
criteria, which must be adhered to by those lenders who
sell loans to Fannie Mae (Sobieski et. Al. 1996). Because
of its strong leadership role, Fannie Mae’s policies for loan
eligibility set the standard in the mortgage industry.
Applying these policies consistently and effectively is
critical to Fannie Mae’s mission and profitability. Fannie
Mae chose business rules as the method of implementing
these policies.

Fannie Mae developed a strategic set of tools including
KARMA (Knowledge Acquisition and Rule Management
Assistant) to define, verify, and validate business rules and
business calculations. Ever since their deployment, these
systems have had a significant impact on Fannie Mae’s
ability to respond to changes in the business environment.
These tools have also undergone substantial enhancements
in subsequent releases.

Specify Business Model,
Rules and Calculations

l Validate with Reviewers

]

Check Consistency
Generate Executable
Code

Valiclate Against Test Data

——

Production Ready
Business Rules

Figure 1. Business Rules Implementat

Figure 1 shows the phases of KARMA's business rule
implementation. KARMA has a syntax directed editor
(Rule Editor) with a point-and-click graphical user
interface to support the definition of business rules. These
business rules are then checked for inconsistencies and
ambiguities. After verifying the integrity of the business
rules, they are also validated manually by business experts.
Next, they are executed against a set of test cases in a
dynamic environment, which allows users to modify rules
and instantly analyze results. To enable this validation,
executable rules are automatically generated and
interpreted by KARMA.

3.1 Business Rule Specification Language

Traditionally, there were expert system languages such as
ROSIE that were defined using a formal language that
resembled fragments of English language in their syntax

(Hayes-Roth, Waterman and Lenat 1983). These
languages provided general purpose programming tools to
develop complete Al systems. However, KARMA's
business rule specification language only concentrates on
defining business model, business rules, and business
calculations. It does not include capabilities such as
database manipulations and user-interface commands. In
particular, KARMA's business rule specification includes:
e Specifying a business model to define the
application domain.
e Specifying the business rules and calculations.
¢ Specifying the properties of business rules which
define their unique business-related characteristics
to support the management of business rules.

3.1.1 Business Domain Model

The business domain model is defined as a collection of
objects representing the business. Each object in turn is
defined as a collection of attributes, which define the
characteristics, or properties, of the business objects. Each
attribute belongs to one of several system-defined or user-
defined data types. KARMA provides a point-and-click
interface to define the business domain model, as shown in
figure 2. Business rules and business calculations are
defined using the objects and attributes from the business
domain model.

: @ Existing Primary Financing
: & Mortgage Insurance
E-4f Atributes

@, Financed Mortgage Insurance Premium
: @ Mortgage Insurance Coverage Percent
% Moartgage Insurance Coverage Type
‘ Mortgage Insurance Policy Type
§ Bonower Purchased
@ Lender Purchased
@ Mortgage Insurance Premium Amount
@, Mortgage Insurance Premium Payment Methad
Calculations

Figure 2. Data Dictionary Editor

3.1.2 Business Rules

In the business rule specification language (See Business
Rules Specification), business rules consist of left-hand-
side (antecedent) and right-hand-side (consequent) clauses.

39

Business rules may have one or more clauses ANDed
together on the left-hand- side but may only have a single
clause on the right-hand-side, as shown in figure 3. This
right-hand-side clause either restricts the value of a single
attribute or assigns a value to an attribute when the left-
hand-side conditions are satisfied. Therefore, business
rules are represented as:

IF <clause>

AND <clause>

THEN <clause>

Where a <clause> is defined using the clause editor.

Rule Editor

ype is First Mortgage
AND Mortgage Insurer Type it not Federal Government
AND Subordinate Financing exists
AND Transaction Type is ons of [New Loan or Limited Cath-out Refi

’fuuenl Loan-to-Value Ratio must be less lhar; or equal m percent

Figure 3. Business Rule Editor

Clause qualifiers are used to handle multiple instances of
objects in business rules. In the absence of clause
qualifiers, the default behavior for a rule is to execute once
for each instance of an object in working memory which
satisfies the clause condition. To modify this default

. |
7.

g

-

‘ .6 Mottgage Insurance Required Coverage
| |4 @ Motgage Loan

| 161-@ Pattcipation Pool

@ RateAdusiment
#-@ Subordnate Financhg

Figure 4. Clause Editor

behavior, the business rule language allows the user to
specify either the “EVERY” or “ANY” clause qualifier.

3.1.3 Business Rule Categories

KARMA classifies business rules into three categories:

Concept rules are used to define and/or derive a particular
aspect of the business. These rules can use simple

New

Active

Inactive

Figure 5a. Business Rule States

assignment statements or complex processing algorithms
in their right-hand-side clauses to define concepts.

Constraint rules specify policies or conditions that
impose a restriction that can not be violated. Constraint
rules are in turn classified as negotiable and non-
negotiable. A non-negotiable rule can not be overridden
under any circumstances, while negotiable rules can be
overridden by override rules.

Override rules are used to implement negotiated
exceptions to standard business rules. These negotiated
rules are often used to relax the restrictions imposed by
negotiable constraint rules. These rules are also called as
meta rules, as they are defined on top of the existing
constraint rules.

3.1.4 Business Calculations

Oftentimes, the policies in a business domain require
simple calculations. In traditional systems the logic behind
these business calculations is hidden from the end-user and
the burden of debugging these calculations is left to the
programmer. However, KARMA's specification language
provides a rich set of procedural constructs including IF-
THEN-ELSE, ASSIGNMENT, and ITERATION for
defining calculations. Additionally, the language allows
the user to define calculation logic across multiple
instances. Calculations are defined using KARMA's rule
editor.

3.2 Business Rule Properties

In addition to the formal syntax supported by the Business
Rule Specification Language, the following properties are
defined for business rules: Business Rule Context,
Business Rule Status, and Business Rule Effective Period.

40

These business rule properties are defined to support the
effective management of business rules in a policy-
intensive organization.

Business Rule Context refers to the specific business
context to which a rule applies. The Business Rule
Context is domain dependent, and therefore, is defined by
the user. Defining a Context in a business rule provides the
ability to implement the rule either globally, across all
business processes, or locally, specific to an individual
business process.

Business Rule Status indicates the lifecycle of business
rules development, beginning with a specification phase
where NEW business rules are specified. Once they are
verified and validated, they become ACTIVE and are
implemented in a production environment. Finally, when a
business rule is no longer in effect, it may go into a retired
phase and become INACTIVE. Figure 5a depicts these
phases as three base states in the life cycle of a business
rule. These base states are associated with certain
restrictions. For example, an ACTIVE rule can not be
deleted or modified. To modify an ACTIVE rule a new
version of the rule must be defined. KARMA implements
the restrictions imposed by the base states. However, the
three base states may not provide sufficient detail to
describe the complete life cycle of a business rule within
an organization. These states only encapsulate the
fundamental states in the business rule life cycle. Different
organizations may want to manage the business rule life
cycle at different levels of granularity depending on the
business processes responsible for defining and managing
business rules.

To support these requirements, KARMA allows rule
statuses to be derived from an underlying base state. Figure
5b depicts an example of defining a complete life cycle for
business rules using the base states. A business rule would
be in the NEW state (which allows business rules to be
modified and deleted) during its specification, verification,
and validation phases.

Detined

Veiified

Vahdated
Ready

Rejected

Figure 5b. Business Rule Statuses

These phases can be supported by deriving three statuses
from the NEW state: "Defined", "Verified", or "Validated".

Similarly, within the ACTIVE state, the business rule
would have a status of "Ready" or "Implemented". A
"Ready" status indicates that the business rule is ready for
implementation but not yet implemented in production.
After deriving required statuses from base states, a state
transition table can be defined among derived statuses
using a point-and-click interface. KARMA then enforces
the defined transitions between rule statuses.

Business Rule Effective period indicates the effective and
expiration dates for the business rule. The rule may be an
ACTIVE rule in production but the business policy related
to the rule may not be effective yet. Effective and
expiration dates provide the ability to control the temporal
implementation of a business rule independent of the
migration process through which a business rule is moved
into the production environment.

Business Rule Specification Language (Simplified)

BusinessRuleSpec : BusinessModel {BusinessRule}*
{BusinessCalculation}*

: {Object}*

: {Attribute}*

BusinessModel
Object

: ConstraintRule

| ConceptRule

| OverrideRule

: IF {Clause}* THEN Constraint

BusinessRule

ConstraintRule

ConceptRule : IF {Clause}* THEN Concept
OverrideRule : IF {Clause}* THEN Override
Clause : Qualifier Operand OPERATOR
{Operand}+

Constraint : Clause
Concept : Operand IS Operand
Override : Operand CAN BE Operand
Qualifier : ANY

| EVERY

l
BusinessCalculation : NAME {Statement}+
Statement : IfCondition

| IterationStatement

| AssignStatement

| ReturnStatement

| CompoundStatement

4 Business Rules Verification

Providing a business rule language and a GUI to ensure
that rules are syntactically correct allows business users to
independently define business rules. As the number of
business rules increases, it becomes increasingly difficult
to ensure that business rules are consistent with each other.
It is observed that maintaining absolute consistency is not
always possible and even desirable (Finkelstein et al.
1994). However, it is useful to identify the presence of

41

inconsistencies in a knowledge-base. The design of
KARMA included a consistency-checking component to
meet this need.

Several knowledge base verification tools and
algorithms have been developed to check the consistency
of knowledge base rules (Preece, Talbot, and Vignollet
1997). Since clauses are the building blocks for business
rules in the Business Rule Specification Language, a
unification-based algorithm based on clause comparison is
implemented by KARMA. It performs consistency-
checking between clauses and subsequently uses that
information to define the relationship between the business
rules. KARMA's consistency-checking implementation
assumes that:

e No nested clauses exist in the rules

e The consequents have only one clause

¢ The antecedents may have multiple clauses with an

"AND" connector.
KARMA's consistency-checking algorithm detects:

e Conflicting rules
Redundant rules
Subsumed rules
Redundant if-conditions
Cyclic rules
In terms of business rules, consistency-checking is more
than simple verification to show that a system produces
expected answers. Consistency-checking includes
reporting built-in discrepancies, ambiguities, and
redundancies among business rules. Redundant business
rules may not be desirable, as they do not satisfy any new
business requirements and may cause confusion.
Conflicting business rules need to be identified thereby
policy makers can decide on how to act on them. Detecting
subsumed business rules often leads to the identification of
incorrect or incomplete specification of a business policy.
Please see the Appendix for more details of the
consistency-checking algorithm as implemented in
KARMA.

5 Business Rules Validation

Figure 1 shows the verification (consistency-checking) and
validation processes within KARMA. Verification
primarily focuses on ensuring that business rules are
consistently defined and that new rules do not contradict
the existing set of rules. The primary emphasis of
validation is to make sure business rules implement the
business policy accurately and produce the expected results
for a large set of test cases. To accomplish this, Business
Rules and Calculations are validated in two different ways:

5.1 Validation by Business Experts

Once a business rule has been completely defined by the
business user responsible for the associated business
policy, it is reviewed by business experts. Collectively,
these reviewers approve, modify, or reject the rule. If a

rule is rejected, then its life cycle is terminated by making
it inactive. A modified rule must pass through the review
cycle again. Approved rules become active and are
implemented in production. Validation by business experts
is supported in KARMA by defining the appropriate rule
statuses to support the validation process. Figure 5b shows
the business rule life cycle as implemented in our
validation process.

5.2 Validation using Test Data

The second form of validation involves analyzing the
impact of the business rules using a test data set. A
dynamic rule-evaluation capability is integrated with
KARMA to validate the business rules with test data. This
feature uses A*E (ART*Enterprise®) as a DLL embedded
into KARMA. The user can select one or more business
rules and request validation. KARMA generates executable
code which is interpreted by the A*E inference engine.
Since the inference engine is embedded in the system, the
requirement for additional compilation is eliminated and
the users can validate business rules as they are defined.

6 Code Generation

KARMA generates executable ARTScript rules from the
business rule representation. All code that is dependent
upon the business rules (business domain model, business
rules, and business calculations) is generated by the
system. This means that there is no manual maintenance
necessary for any application when business policy
changes.

In terms of rule generation, the business rule representation
stored in the form of a collection of clauses, is the source,
and the knowledge base rule (ARTScript) representation is
the target. Rules are generated through the use of an
intermediate representation (IR). This allows KARMA to
generate executable rules in different languages, if
necessary.

The IR is composed of three types of constructs:

e Lexical Nodes are atomic (i.e., they cannot be
decomposed). They describe the syntactic elements on a
character-by-character basis.

* Repetition Nodes are list nodes, which specify one or
more occurrences of a node of any type.

e Construction Nodes are nodes that are composed of a
fixed number of other nodes which may be lexical nodes,
repetition nodes, or construction nodes.

The IR is implemented as a set of C++ classes. All IR
classes are subclasses of the lexical, repetition, and
construction node classes. Executable code is generated by
unparsing the IR nodes (Krovvidy and Wee 1988).

® ART*Enterprise is a registered trademark of Brightware
Inc.

42

In certain cases, the complexity of the Business Rule
Specification Language may require KARMA to generate
multiple knowledge base rules from a single business rule.
More specifically, if a business rule contains one or more
clauses with qualifiers (ANY or EVERY), then KARMA
generates multiple knowledge base rules to implement the
required behavior. KARMA also generates multiple
knowledge base rules to implement override rules.

7 Conclusions

When the development of KARMA was started, there were
no commercial products available to support business
rules. A rule based approach was selected for KARMA
since rule based systems offered the most direct
representation of business rules. Currently, many expert
system shell vendors support business rules defined in their
language. However, most business users cannot understand
rules in these languages.

Recently some vendors (e.g., Visionware and USOFT)
have released business rules products, which are essentially
rule-oriented client-server development tools. These tools
allow the developer to specify declarative business rules
based on a physical database schema. The rule languages
used by these business rule tools are targeted towards
software developers rather than business users. In addition,
these tools can not be used to implement business rules as
a service independent of the client application data model.
The client-server business rule tools require a shared
database. Furthermore, both types of tools (expert system
shells and client-server development tools) lack the rule
management capabilities that were built into KARMA to
support the verification and validation of business rules.

The business rule language presented in this paper does not
allow multiple overrides, constraints, or concepts on the
right-hand-side of a business rule. This limitation is
imposed to maintain the property that each business rule
represents a single unit of independent business policy.
KARMA's tool-independent business rule language allows
applications to share business rules. This can be very
important in e-commerce applications where applications
share business policy along with data.
(http://www .research.ibm.com/rules/home.html) Current
efforts also include enhancements to the business rule
language to represent more complex business policies in
addition to providing business users with an intranet-based
capability to develop business rules. In particular, we are
planning to develop a business rules tool using XML and
related markup technologies to represent the rules
embedded in the content of a document such that
applications can understand and share rules as well as
content. On top of production rules, several researchers are
also looking at other re-usable knowledge representation
approaches (Menzies 1997). These approaches include
identifying patterns in expert systems problem solving
behaviors by developing and maintaining an ontology of

business terms. We hope to include some of these ideas in
our XML based tool. In particular we expect that this tool
can help business users develop the vocabulary of their
business domain in the form of a re-usable repository and
allow them to use the terms from this repository to define
their business rules.

References

Finkelstein, A. et al. 1994, Inconsistency Handling in
Multi-Perspective Specifications. /EEE Transactions on
Software Engineering 20(8):569-578.

Hayes-Roth, F, Waterman, D.A. and Lenat, D.B. 1983.
Building Expert Systems. Reading, Mass.: Addison-
Wesley.

Herbst, H. 1996. Business Rules in Systems Analysis: A
meta-model and repository system. Information Systems
21(2):147-166..

Herbst, H. 1995, A Meta-Model for Business Rules in
Systems Analysis. In Proceedings of the Seventh
Conference in Advanced Information and Systems
Engineering (CaiSE '95), Springer, 186-199.

Krovvidy, S., and Wee, W.G. 1988, Retargetable rule
generation for expert systems. In Proceedings of the third
international symposium on methodologies for intelligent
systems, colloquia program 37-46.

Menzies, T.J. 1997, OO Patterns:Lessons from Expert
Systems. Software Practice & Experience, 27(12):1457-
1478.

Preece, A., Talbot, S. and Vignollet, L. 1997, Evaluation
of verification tools for knowledge-based systems.
International Journal of Human-Computer Studies, 629-
658.

Ross, R., 1997. The Business Rule Book : Classifying,
Defining and Modeling Rules, Version 4.0 Database
Research Group, Inc.

Sobieski, J. et al. 1996, KARMA : Business Rules from
specification to implementation. In Proceedings of the
eighth Innovative Applications of Artificial Intelligence,
1536 - 1547.

Appendix:Consistency Checking of Business
Rules

Definitions

Inferred Rules

These are rules that can be obtained by using the
transitivity property of rules. A new rule can be inferred
from two rules if a clause in the consequent of one rule is
unifiable with a clause in the antecedent of another. For
example, consider the following three rules:

Ri: IF (Al1==VI1l) THENAI2=VI12

R2: IF (A12==V12) THEN A21 = V21

R3: IF (A21 == V21) THEN A41 must be greater than
V4l

43

In this example R1, R2 are concept rules and R3 is a
constraint rule. The following inferred rules are generated
from these three rules:

R1->R2: IF (A1l ==VI11) THEN A2l = V2|

R2->R3 : IF (A12 == V12) THEN A41 must be greater
than V41

R1->R2->R3: IF (A1l == V11) THEN A41 must be
greater than V41

Redundant Rules

When two rules' antecedents are equivalent, their
consequents are also equivalent. Two antecedents are
equivalent when they can be unified and have an equal
number of clauses; two consequents are equivalent if they
can be unified.

Conflicting Rules

Two rules are said to be conflicting if their antecedents are
equivalent but their consequents conflict. Conflicting rules
succeed in the same situation but produce conflicting
results.

Subsumed Rules

If two rules' consequents are equivalent, and one rule's
antecedent consists of the antecedent of the other plus
some additional clauses, the more restrictive rule (i.e., the
one having more clauses in its antecedent) is subsumed by
the other,

Redundant If Conditions

There are two types of unnecessary [f-conditions possible.
The first type occurs when a clause in one rule's antecedent
conflicts with a clause in the other rule's antecedent and all
the remaining clauses in both the antecedents and the
consequents of the rules are equivalent. The second type of
redundant If-condition occurs when two rules' consequents
are equivalent, and one rule's antecedent contains a single
clause that conflicts with a clause in the other rule's
antecedent.

Verification algorithm

For the verification of the rules, the comparison of the
clauses is the primary operation. Let C->lhs be the left-
hand side operand in the clause C, C->op be the operator
in the clause C and C->rhs be the list of right-hand side
operands in the clause C. Comparing two clauses C1 and
C2 yields the following results with the respective
substitution lists:

1. Cl1 =C2 if {Cl->lhs = C2->lhs; C1->0p = C2->op;
C1->rhs = C2->rhs } SUB_LIST = {} or

if { C1->lhs = C2->lhs; C1->op = C2->0p; Cl->rhs =
C2->rhs } SUB_LIST = UNIFY(C1->rhs = C2->rhs)

2.Cl1=~C2 if {C1->lhs=C2->Ihs;C1->0p = ~(C2->0p);
Cl->ths = C2->rhs } SUB_LIST = {} or
if { C1->lhs = C2->lhs; C1->0p = ~(C2->0p); Cl->rhs
C2->rhs } SUB_LIST = UNIFY(Cl1->rths = C2->rhs)

3.ClcC2 if { Cl-»lhs = C2->lhs, Cl->op < C2->op;
Cl->rhs ¢ C2->rhs } SUB_LIST = UNIFY{Cl->rhs <
C2->rhs } or
if { C1->lhs = C2->lhs, C1->0p = C2->0p;
Cl->rhs ¢ C2->rhs } SUB LIST = UNIFY{C1->rhs ¢
C2->rhs} or
if { C1->lhs = C2->lhs, Cl->opc C2->0p;
Cl->rhs = C2->rhs } SUB_LIST = {}

4. Cl = C2

In each case, if SUB LIST = {}, then that

list must consist of a consistent set of substitutions for each

variable.

Based on these relationships between clauses,

any two rules R;and R; are compared as follows:

1.

IF the right-hand side clause of R; = right-hand side

clause of R; with a consistent substitution list for

unifying all the clauses on their left-hand sides

THEN R, and R are redundant.

IF the right-hand side clause of R; = ~right-hand

side clause of R; with a consistent substitution list

for unifying all the clauses on their left-hand sides

THEN R, and R; are conflicting.

IF the right-hand side clause of R; = right-hand side

clause of R; with a consistent substitution list for

subsuming Ri's left-hand side clauses with those of

R; THEN R; subsumes R;.

IF the right-hand side clause of R; = right-hand side

clause of R; with a consistent substitution list for

subsuming R/'s left-hand side clauses with those of

R; THEN R; is subsumed by R;. The left-hand side

of a rule R; subsumes that of R; in the following

cases:

o All the clauses in the left side of R; have
equivalent clauses in R; and R, has at least one
more clause than R; on its left side.

e At least one clause from the left-hand side of R,
subsumes those of R; and the rest of the clauses
from the left-hand side of R; have equivalent
clauses in the left-hand side of R;.

IF the right-hand side of R; = right-hand side of R;

AND if we have a clause from the left-hand side of

;= ~any one clause from the left hand side of R;
and for all the other clauses from the left-hand side
of R; there is an equivalent clause from the left
hand side of R; THEN R; and R; have a redundant IF
condition.

The following steps are used in the implementation:

e Let S be the set of all business rules.
o Compute S", where S” is the transitive closure of S

(Note that ST determines the set of inferred rules.)

» Foreveryx e SUST

for any clause c on the left hand side of x, if there
exists another clause d on its left hand side where ¢
= ~d then x has a contradiction within itself.

A

if there exists a clause ¢ on the left hand side of x
where ¢ = ~(the right hand side clause of x) then x
has a contradiction within itself.

if there exists a clause c¢ on the left hand side of x,
where ¢ = the right hand side clause of x, then x has
acycle.

find the relationship between x and y where y € (S
v ST and y # x using the five rules mentioned
earlier.

