
Minimal Revision of Logical Specification
Using Extended Logic Programming:

Preliminary Report

Ken Satoh
Division of Electronics and Information Engineering

Hokkaido University
North 13 West 8 Kita-ku Sapporo 060-8628 Japan

E-marl: ksatoh@db-ei.eng.hokudai.ac.jp

Abstract
This paper presents a method of computing min-
imal revision of logical specification to handle in-
consistencies. We have already proposed a for-
malization of minimal revision of logical specifica-
tion (Satoh 1998) which is a modification of min-
imal revision in (Satoh 1988) and related the for-
malism with Formula Circumscription (McCarthy
1986). Moreover, we have proposed a computa-
tional method for a minimal revised logical spec-
ification without function symbols by abductive
logic programming. However, the proposed com-
putational method in (Satoh 1998) needs a mini-
mality check of abducibles corresponding with re-
vision in order to get a minimal revised specifica-
tion. In this paper, we have proposed a method
which directly computes a minimal revised specifi-
cation. The technique is an adaptation of compu-
tational method of circumscription (Wakaki and
Satoh 1997).

Introduction
In software engineering, there are several proposals of
logical treatment of "inconsistency" of software speci-
fication (Borgida 1985; Balzer 1991; Finkelstein et al.
1994). A survey of these approaches is found in (Nu-
seibeh 1996). (Borgida 1985) handles the first system-
atic work on exception handling of integrity constraints
in database specification and he proposes an isolation
of such an exception from integrity constraints. (Balzer
1991) proposes a recovery of isolation when the excep-
tion is resolved for temporary violation of integrity con-
straints. (Finkelstein et al. 1994) uses non-collapsible
"quasi-classical logic" even in the existence of inconsis-
tency and formalizes consistency management between
multiple specifications defined by several users.

These researches closely relate with belief revision in
AI since managing of inconsistency is a major concern
of belief revision. Especially, belief revision researchers
study "minimal belief revision" (Katsuno and Mendel-
zon 1991) which corresponds with minimal revised spec-
ification in the presence of inconsistency in software en-
gineering.

We have already proposed a formalization of minimal
revision of logical specification (Satoh 1998) which is

modification of minimal revision in (Satoh 1988) and re-
lated the formalism with Formula Circumscription (Mc-
Carthy 1986). Moreover, we have proposed a computa-
tional method for a minimal revised logical specification
without function symbols by abductive logic program-
ming. However, the proposed computational method
in (Satoh 1998) needs a minimality check of abducibles
corresponding with revision in order to get a minimal
revised specification. In other words, we have to com-
pute all the possible set of abducibles at first and then
select minimal sets among these.

In this paper, we have proposed a method which di-
rectly computes a minimal revised specification. The
technique is an adaptation of computational method
of ordinary circumscription used as a preprocessing
to compute prioritized circumscription in (Wakaki and
Satoh 1997). In (Wakaki and Satoh 1997), we have
proposed a translation method of a set of clauses into
an extended logic program and show that common lit-
erals included in all the answer sets are derived from
circumscription. In this paper, we translate a logical
specification into an extended logic program and show
that each answer sets actually corresponds with a min-
imal revised logical specification. By using the corre-
spondence, computation of answer sets for an extended
logic program can be used to a minimal revised logical
specification.

Formula-based Minimal Belief Revision

In this section, we review our framework of formula.
based minimal belief revision(Satoh 1998) for maintain-
ing consistency of software specification.

Consider the following example of logical representa-
tion of a database and constraints which is inspired by
the example in (Borgida 1985, p590).

Example 1
Integrity Constraint meaning that if F is a father of E
then the age orE must be under the age ofF:

(VE, F/person)(VA1, A2/age)
(father(F, E) A age(F, A1) A age(E, A2)

D (A2 < gl))

61

From: AAAI Technical Report WS-99-09. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

A rule of calculating the age:
(VE/person) (VY, Z/year)(VA/age)

(birth_year(E, Y) A current_year(Z) A A =
D age(E,A)),

s is the father of c:
father(s, c).

The birth year of s is 1985:
birth_year(s, 85).

The birth year of c is 1984:
birth_year(c, 84).

We also assume that there are some possibilities that
the information of birth year is wrongly inserted in the
database.

Suppose that we add current_year(99). The addition
of "c(99). ,,1 leads to inconsistent database state.
resolve such inconsistency, we would consider the fol-
lowing possibilities.

$1: b(s, 35) is incorrectly added and so, we delete this
information from the database.

Su: b(c, 84) is incorrectly added and so, we delete this
information from the database.

Ss: We regard this situation as an exceptional situation
and so, we change the integrity constraint.

The first two cases are usual treatment of integrity con-
straint check and the last is proposed in (Borgida 1985).
His idea is to change a part of applicability of the vi-
olated integrity constraint in order to restore consis-
tency. In the above example, we change the integrity
constraint into the following:

(VE, F/person)(VA1, A2/age)
(-~(F = s A E = e AA1 = 14 A A2 = 15)A
f(F,E) A a(F, A1) A a(E, D (A2 < A1))

The above three changes relates with minimal belief
revision studied in the field of AI. For a model of each
revised specification, minimal deletion of facts or part
of integrity constraints is performed. We call this kind
of revision formula-based minimal belief revision since
we minimize the change of satisfaction of considered
formulas.

We explain why the above change is minimal revi-
sion of software specification. We focus on truth of the
following three formulas:

~1 : b(s, 85)
0/~ : b(c, 84)

0/3 : f(s, c) A a(s, 14) A a(c, 15) D (15 < 14)

Note that the above three formulas are true in a logical
model of the original specification. We calculate the
difference of true formulas among the above three be-
tween a model of the original specification and a model
of the new specifications.

1 From now on, for brevity, we write "f" for "father"
predicate, "a" for "age b" for birth_year, "c" for
current.year, respectively

Model Difference
a model of $1 0/1

a model of S~ 0/2

a model of $3 0/3

We can consider other specifications which are consis-
tent with the new information c(99), but we can show
that differences between a model of these other specifi-
cations and a model the original specification are larger
than either model of $1, S~ and S~. Therefore, we say
that these specifications realize formula-based minimal
belief revision since we consider minimization of the dif-
ference of truth of formulas 0/1, 0/~ and 0/3 between a
model of the original specification and a model of a new
specification.

In (Satoh 1998), we formalize formula-based minimal
belief revision in the second-order formula and show
that Formula Circumscription (McCarthy 1986) is
special case of formula-based minimal belief revision.
Full definition of formula-based minimal belief revision
formalizes not only minimal deletion of formula but also
minimal addition, but since we only consider a minimal
deletion of a part of specification in this paper, it is suffi-
cient to consider a definition formalized in Formula Cir-
cumscription according to the relationship with (Satoh
1998) as follows.

Let K(~) and 0/(~) be consistent first-order formu-
las which contain a tuple of predicates ̄ = (Pl, ..., pn).
We call K(~) the current knowledge which corresponds
with absolute integrity constraints and absolute views
(rules), and a(~) the added knowledge which corre-
sponds with additional absolute integrity constraints or
additional absolute views (rules).

Let ¢ be a tuple of formulas, (¢1 (~, x),..., em (~2,
where x is a tuple of free variables in ¢1,..., era. We call
¢1,..., em focused formulas since we consider a change
of satisfaction of each focused formula between a logical
model of the original specification and a model of the
new specification.

Definition 1 (Satoh 1998) Let ~’ be a tuple of pred-
icate variables (P~,.",P~n> each of whose arity is the
same as the arity of the corresponding predicate in
(Pl,...,Pn). We define formula-based minimal revised
belief, New(k~,~), with respect to h’(~), 0/(~)
as follows.

New(~, ¢b)
I((~) A 0/(~)A

A 0/(*%
D

x) D
where K (t) i s aformula obtained bysubstituting predi-
cate variables of ~l for any occurrence of corresponding
predicate constants in K (~).

The above definition means that a model of K(~)
with the negations of focused formulas minimized cor-
responds with a model of minimal revised belief.

62

Example 2 Consider the specification in Example 1.
For brevity, we consider f (s, c) for f predicate, b(85)
and b(e, 84) for b predicate, e(99) for c predicate, and
a(s, 14) and a(c, 15) for a predicate.

In the example, K(¢) corresponds with a conjunctions
of the following three formulas:

b(s,85) A c(99) A 14 = 99 - 85 a(s, 14).
b(c,84) A c(99) A 15 = 99 -- 84 a(e, 15).
f(s, c).

and a(k~) corresponds with
c(99).

and g) is a tuple (¢1, ¢2, Ca) where

¢1 : b(s, 85).
¢2 : b(c, 84).
¢3: f(s, c) A a(s, 14) A a(e, 15) D 15 < 14.

"lhen, New(~, ¢) becomes:
(b(s,85) A c(99) A 14 = 99 -- a(s, 14))A
(b(c,84) A e(99) -- 99 - 84 Da(c, 15))A
f(s, c) A e(99)A
-~3b’3d3a’3 f’ (

(b’(s,85) A c’(99) A 14 -- 99 - a’(s,14))A
(b’(e,84) A c’(99) A 15 = 99 - a’(c,15))A
f’(s, e) A e’(99)A
((b(s, 85) v b’(s,
(b(c, 84) b’(e, 84))^
((f(s, e) A a(s, 14) A a(c, 15) D 15 < 14)

(f’(s, e) ̂ a’(s, 14) ^ a’(c, 15) D 15 < 14)))A
85) b(s, 85))^

(b’(s, 84) b(s, 84))A
((f’(s, c) A a’(s, 14) A a’(c, 15) D 15 < 14)

(f(s, c) A a(s, 14) A a(c, 15) D 15 < 14)))).
Then, we can show that a model of New(~,¢~)

either model of $1, $2 and $3.

Computing
Minimal Revised Logical Specification

To compute minimal revised logical specification, we
introduce the following restriction; we consider a
function-free language and assume unique name axioms
and domain closure axioms for a logical specification
and a logical specification is represented as a set of Horn
clauses. We separate a logical specification into two
parts; a persistent part which corresponds with K(~)
and a temporary part which corresponds with ¢ in the
above definition.

Definition 2 (Satoh 1998) Let Tvst be a set of Horn
clauses which are of the form:

B1,B2,...,Bt D H.
where H, B1,..., Bt are atoms.

Let Ttmp be a set of labeled Horn clauses which are
of the form:

¢ : B1,B2,...,Bt D H
where ¢ is a name for the clause.

A logical specification T is a pair of (Trot, Ttmp) and
we call Tp~t a persistent part of T and Ttmp a tempo-
rary part of T.

It is possible that minimal revised belief results in
a disjunction of conjunctions of Horn clauses. In this
case, we let a user to choose one of the disjuncts. A
disjunct is a maximally consistent subset of the origi-
nal logical specification plus a new added formula de-
fined as follows and we call the disjunct minimal revised
specification.

Definition 3 Let S be a set of function-free Horn
clauses. A maximally consistent subset of S is St such
that S’ is consistent and S’ C S and there is no proper
superset S" of S’ such that SW is consistent and S" C S.

Definition 4 (Satoh 1998) Let T be a logical specifi-
cation (Tpst, Ttrnp). Let HT,"‘p be a set of ground clauses
obtained by replacing all variables in each clause in Ttmp
by every constant in T. Let Anew be a set of added
clauses.

A minimal revised specification w.r.t. T and Anew is
(TpstOAnew, S) such that (TvstUAnew)US is a maximal
consistent subset of (Tpst U Anew) U IIT,..p

Example 3 Consider the database specification in the
Example 1. The specification corresponds with T =
(Tp,t, Tt~p) where Tp~t is a set of the following formu-
las:

b(E, Y) A c(Z) A A = Z - Y D a(E,
f(s, e).

and Ttmp is a set of the following formulas:

¢i : b(s, 85).
¢2 : b(e, 84).
Ca : f(F,E) A a(F, A1) A a(E, A2) D A2 <

Let us add c(99). This means that Anew is a set {c(99)
The new specification leads to inconsistency, so we need
to revise the specification.
We firstly show IIT, m~.

b(s,85).
b(c, 84).
f(s, e) A a(s, 14) ̂ a(c, 15) D (15 < 14).
f(s, s) A a(s, 14) ̂ a(s, 15) 9 (15 < 14).
f(c, s) A a(c, 14) ̂ a(s, 15) 2 (15 < 14).
f(c,c) ^ a(e, 14)Aa(c, 15) D (15 <

Let
81 be HT,~, - {b(s, 85)
$2 be HT,,, -- {b(c, 84)},
Sa be HT,,.~-

{f(s, c) A a(s, 14) ̂ a(c, 15) D (15 < 14)}.
Then, since each (Tpst L) Anew) Si(i -- 1,2,3) is

a maximal consistent subset of (Tpst 0 Anew) U 1-IT,.,,,
each (Tpst U Anew, Si) is a minimal revised specification
w.r.t. T and Anew.

According to the relationship with Formula Circum-
scription and our framework (Satoh 1998), for every
model of minimal revised specification for a function-
free Horn clauses (with UNA and DCA), there exists a
model of circumscription where persistent rules are ax-
ioms and negation of temporary rules are minimized. In
other words, minimal revised specification corresponds

63

with a set of rules where temporary part is retained as
much as possible.

To compute a minimal revised specification, we use
a translation from a specification to an extended logic
program and compute an answer set for the translated
program which denotes a deletion of some part of the
specification. In (Satoh 1998), we use abductive logic
programming to compute a revised specification, but
we need to minimality check to obtain a minimal re-
vised specification whereas in this paper, we propose
a method to compute a minimal revised specification
directly.

Firstl:/, we define an extended logic program.
Definition 5 Let H, Pt,...,Pj, Nt,...,Nh be literals.
A rule is an expression of the form:

g ~ P1, ...,Pj,,..N1,...,.’.Nh

where ~ represents "Negation as Failure". An extended
logic program is a set of rules.

We use a symbol A denoted as a complement literal
for A.

The semantics of extended logic program is based on
answer set semantics (Gelfond and Lifschitz 1991), but
we use the following correspondence between an answer
set and a stable model (Gelfond and Lifschitz 1988)
a normal logic program in order to utilize our proof
procedure based on stable model (Satoh and Iwayama
1992).

Definition 6 Let P be an extended logic program and
lip is a set of ground rules obtained by replacing all the
variables in every rule of P by every constant in P. Let
M be a set of ground literals and II M be the following
program.

limp _. {H +-- B1,..., B,I
"H +-- Bt, ..., Bt, "~Az ,~Ah." E lip
and Ai ~ M for each i = 1, ..., h.)

Let min(HM) be the least model of liMp. An answer set
for an extended logic program P is M iff M = min(YIMp)

and ± ~ M2 and for no literal L E M, -L E M.

Now, we define a translation for a consistency man-
agement for a logical specification into an extended logic
program as follows.

Definition 7 Let T be a logical specification
(Test, Ttmv). tr anslation fo r a consistency manage-
ment ofT (denoted as CM(T)) is a set of the following
translation from T to an extended logic program P:

¯ We translate every ground clause (B1,..., Bt D H)O
in HTp,~ into the following rules in P which corre-
sponds with every contrapositives of the clause:

(g +-- B1,..., B~)O.

(B1 +-- B2,..., Bt, H)O.
(~ ~- B1, Bs, ..., Bt,-~)O.

i~ e-- Bl,...,Bz-1,"ff)O.
2 .L means falsity and we use 3. as the head of an integrity

constraint.

* We instantiate every clause ¢ : (B1,..., Bt D H)
Ttme into the ground clause (B1 ,Bt D H)O in
IIr,.p and then add the following rules in P:

(H +- B1 ,Bt,~ del;(x)))O.
(Si +-- S2,..., St, H, ,.~ del;(x)))O.

(-~ e- St, Bz, ...,Bt,-ff , ~ del*~(x)
..,

(Bt +" Bi,..., Bt-1, H, ,.. del*c(x))O.
(del*c(X) +-- B1, ..., Bt,-ff)O.

where x is a tuple of free variables in the clause. We
call a literal with del~ for a predicate name a deletion
literal.

* For every ground literal p(x)0, we add the following
integrity constraints to P:

(± ~ p(x),p(x))0.
The following theorem shows that a minimal revised

specification can be computed from an answer set.

Theorem 1 Let T be a function.free logic specifica-
tion (Test, Trine) and Anew be a set of added clauses.
(Test U Anew, (Trine - Tact) UTnew) is a minimal revised
specification if and only if there is an answer set of
CM((Tv,t t3 Anew,Trine)) with a deletion literals A

Ta,z = {¢: Bt,..., Bt ~ Hl(del,(x)O) ~ and
Tnew ~

{¢: BI, ..., Bt, ~(EO(O~)), ...,-,(EQ(O~))
(del~(x)O0 A and
EO(O~) = ((xl = (x~O~)) ^ (z,,= (x~O~))
where x = (Xl,..., xk)}.

Example 4 Consider the database specification T =
(Test, Trine) in the Example 3. To compute a minimal
revised specification, we translate the specification into
the following extended logic program3 .

a(s, 14) ~ b(s, 85), c(99).
b(s, 85) ~ ~(s, 14), c(99).
2(99) +-- ~(s, 14), b(s, 85).
a(e, 15) ~ b(c, 84), e(99).
b(c, 84) 4- ~(c, 15), c(99).
~(99) +-- ~(c, 15), b(c, 84).
f(s, c).
c(99).
b(s, 85) +- ..,del~.
del¢, +-- b(s, 85).
b(c, 84) e-- ..,del¢2.
del¢~ +- b(c, 84).
2_ ~ f(s, c), a(s, 14), a(c, 15), .-, del~3 (s, c, 14, 15).
del¢~(s,e, 14, 15) ~ f(s,c),a(s, 14), a(c, 15).
7(s, c) a(s, 14),a(c, 15), ~del¢3(s,c, 14, 15).
~(s, 14) f(s,c),a(c, 15), ,. ~del¢~(s,c, 14, 15).
~(c, 15) f(s,c),a(s, 14), ,. .del¢~(s,c, 14, 15).
± ~ f(s, c), f(s,
± ~- f(s, c), f(s, e).

After instantiating all the variables, We evaluate numer-
ical predicate such as 14 = 99 - 85 and 14 < 15 in advance
for brevity.

64

.i. +-- c(99), ~(99).

.I. +..- a(c, 15), ~(c, 15).
± a(s, 14).
± +- b(s, 85), 85).
2. +-- b(c, 84), b(c, 84).

Then, we have the following three answer sets,
A1, As, Aa.

A1 = {dell,, 85), 14), a(c, 15),
b(c, 84), f(s, c), c(99)}

A2 -- {de/e2, b(c, 84),~(c, 15), a(s, 14),
b(s, 85), f(s, c), e(99)}

Aa = {del~(s, c, 14, 15), a(c, 15), b(c, 84), a(s, 14),
b(s, 85), f(s, c), c(99)}

Therefore, from Theorem 1, we have the following three
minimal revised specification which corresponds with the
msults in Example 3.

Specification 1:
¢2 : b(c, 84).
Ca : f(F, E) A a(F, A1) A a(E, AS) A A1 < A2 D 2..

Specification 2:
¢1 : b(s, 85).
Ca : f(F, E) A a(F, A1) A a(E, AS) A A1 _< A2 D 2..

Specification 3:
¢1 : b(s, 85).
¢2 : b(e, 84).
¢~ : -~(F - s, E -- c, A1 -- 14, A2 -- 15)A

f(F,E)Aa(F, A1)Aa(E, AS)AA1 g A2

To calculate an answer set, we can use our previous
proof procedure (Satoh and Iwayama 1992) based
the stable model semantics. We use the correspondence
between the answer set semantics for an extended logic
program and the stable model semantics for a normal
logic program shown in (Gelfond and Lifschitz 1991).

This is originally used to evaluate a query, but in
the procedure, we have a rule checking part in which
we examine consistency of an addition of a rule and if
there is a stable model for the program plus the rule,
then the procedure outputs deletion of rules which are
necessary to maintain consistency.

For a function-free Horn logical specification, we can
calculate all the stable models and therefore, we can
calculate all minimal revised specification. In fact, all
the results in the above example are computed by our
proof procedure.

Conclusion
In this paper, we propose a calculation method of a
minimal revised logical specification in the case that
the specification consists of Horn clauses. It is done
by translating the logical specification into an extended
logic program and by showing relationship between
deletion information included in an answer set and min-
imal revised specification.

As a future work we would like to consider not only
two levels of retractability of specification but also var-
ious levels of retractability. To represent such level,
we need prioritization of formulas and manipulation of
retracting formulas according to prioritization. Prior-
itized Circumscription (McCarthy 1986) may be used
and we extend our mechanism in order to handle prior-
itized circumscription by adapting a method proposed
in (Wakaki and Satoh 1997).

Acknowledgments
This research is partly supported by Grant-in-Aid for
Scientific Research on Priority Areas, "Principles for
Constructing Evolutionary Software", The Ministry of
Education, Japan. We thank a referee for comments to
improve the paper.

References
Balzer, R. 1991. Tolerating Inconsistency. Proc. of
ICSE-13, pp. 158- 165.

Borgida, A. 1985. Language Features for Flexible
Handling of Exceptions in Information Systems. A CM
Transactions on Database Systems, 10, pp. 565 - 603.

Finkelstein, A. C. W., Gabbay, D., Hunter, A.,
Kramer, J. and Nuseibeh, B. 1994. Inconsistency Han-
dling in Muir±perspective Specifications IEEE Trans-
actions on Software Engineering, 20, pp. 569 - 578.

Gelfond, M., Lifschitz, V. 1988. The Stable Model
Semantics for Logic Programming. Proc. of LP’88,
pp. 1070 - 1080.

Gelfond, M., Lifschitz, V. 1991. Classical Negation
in Logic Programs and Disjunctive Databases. New
Generation Computing, 9, pp. 365 - 385.

Katsuno, H., Mendelzon, A. O. 1991. Propositional
Knowledge Base Revision and Minimal Change. Arti-
ficial Intelligence, 52, pp. 263 - 294 (1991).

McCarthy, J. 1986. Applications of Circumscription
to Formalizing Common-Sense Knowledge. Artificial
Intelligence, 28, pp. 89 - 116.
Nuseibeh, B. 1996. To Be and Not to Be: On Manag-
ing Inconsistency in Software Development. Proe. of
8th IEEE International Workshop on Software Speci-
fication and Design (IWSSD-8) pp. 164 - 169.
Satoh, K. 1988. Nonmonotonic Reasoning by Minimal
Belief Revision. Proc. of FGCS’88, pp. 455 - 462.

Satoh, K., Iwayama, N. 1992. A Query Evaluation
Method for Abductive Logic Programming. Proe. of
JICSLP’92, pp. 671 - 685

Satoh, K. 1998. Computing Minimal Revised Logic
Program by Abduction. Proc. of the International
Workshop on the Principles of Software Evolution, pp.
177 - 182.
Wakaki, T., Satoh K. 1997. Compiling Prioritized
Circumscription into Extended Logic Programs. Proc.
of IJCAI-97, pp. 182- 187.

65

