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Abstract

The state of the art in integrated circuit design is the use of
special hardware description languages such as VHDL. De-
signs are programmed in VHDL and refined up to the point
where the physical realization of the new circuit or board can
be created automatically. Before that stage is reached, the de-
signs are tested by simulating them and comparing their out-
put to that prescribed by the specification. The task of circuit
design therefore becomes primarily one of software develop-
ment. A significant part of the design effort is taken up by
detection of unacceptable deviations from this specification
and the correction of such faults. This paper deals with the de-
velopment of VHDLDIAG, a knowledge-based design aid for
VHDL programs, with the goal of reducing time spent in fault
detection and localization in very large designs (hundreds of
thousands of lines of code). Size and variability of these pro-
grams makes it infeasible in practice to use techniques based
on a detailed representation of program semantics. Instead,
the functional topology of the program is derived from the
source code. Model-based Diagnosis is then applied to find
or at least focus in on the component(s) in the program that
caused the behavioral divergence. The support given to the
developer is sufficiently detailed to yield substantial reduc-
tions in the debugging costs when compared to the current
manpower-intensive approach. A prototype is currently be-
ing tested as an integral part of the standard computer-aided
VHDL development environment. Discrimination between
diagnoses can be improved by use of multiple test cases (as
well as interactive input by the developer).

Introduction
The current state of the art in the design of integrated circuits
is based on heavy use of hardware specification languages.
Starting from a specification, a new ASIC or circuit board
is designed by developing a description in such a language,
which can then be executed to simulate the functionality of
the circuit. This procedure significantly increases the chance
that errors in the design can be found and corrected before
the physical circuit is produced, thus reducing the costs of
the overall design process (throwing away and redoing the
masks and tooling for a circuit design that was found to be
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defective is an extremely expensive proposition). As the de-
sign process continues, the design is continually refined, un-
til a level of detail has been achieved where it can be trans-
formed automatically into a representation at the logic gate
level. The gate level description is used as the basis for lay-
outing and the production of the physical circuit, a process
which also requires little human interference.

As a result, the earlier stages of IC design nowadays
effectively constitute a specialized software development
process, and the debugging, i.e., search for faults in the pro-
grams that describe the designs tends to absorb a significant
part of the design effort in these stages, all the more so since
the code for large hardware designs (comprising multiple
ASIC's and microprocessors) can reach dimensions of sev-
eral 100.000 lines of VHDL code and thousands of compo-
nents and signals at the top level. For such designs, typically
written by large design teams (or multiple teams at different
physical locations), fault detection and localization becomes
a very time-consuming activity.

This paper describes the principles behind the VHDL-
DIAG tool developed during the DDV (Design Diagnosis for
VHDL) project. VHDLDIAG is used as a debugging aid in
the development of hardware descriptions in VHDL (Very
High Speed Integrated Circuit Hardware Description Lan-
guage), which is probably the most widely used such lan-
guage. We use techniques of model-based diagnosis for cre-
ating a simple internal representation of the program, check-
ing test runs for errors, and locating the source of the errors.
If unique identification is not possible, the tool helps at least
in focusing the attention of the programmer (i.e., the hard-
ware designer) on those parts of the system where the prob-
lem originates, proposes signals whose observation will re-
duce the set of diagnoses, and can also continue analysis on
the basis of observations entered interactively by the user.
The system is used in conjunction with existing commer-
cial design support tools (e.g., simulators and graphical de-
sign tools) and is intended for use in all design phases where
VHDL is used. Also included in this paper are two exten-
sions regarding the used internal model. The first one uses
the abstract representation for locating the faulty process
statement within a program and an exact representation for
locating the fault within the process. The second exten-
sion converts the whole VHDL programs into one single flat
representation. While the first extension is currently imple-
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Figure 1: A typical waveform trace

mented the second is not.

Knowledge-Based VHDL Design Support
The original goal of the DDV project was to develop a tool
that would reduce the overall development effort without en-
gendering significant changes in the overall structure of the
design process (which is codified and fixed by the funding
company). The main interest lay in reducing the amount of
time for each individual simulation/fault detection/fault cor-
rection cycle, as well as (by improving the quality of the
detection and correction stages) possibly reducing the num-
ber of such cycles. Figure 2 shows the design subcycle. The
time involved in a single iteration depends strongly on the
complexity and size of the program (i.e., the time increases
as development progresses). During the design subcycle the
hardware designer writes a VHDL program and simulates it,
receiving a so-called waveform trace as a result which lists
value changes for selected signals over time (see Figure 1),
usually comprising several 10.000 signal changes. The de-
signer then compares the resulting waveform trace with a
verbal specification or another trace, referred to as thespec-
ification waveform trace. In case of discrepancies, the error
has to be located and corrected and the cycle starts again.

A major requirement of the project was that any tools
should not result in the need to alter or embellish the de-
sign cycle or the designs/programs themselves. The effort of
using the tools should be kept to a minimum, i.e., while en-
tering numerical parameters would be considered adequate,
for example, developing a separate representation (such as a
separate formal specification) for every design was out of the
question. This is important since large systems often involve
integration of VHDL code coming from different sources
which may or may not be using the same tools (e.g., code
from subcontractors or from the extensive standard libraries
supplied by the simulator companies).

What is required therefore is a generic approach that will
allow the mapping of the semantics of a VHDL program
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Figure 2: The VHDL design subcycle

to the somewhat abstracted internal representation. Given a
discrepancy, the resulting model of the program should then
be analyzed to find or at least limit the area of the program
where the fault can have originated. Therefore, the model
must represent the structure and the functional and causal re-
lationships between the signals in the VHDL program. This
can be achieved with an adaptation of the representation and
reasoning mechanisms commonly used in model-based di-
agnosis. However, apart from the model, we also need to
derive the observations that describe the actual fault which
occurred. Since virtually all the information available about
a simulation run is contained in the resulting waveforms, the
comparison of specification and implementation waveforms
is a crucial prerequisite to checking the correctness of the
program and an integrated part of the tool. Therefore we
deal with this issue first, and with the diagnosis process af-
terwards.

Detecting Errors
Currently error detection is achieved manually by the pro-
grammer (hardware developer) with the help of test benches
which can be used to format the output in an appropriate
manner. Ultimately, a major part of the detection effort is
spent by the designer in scrolling along an implementation
waveform trace such as in figure 1, trying to spot timing
or signal value differences with regard to the matching sig-
nal from the specification trace (or a verbal specification).
VHDLDIAG eliminates the need for comparing waveform
traces manually by executing an automatic comparison be-
tween implementation and specification trace. Instead of
checking the waveforms manually, the designer now merely
needs to provide: (1) the specification of which signals are to
be simulated, and (2) the choice of the exact comparison op-
erator. VHDLDIAG provides several different comparision
operators, e.g., compare at sample time points, compare on
identity, and compare event sequences ignoring time.

All the traced signals can be compared in a single com-
parison run after the simulation is finished. Note that pro-
grams have to be syntactically correct to be simulated. Also,
the approach obviously cannot deal with errors that do not
produce divergent signal values, e.g., a nonterminating loop
inside a user-defined function, which will simply cause the



simulation to hang.
The compare functionality implemented in the diagno-

sis tool is generic and not tied to a particular commer-
cial simulation environment. It makes test bench gener-
ation unnecessary and the required parameters can usu-
ally be chosen without problems by the designer. The
result is a set of observations that are delivered to
the actual model-based diagnosis engine, of the form
(Signal; f(Value;Time )j : : :g) for correct signal events
and(Signal;Value;Expected Value;Time ) for discrep-
ancies, i.e. deviations from the correct behavior. These ob-
servations are the basis for deducing which (probably unob-
served) parts of the system may contain the fault.

After finding the symptoms (signals showing a discrep-
ancy), we use model-based diagnosis to find their source (as
mentioned, typically only a few percent of the signals in a
system are observed). We now examine this process in more
detail.

Adapting Model-Based Diagnosis to Design
Problems

The model-based approach is based on the notion of provid-
ing a representation of the interactions underlying the cor-
rect behavior of a device. By describing the structure of a
system and the function of its components, it is in princi-
ple possible both to reason about the way to achieve desired
behavior (Strouliaet al. 1992), i.e., to synthesize a design
(although this requires a very detailed model), as well as to
ask for the possible reasons why the desired behavior was
not achieved. In the diagnosis community, the model-based
approach has achieved wide recognition due to the advan-
tages already mentioned: once an adequate model has been
developed for a particular domain, it can be used to diagnose
different actual systems from that domain. In addition, the
model can be used to search for single or multiple faults in
the system without alteration.

The usual model-based system representation in diagno-
sis can be adapted to the design of VHDL programs without
much trouble. A system is assumed to consist of a set of
componentsCOMP , whose correct behavior is described
by a logical theory calledsystem description(SD). The as-
sumption that a componentC behaves correctly is expressed
by the factok(C). The set of observationsOBS contains
statements about the actual, observed behavior of the sys-
tem.

Using the standard consistency-based view as defined by
Reiter (Reiter 1987), a diagnosis� for a VHDL program is
a subset ofCOMPS such that the assumption of incorrect-
ness for exactly the components in� is consistent with the
observations:

SD [ OBS [ fok(c)jc 62 �g [ f: ok(c)jc 2 �g 6j = ?

The basis for this is that an incorrect output value (where
the incorrectness could be observed directly or derived from
observations of other signals) cannot be produced by a cor-
rectly functioning component with correct inputs. There-
fore, to make the system consistent and avoid a contradic-
tion, the component must be assumed to work incorrectly.

In practical terms, one is interested in finding minimal di-
agnoses, i.e., a minimal set of components whose malfunc-
tion explains the misbehavior of the system (otherwise, one
could explain every error by simply assume every compo-
nent to be malfunctioning).

Given the system description, diagnoses are computed
by applying the standard hitting set DAG method as de-
scribed in (Reiter 1987; Greiner, Smith, & Wilkerson 1989;
de Kleer 1991). In principle, the method is based on comput-
ing the so-calledconflict set. In MBD terminology, a conflict
is a disjunction of abnormality assumptions for individual
components that is implied bySD [ OBS. In other words,
at least one of the components inC must be abnormal for
SD to be consistent withOBS. Computing a minimal hit-
ting set for the set of minimal conflicts yields a diagnosis.

We will return to the special features involved in diagnos-
ing designs instead of finished artifacts, after discussing the
representation.

Developing a model-based representation for VHDL pro-
grams faced two problems. First, the definition of formal
semantics for VHDL is an open research topic (Kloos &
Breuer 1995), although the definition of the VHDL lan-
guages as an IEEE standard means that the existing commer-
cial VHDL environments are reasonably compatible. Sec-
ond, the size of the programs involved precludes the use of
a more intricate representation. Merely executing (i.e., sim-
ulating) a VHDL program using a highly optimized com-
mercial simulator takes from hours to days of real time on
a high-end workstation. Therefore, diagnosing a complete
logical representation of the full VHDL program and its se-
mantics is not feasible. However, it is feasible for small parts
of the VHDL program or for programs where some syntac-
tical restrictions apply.

Therefore, we use two models in our VHDLDIAG tool:
A strongly abstracted view of the design for debugging the
whole program and an exact model for locating faults within
small program fragments, i.e., process statements. Accord-
ingly, the first representation abstracts over values and time
points (Hamscher 1991), but retains the capability to distin-
guish between the initialization phase and operating mode
of a circuit, a requirement for handling feedback loops. The
second representation maps expressions and statements di-
rectly to diagnosis components while retaining the seman-
tics.

In the following we describe both representations us-
ing the small VHDL program from figure 3 implement-
ing a counter. The specification of the counter program
COUNTER(BEHAV) is given as follows: If both inputs E1,
E2 are set two ' 0' the circuit counts up. If E1 is set to ' 1'
and E2 to ' 0' the count is decreased. If E1 is set to ' 0' and
E2 to ' 1' the counter value is set to ' 0' , and in the last case
where both inputs are set to ' 1' the counter is ' 1' . The out-
put is coded using a 1-from-4 decoder. A counter value ' 0'
is represented by the output vector A1=' 1' , A2=' 0' , A3=' 0' ,
A4=' 0' , and 3 is represented by A1=' 0' , A2=' 0' , A3=' 0' ,
A4=' 1' .

From the correct COUNTER(BEHAV) program we de-
rive a buggy variant by introducing a fault in line 24 which
is changed to:



1. entity COUNTERis
2. port (
3. E1,E2,CLK:in BIT;
4. A1,A2,A3,A4: out BIT);
5. endCOUNTER;
6. architecture BEHAV of COUNTERis
7. signal D1,D2,Q1,Q2,NQ1,NQ2: BIT;
8. begin
9. -- Input combinational block
10. combin: process(Q1,Q2,E1,E2)
11. variable I1,I2: BIT;
12. begin
13. I1 :=not((Q1and Q2) or (not(Q1) and not(Q2)));
14. I2 := (I1and E1)or (not(I1) and not(E1));
15. D1<= (E1and E2) or (E2nor I2);
16. D2<= (E1and E2) or (E2nor Q2);
17. end processcomb in;
18. -- Output combinational block
19. combout: process(Q1,Q2,NQ1,NQ2)
20. begin
21. A1<= NQ2and NQ1;
22. A2<= Q2and NQ1;
23. A3<= NQ2and Q1;
24. A4<= Q1and Q2;
25. end processcomb out;
26. NQ1<= not(Q1);
27. NQ2<= not(Q2);
28. -- Memory block
29. dff: process(CLK)
30. begin
31. if (CLK = ' 1' ) then
32. Q1<= D1;
33. Q2<= D2;
34. end if;
35. end processdff;
36. endBEHAV;

Figure 3: The VHDL program COUNTER(BEHAV)

24�. A4 <= Q1or Q2;

To distinguish between the two program variants we refer
to the faulty one as COUNTER(FAULTY). During the rest
of this paper we always refer to the incorrect program when
talking about the counter example.

The Abstract System Description
The abstract system description is used to debug very large
VHDL designs. Diagnosis happens on the level of concur-
rent statements (processes), i.e., the concurrent statements
are mapped to diagnosis components. Bugs within concur-
rent statements, cannot be directly distinguished. The prin-
cipal idea is to abstract as much as possible over time and
values on the one hand, while preserving the capability to
discriminate between substantial parts of the VHDL-code on
the other hand. Stronger discrimination between diagnoses
can be achieved by applying multiple test cases and mea-
surement selection (i.e., specifying signals that offer good
chances of discriminating between diagnoses when included
in a trace). Further discrimination can be achieved by re-
questing the user to evaluate the correctness of particular

signals.
Additional criteria for the choice of representation were:

� No diagnoses may be excluded due to abstractions. In
other words, misleading the designer is worse than of-
fering him an answer that does not uniquely identify the
component involved.

� Integration with available commercial simulation pack-
ages.

� Computational costs must be minimized by requiring very
few additional simulation runs.

Instead of presenting the model in a formal way, we
give an overview of the principles. For more details
about the model and various improvements see (Friedrich,
Stumptner, & Wotawa 1996; 1999). As stated above,
the abstract model uses concurrent statements as diagno-
sis components. In our example the set of components
COMP is fcomb in;comb out;d ff;assign 1; assign2g
whereassign1 (assign2) denotes the assignmentNQ1<=
not(Q1) (NQ2<= not(Q2)) and the other the processes.

The abstract behavior of the components is given by
their associated functional dependencies. We say that a
signalS depends on another signalX if a value change
on X may cause a change ofS 's value. The dependen-
cies for componentassign1 aref(NQ1; fQ1g)g. In this
case the signalQ1 is be seen as input andNQ1 as out-
put for the component. If we assume that the component
is working as expected and that all inputs have correct val-
ues then we can conclude that the output values have to be
correct. For a componentC an its functional dependency
(O; fI1; : : : ; Ing) we can specify a rule expressing this ba-
sic principle:

ok(C)^ ok(I1)^ : : : ^ ok(In)! ok(O)

To model other aspects of VHDL, namely driving sig-
nals and the occurence of cycles, the system description
used in VHDLDIAG is slightly more complex. We refer
to (Friedrich, Stumptner, & Wotawa 1996) for more details.

Using the abstract system description for our running
example COUNTER(FAULTY) we can compute the diag-
noses. We know that the inputs E1, E2, CLK and the outputs
except A4 are correct. The incorrect value arises because
if Q1 is ' 1' and Q2 is ' 0' the wrong value ' 1' is assigned
to A4. Diagnoses computed arefcomb ing, fcomb outg
andfdffg. A further discrimination can be done by using
VHDLDIAG's measurement selection algorithm returning
that the classification of the signals Q1 and Q2 as beeing
correct has to be done. In our case Q1 and Q2 are correct
and only the diagnosisfcomb outg remains.

The advantage of the abstract models is that the user
(hardware designer) is focused only on the relevant parts
of the program, i.e., those parts possible causing a detected
misbehavior. In our example the statementsassign1 and
assign2 are excluded from the list of candidates after the
first diagnosis run. After the measurement selection step,
the user is ask to classify two signals. All others are not of
interest. The diagnosis process can now be continued inside
the processes using a more detailed model.



The Exact System Description
In addition to the abstract model we have added a model for
the sequential statements used in VHDL process statements.
This model represents each statement as diagnosis compo-
nent. The behavior of the diagnosis component formalized
in first order logic corresponds exactly to the semantics of
the associated statement. This model has been introduced
in (Stumptner & Wotawa 1998). Some ideas used there were
taken from (Stumptner & Wotawa 1999).

Given that what we want to diagnose are process state-
ments and the expressions contained in them, the set of com-
ponents in the program is the set of these process statements
and expressions.

� A variable assignmenthas the formV := Expr. The value
of the variableV after execution is equal to the value of
the expressionExpr.

� A signal assignmentof the formS<= Expr after TExpr
attempts to change the history of signalSusing the value
of expressionExpr at the timeTExpr according to the
VHDL semantics, i.e., the transaction(Expr; Texpr ) is
placed on the driver ofS.

� An if-statementis given byif Condthen St1elseSt2end
if , where theelsepart is optional. If the ExpressionCond
evaluates totrue, thenSt1 is executed. Otherwise, the
sequence of statementsSt2is executed.

We now describe the mapping from statements to compo-
nents. A variable assignment is converted into a component
having three inputs and one output. The inputs denote the
input environment (env in), the variable identifier (var), and
the expression (expr). The output (envout) returns the new,
altered environment. Through the outputenvout the new
environment is delivered. The mapping for signal assign-
ments is similar, except we have history portshistory-out
andhistory-in instead of the environment portsenvout and
env in, to explicitly mark the fact that they carry different
information. We assume that the signal values from before
the process is called are stored in the initial process envi-
ronment, which is propagated through the statements during
execution. In addition, there is a port representing the tem-
poral expression (texpr). Conditional statements are con-
verted into a component with inputscond,env in, history-
in, st1, st2, history-1,history-2and two outputsenvoutand
history-out. Thecondport is connected to the condition ex-
pression, whereasst1 (resp. st2) is connected to the output
environment of the corresponding statement partSt1(St2).
The history inputshistory-1andhistory-2are connected to
the history outputs of the corresponding converted statement
parts.

Just as with statements, the expressions contained in these
statements can be mapped to a component oriented view. We
do not discuss this here in detail. See (Stumptner & Wotawa
1999) for details of such a representation and its use in diag-
nosing expressions. For example, the processcomb out is
mapped to a diagnosis system depicted in figure 4. The be-
havior of theORcomponent and the assignments are given
as follows:
orcomp(C) ! or(out(C); in1(C); in2(C))

COMB_OUT

AND_1

AND_2

AND_3

OR_1
ASSIGN_4

ASSIGN_3

ASSIGN_2

ASSIGN_1

A1

A2

A3

A4

NQ2

Q1

Q2

NQ1

Figure 4: The convertedcombout process of the
COUNTER(FAULTY) program

where the predicate or is defined as expected, i.e.
or(010;0 10; X); or (010; X; 0 10); or (000;0 00;0 00).
assign(C)) (ok(C)! equal(in(C); out(C)))
with equal(X;X ).
Assuming the values Q1=' 1' , Q2=' 0' and A4=' 0' which are
taken from the specification of the counter example we get
one diagnosisfASSIGN 4g which is the expected one.

A System Description for Synthesizeable Programs

In this section, instead of using a hierarchical diagnosis ap-
proach, we convert the program to a flat structure, and the
resulting statements and expressions to (diagnosis) compo-
nents. This is similar to the synthesis process by which
a (VHDL) program is directly converted into hardware
that implements the same functionality (VHDL IEEE Std
1076.6/D1.12 1998). Here, however, integers and other data
types are not mapped into boolean values in the usual fash-
ion of synthesis tools. Instead, special diagnosis compo-
nents are used.

The mapping from VHDL programs to a logical repre-
sentation is done as follows: In the first step the programD
is converted into a component connection modelM , where
components represent program fragments, e.g., expressions
and statements, and connections represent signals and vari-
ables. This step is mainly concerned with programming lan-
guage syntactical issues. However, conversion also has to
consider some semantical issues related to VHDL. This in-
clude the handling of driving signals together with resolu-
tion functions, and semantical differences between variables
and signals. The next step involves the removal of cycles
in M to reduce the computational complexity of the diagno-
sis. Finally, we convert the resulting component connection
modelM into a logical representation by using the compo-
nent behavior and the information about connectivity. The
component behavior is given by logical sentences derived
from the VHDL semantics of the related program fragment.



In (Wotawa 1999b; 1999a) a formal description of the
conversion process, the removal of cycles, and a discus-
sion about the usefulness of the model together with filtering
rules for improving the diagnosis results are given. In this
paper we only give an overview of the model and its ap-
plication to software debugging using the example program
COUNTER(FAULTY). The graphical representation of the
program after eliminating cycles is depicted in figure 5. The
connections labeled byE1, E2, Q1(0), Q2(0), CLK are in-
puts, andQ1(1), Q2(1), A1, A2, A3, A4 are outputs.Q1(0)
(Q2(0)) andQ1(1)(Q2(1)) represent the signalQ1 (Q2) be-
fore and after program execution. Note, that the computed
value forQ1(1)at timet works as inputQ1(0) for the exe-
cution of the program at the immediately next point in time
t+ 1.

For example using the inputsE1=0, E2=1, CLK=1
leads to the computation ofQ1(1)=0, Q2(1)=0, A1=1,
A2=A3=A4=0. ChangingE2 to 0 and using the computed
values forQ1, Q2 as inputs we can derive new output val-
ues. The computed results correspond to the results obtained
by executing the VHDL program using a test-bench with the
following behavior. First, set the counter to zero. Afterwards
increment the counter. The clock value is initially set to 1
and changes at every predefined time point. Table 1 shows
the computed values. The row marked with (*) contradicts
the expected (specified) behavior.

After detecting an inconsistency we are interested in lo-
cating the misbehavior. We do this by using a similar model
as used for VHDL sequential statements. The following list
gives the behavior of the single components described in first
order logic (FOL).

Assignments For assignmentsassign(X) only the correct
behavior can be specified, where the value of the expres-
sion must be the same as the value of the variable or signal
after executing the statements. Formally, we write
:ab(X)! out(X) = in(X)
wherein(X) denotes the input port (connected with the
components representing the expression) andout(X) the
output port (associated with a variable or signal).

Conditionals A conditionalX , written cond(X), has two
determined behaviors. In the case the conditional be-
haves correctly, i.e.,:ab(X) the THEN-branch is exe-
cuted whenever the condition evaluates to true. Other-
wise, the execution of the ELSE-branch is performed.
If we assume the condition is the source of a bug, i.e.,
wrong(X), then these two are exchanged. In the model
M , a component representing a conditional statement has
several inputs and outputs, one for every signal or vari-
ableY used in a signal assignment'Y<= . . . ' occurring
either in the THEN- or the ELSE-branch. Those inputs
and outputs are indexed by integers. For example, the
ports then1, else1, out1 are all associated to the same
variable or signal. Formally, the behavior of the condi-
tional is given by:
:ab(X)^ cond(X) = true! outi(X) = theni(X)
:ab(X)^ cond(X) = false ! outi(X) = elsei(X)
wrong(X)^ cond(X) = false ! outi(X) = theni(X)
wrong(X)^ cond(X) = true! outi(X) = elsei(X)

wherecond(X) denotes the port connected with the con-
dition andi the index.

Functions For functions Func (X) where Func 2
fand;or ; not;equal ; : : :g used in expressions and con-
ditions we only are able to specify the correct behav-
ior. Components associated with unary functions like
not have two ports (in, out), while binary functions have
three (in1, in2, out). Formally, the correct behavior is
given by the rules:
:ab(X)! out(X) = fnot (in(X))
:ab(X)! out(X) = fand (in1(X); in2(X))
:ab(X)! out(X) = for (in1(X); in2(X))
:ab(X)! out(X) = fequal (in1(X); in2(X))
wherefnot , fand , for , andfequal are defined as ex-
pected.

In addition to the behavior of a diagnosis system, i.e.,
in our case the representation of a program, we need ob-
servations for computing diagnoses. The observations are
fE1 = 0; E2 = 0; CLK = 1; Q1(0) = 0; Q2(0) =
0; A1 = 0; A2 = 1; A3 = 0; A4 = 0g. They are derived
from previous computations (Q1,Q2) and from the given
specification. Using model-based diagnosis we receive only
two single diagnosesfOR 1g, fASSIGN 4g and several
multiple diagnoses all containing at least one ofAND 2 or
ASSIGN 2 as result. Since we usually assume that single
diagnoses are more likely than diagnoses containing sev-
eral components, a debugging tool would first present the
two single diagnoses to the user (ignoring the rest). In our
case both single diagnoses are correctly pointing to the bug
within the VHDL program. This result is better than the one
obtained by using the functional dependency model. The
abstract models allows to derive 3 processes as potential di-
agnosis candidates while using the model for synthesizeable
VHDL programs delivers only one process as source of the
bug.

Comparing the abstract model together with the model
of the sequential statementsSDABSTR with this model
SDSYNTH we obtain the following results. While a hier-
archical diagnosis approach is utilized by the abstract model
this is not the case forSDSYNTH representing a flat struc-
tural model. SDSYNTH can only be used for debugging
a superset of register transfer level (RTL) programs but not
full VHDL. RTL programs are synthesizeable where syntac-
tical restrictions apply. On the other side the abstract model
can be used for debugging almost all VHDL programs ex-
cept those using file access and pointers (which are very
rare because they do not implement hardware). Other ad-
vantages of the abstract models are that discrepancies can
be derived quickly and that the number of possible diag-
noses candidates is reduced. Hence,SDABSTR can be used
for debugging very large VHDL designs. SinceSDSYNTH

uses an exact model, diagnosis takes more time. However,
it can be argued thatSDSYNTH can be at least be used
for medium size designs (see (Wotawa 1999b)). Compared
to SDABSTR , the diagnosis capability is improved. Using
SDSYNTH minimizes the set of diagnosis candidates when-
ever possible. However, both models should be seen as com-
plementary. The abstract model should be used for large de-
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Figure 5: The converted COUNTER(FAULTY) program

E1 E2 CLK Q1(0) Q2(0) Q1(1) Q2(1) A1 A2 A3 A4
0 1 1 X X 0 0 1 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 1 0 1 (*)
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Table 1: The behavior of COUNTER(FAULTY)

signs to compute a focus of attention forSDSYNTH , and in
the cases where the other model cannot be applied.

Discussion
Diagnosing hardware designs results in a number of differ-
ences to the usual model-based paradigm.

The Assumption of Model Correctness In a certain re-
spect the problem of diagnosing software is unique in the
realm of model-based reasoning. In conventional model-
based diagnosis, the system description is an exact speci-
fication not only of the overall behavior of the system, but of
its individual parts. For example, when diagnosing the hard-
ware implementation of a 16-bit adder, the adder's system
description will describe the behavior of the logical gates
from which the adder is composed. A fault is assumed to
occur because one of the components does not act according
to its specification.

In diagnosing VHDL and other programs, however, the
assumption that the specification will be a complete repre-
sentation of the structure of the artifact is obviously invalid.
In our case, the internal structure of the VHDL program and
the way in which the behavior is described will differ widely
between a functional specification and its RTL implementa-
tion – the implementation will usually contain many internal
components and signals which have no counterpart at all in
the functional specification. The only part of the specifica-
tion that is directly usable is the waveform trace generated

by the specification. We are therefore forced to base our
model of the VHDL implementation on analysis of the code
of the implementation itself. That implies, however, that
it is the model that reflects the incorrectness of the design
and whose output (the implementation trace) is confronted
with observations that are correct (the specification trace),
whereas in traditional diagnosis problems, the model is cor-
rect and it is the observations, made from the behavior of
the actual system, that reflect on the incorrect behavior. In
addition, the question of how a design defect may manifest
itself in the model leads us to the related issue of so-called
structural faults.

The Assumption of Structural Correctness Structural
faults are faults that do not occur because a component is
functioning incorrectly, but because there is a missing orad-
ditional connection between two components, as in a bridge
fault in electrical engineering (Davis 1984). Such faults,
mainly excluded from consideration in subsequent work on
diagnosis, are very relevant when diagnosis is applied to
software. The use of an incorrect argument in an expres-
sion (e.g., by using a different variable name, switching the
ordering of arguments), or the omission of part of a complex
expression constitute typical examples of such faults.

The usual way for dealing with structural faults is to as-
sume the existence of a different, complementary model that
allows to reason about the likelihood of such faults (i.e.,
modelling of spatial neighbourhood in the case of bridge



faults). In software, such models could take the shape of
considering name misspellings, variable switchings, or at-
tempts to repair expressions (i.e., synthesize missing parts)
to provide correct functionality. This is an open research
issue.

Related Work Formal verification techniques are a pow-
erful technique in VHDL design. One of the reasons for the
development of the VHDL debugging tool is though that the
requirement of a separate formal specification can only be
achieved for small parts of systems (and with restricted se-
mantics) in practice, whereas VHDLDIAG works from the
VHDL source code only. The Aspect system (Jackson 1995)
uses functional dependencies between program variables for
checking a less restrictive form of program correctness, but
still requires explicit program annotations. The work pre-
sented in (Burnell & Horvitz 1995), combines path analysis
with probabilistic reasoning on a large assembler application
(using Bayesian nets developed in interviews with experts on
that application). Program Slicing (Weiser 1984)is a well-
known technique and active research area for analyzing de-
pendencies in programs similar to our abstract dependency
model, but examines mainly individual variable influences.

Conclusion
In this paper, we have described the VHDLDIAG tool which
provides design support by using model-based reasoning for
determining the source of errors in hardware designs that are
written in the VHDL specification language. One of the ba-
sic requirements was that the tool should fit into the standard
design process used. The tool parses the standard VHDL
source code written by the designers, and derives observa-
tions about execution correctness by automatically compar-
ing the waveform traces produced by specification and more
detailed implementation versions of the VHDL design.

The system uses a model of the functional structure of the
design to identify components that are responsible for incor-
rect behavior. If a test case does not allow complete discrim-
ination of the components involved, multiple test cases, au-
tomatically generated proposals for measurement selection,
and finally interactive input from the designer can be used
for restricting search further. In addition we have shown a
model applicable for synthesizeable VHDL programs pro-
viding better discrimination between diagnosis candidates.

The tool has been successfully used for finding faults in
full-scale, real world ASIC designs: up to 6MB of source
code. Diagnosis times are in the region of below 10 seconds
per run, but with several runs typically required to isolate a
fault. The system is currently being tested in its future pro-
duction environment. Results so far indicate savings of up
to 10 % of the whole design cycle. Possible future improve-
ments include a more complete representation of VHDL se-
mantics. In particular, we will investigate the representa-
tional issues of the sequential parts of the language along
the lines of design for imperative languages as described
in (Allemang & Chandrasekaran 1991). While computa-
tionally more expensive, this representation could be used
(strictly locally) to increase the discriminatory power if the
standard representation produces too many diagnosis candi-

dates. In the vein of the tutoring environments discussed in
the previous section, we also intend to utilize this for pro-
viding limited repair capability for designs.
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