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Abstract

Scientific domains are characterized by substantial
amounts of complex data, many unknowns, lack of
complete theories, and rapid evolution. In many areas
of decision making, much of the reasoning process is
based on experience rather than on general knowledge.
Experts remember positive cases for possible reuse of
solutions, but negative cases are also useful for avoid-
ing potentially unsuccessful results. Thus, storing and
reasoning with experiences facilitates efficient and ef-
fective knowledge management.
In general, knowledge management systems support
representation, organization, acquisition, creation, us-
age, and evolution of k_nowledge in its many forms.
Complex scientific domains require: (1) multimodal
representations that support application-domain rich-
ness, expressibility and domain-knowledge evolution,
(2) effective organization of l~owledge for efficient ac-
cess to information, and (3) decision-support and anal-
ysis tools. We show how a case-based reasoning system
can be used for knowledge management in structural
biology. Namely, we describe a multimodal and multi-
media system for managing crystallization experiences.

Introduction

Biological research is generating data at an explosive
rate. The Human Genome Project is expected to iden-
tify the codes for over 3 billion bases by the year
2005. This will provide code for about 100,000 pro-
teins. About 350 folds and 1,200 super families have
been studied experimentally. It is estimated that of the
order of 1,000 folds and 3,000 - 5,000 super families still
need to be studied (PSI 1998).

Analyzing this volume of data and using it intelli-
gently is a challenge because of its complexity, its mul-
tiple interdependent factors, the uncertainty of these
dependencies, and the continuous evolution of our un-
derstanding of the data. In general, reasoning with
biomedical information requires flexible knowledge rep-
resentation structures. Since knowledge in such do-
mains is dynamic and evolutionary, its representation
should support reasoning with a mix of relevant and
irrelevant knowledge sources, allowing the scientist to
deal with conflicting information. These domains often

require the use of numeric, symbolic and multimedia
information.

In this article we introduce a multimodal system,
called MAX, for supporting the management of protein
crystallization experience. We describe the design of
knowledge repository as well as reasoning and analysis
tools.

Problems arise in biomedical domains because infor-
mation is not consistently described, quality control is
not always in place across different laboratories, and of-
ten only positive results are reported. In order to sup-
port a systematic management of complex biomedical
information and knowledge, we must resort to knowl-
edge management techniques. Traditionally, database
management systems, data warehouses and knowledge
discovery in databases have been used to manage and
use data. Data comprise values for observable, measur-
able or calculable attributes. Data in context is infor-
mation. Knowledge is validated information (Firestone
1999).

A data management system is a computer program
for managing a persistent and self-descriptive repository
of data. Analogously, knowledge management systems
support representation, organization, acquisition, cre-
ation, usage, and evolution of knowledge in its many
forms,

A data warehouse is a subject-oriented, integrated,
time variant and non-volatile set of data that supports
decision making (Inmon 1996). Similarly, a knowledge
warehouse is a storage vehicle for knowledge.

Knowledge discovery in databases is a nontrivial pro-
cess of identifying valid, novel, potentially useful and
ultimately understandable patterns in data (Frawley
Piatetsky-Shapiro 1991). We may apply similar meth-
ods to knowledge bases (Jurisica et al. 1998) to discover
underlying principles or meta-knowledge.

We incorporate a case-based reasoning (CBR) 
the development of our intelligent management system
for crystallization. Cases capture problem-solving pro-
cesses by representing episodes of these processes. This
makes CBR a suitable paradigm not only in domains
that can be easily formalized but in hard-to-formalize
areas as well. Because knowledge acquisition is sup-
ported by learning from experience, CBR systems can
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supplement weak domain models. This requires rep-
resentation formalisms which preserve relations among
cases and also among their parts. CBR can represent
existing experiences, deal with exceptions and contra-
dictory information, evolve representation over time,
change the use of information at a later time, and be
effectively integrated with other systems.

Knowledge Management

The application of knowledge-based technology to
biomedical domains presents many challenges. These
challenges arise from the complexity of biomedical
knowledge characterized by a large number of inter-
dependent factors, from the uncertainty of dependen-
cies, and from its constant evolution. It is impera-
tive that biomedical decision-support systems specifi-
cally address these challenges.

Decision-support systems have previously been ap-
plied to several problem in the domain of structural
biology, for example: to help to identify protein sec-
ondary structures (Lent, Buchanan, & Nicholas 1993);
to assist in locating motifs (Glasgow, Steeg, & Fortier
1999), to find similarity between protein tertiary struc-
tures (Grindley etal. 1994); and to help during the
initial stage of drug discovery (Finn et al. 1998).

Some of the main problems to be solved in the devel-
opment of intelligent support systems are how to repre-
sent information, how to access it flexibly and efficiently
(Finn etal. 1998), how to analyze it (Conklin, Fortier,
~; Glasgow 1993), and how to reason with it during
decision making. Given the uncertainties present, the
diversity of the representation formalism used, the com-
plexity and amount of information present, and the evo-
lution of domain knowledge, it is necessary that the
information system that will assist decision-making in
structural biology be flexible and scalable. The retrieval
of biomedical knowledge is difficult because of its vari-
ous forms, diversity of its locations, and its potential to
be contradictory.

Biological domains require multimodal representa-
tion that supports expressibility and domain-knowledge
evolution. Although diverse tools need to be used, case-
based reasoning can be the core technology due to its
potential flexibility in managing experience. Next we
discuss how a case-based reasoning system can be used
for the management of crystallization experiments.

7-¢43 Case-Based Reasoning System

We propose to consider the representation of biomedical
knowledge using a combination of case-based, image-
based, and rule-based approaches. Selecting a partic-
ular formalism may require a tradeoff between infor-
mation expressibility that the formalism supports, and
scalability of the system that uses the formalism. In
addition, an effective knowledge representation formal-
ism supports knowledge evolution (Jurisica et al. 1998).
Our approach takes CBR as the core system for knowl-
edge management and extends its functionality through

integration with other techniques. This is in fact a com-
bination of two research schools - one that builds mod-
els of human performance in science and the other that
builds effective programs, which may be implausible in
human terms (Valdez-Perez 1995).

TA3 is a CBR system which uses a variable-context
similarity-based retrieval algorithm and a flexible repre-
sentation language (Jurisica & Glasgow 1997; Jurisica
etal. 1998; Jurisica, Glasgow, g~ Mylopoulos 1999).
Cases are represented as a collection of attribute-value
pairs. Individual attributes are grouped into one or
more categories. Categories bring additional structure
to a case representation. This reduces the impact of
irrelevant attributes on system performance by selec-
tively using individual categories during matching. As
a result, we get a more flexible reasoning system, a
more comprehensible presentation of complex informa-
tion, improved solution quality, and increased scalabil-
ity.

We extend basic CBR functionality in TA3 by pro-
viding: (1) image-based processing to extend express-
ibility (Glasgow & Jurisica 1998), (2) database tech-
niques for case retrieval to support scalability (Jurisica,
Glasgow, & Mylopoulos 1999), (3) knowledge-discovery
techniques to support domain-knowledge evolution and
system optimization (Jurisica etal. 1998). The knowl-
edge discovery component is used for three purposes:

¯ TA3 optimization: locating descriptors relevant for
a given context and task, and organizing a case base
into context-based clusters.

¯ Case base and domain knowledge evolution: adding
descriptors to assist case discrimination during pre-
diction and classification; removing redundant cases
and descriptors; creating hierarchies of descriptors
and their values; finding associations.

¯ Evidence-based reasoning: analyzing created clus-
ters, hierarchies and associations to identify under-
lying principles in the domain.

Management of Crystallization Experiences

Structural biology is an important component of biolog-
ical research. A standard method for protein structure
determination is single crystal X-ray diffraction. This
process is often limited by the difficulty of growing sin-
gle crystals suitable for diffraction. Reasons for this in-
clude the large number of parameters affecting the crys-
tallization outcome (e.g., purity of macromolecules, in-
trinsic physico-chemical parameters, biochemical, bio-
physical and biological parameters), the unknown cor-
relations between the variation of a parameter and the
propensity for a given macromolecule to crystallize.

Although some advances have been made, the crys-
tallization of macromolecules is still primarily empiri-
cal. Because of its unpredictability and high irrepro-
ducibility, it has been considered by some to be an art
rather than a science (Ducruix & Giege 1992). Prac-
tical experience produces theories that are effective in
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many settings. For example, Jancarik and Kim pro-
posed a set of 48 crystallizing agents that are often suc-
cessfully used during crystallization (Jancarik ~: Kim
1991). These agents were proposed based on empiri-
cal results. Thus, "further work in the systematic study
of the chemical and physical properties associated with
crystallization should provide additional improvements
in the ability to grow protein crystals" (PSI 1998).

An additional problem is an historically non-
systematic approach to knowledge acquisition - "the
history of experiments is not well known, because crys-
tal growers do not monitor parameters." (Ducruix g~
Giege 1992). For example, the Biological Macromolec-
ular Crystallization Database (BMCD) stores data from
published crystallization papers, including informa-
tion about the macromolecule itself, the crystallization
methods used, and the crystal data (Gilliland 1988).
Unfortunately, negative results are not reported, and
many crystallization experiments are not reproducible
because of incomplete method descriptions, missing de-
tails, or erroneous data. Our recent literature review
indicates that the BMCD is not being used in a strongly
predictive fashion.

Our main goal is to support the management of
protein crystallization experiences by creating a useflll
crystallization knowledge warehouse. Conceptually, we
can divide the crystal-growth process into a primary
phase, during which one searches for favorable initial
crystallization conditions, and a secondary phase, dur-
ing which the initial conditions are optimized. Usually,
the primary phase is the more time consuming of the
two. Our research focuses on identifying initial condi-
tions favorable for crystal growth as quickly as possi-
ble. The proposed approach has the potential to signif-
icantly reduce the time spent looking for initial condi-
tions. The results of our research may thus eliminate
the primary bottleneck in modern structural biology.

We postulate that past experience can lead us to the
identification of initial conditions favorable to crystal-
lization. Faced with the challenge of crystallizing a new
protein we suggest that successful recipes developed for
similar proteins may be optimal starting points for the
lab work. However, we are faced with a problem of
quantitatively measuring the similarity of two proteins.

We hypothesize that solubility experiments can pro-
vide a quantitative measure of similarity between two
proteins. Assume that two proteins react similarly
when tested against a reasonably large set of precip-
itating agents. We suggest that crystallization strate-
gies successfully employed for the one may be profitably
applied to the other. Thus, we need to identify a suit-
able set of precipitating agents to sort the outcomes of
reactions for a relatively large group of proteins, all of
which have been successfully crystallized before. New
crystallization challenges are then approached by the
execution and analysis of a small set of precipitation re-
actions, followed by the identification of similar proteins
and further analysis of the recipes successfully used to
crystallize them. The precipitation reactions are de-

signed to consume less than a milligram of protein, to
take a few hours to set up, and to take around 12 hours
to analyze.

Our goals are to create a knowledge repository, de-
velop software tools to analyze the outcomes and sug-
gest starting conditions for crystal growth experiments,
to develop a protocol for the execution of a set of precip-
itation reactions, and to design protocols for the visual
interpretation of the reaction outcomes. To be specific,
we have designed the decision-support system to iden-
tify the following pieces of information for the crystal
grower: (1) the crystallization method of choice; (2) 
crystallizing agent of choice; (3) the optimal tempera-
ture; (4) the optimal pH; and (5) the approximate 
centrations of all solutes required in the crystal growth
medium.

Crystallization experiments contain experiential in-
formation, such as initial input information about the
protein at the beginning of the experiment, the pro-
cess of carrying out the experiment and the outcome
of the experiment. Knowledge evolves regardless of our
wishes due to environment changes, the emergence of
new problems or modification of our goals, user model
changes, and the evolution of our understanding of
the surrounding world resulting from the discovery of
new relationships and principles. A case representation
must be flexible to handle these issues. CBR suggests
a model for computational reasoning that incorporates
problem solving, understanding and learning. We pro-
pose to incorporate CBR to perform two functions: (1)
to suggest almost-right solutions to problems, which
can be modified automatically (or by the expert user)
to suit the new protein situation, and (2) to warn 
potential errors or failures in a proposed experimental
plan.

Max, the proposed system for crystallization experi-
ment design is multimodal and multimedia. It incorpo-
rates diverse tools (knowledge discovery, image feature
extraction, similarity-based retrieval), reasoning algo-
rithms (case-based, image-based and rule-based reason-
ing), and an information repository (multiple databases
and a knowledge base). On the conceptual level, the
information repository contains data and knowledge.
Data comprises existing databases, such as PDB (Pro-
tein Data Bank), BMCD, and specialized information
about proteins, chemicals, and agents. Knowledge in
MAX’s repository has two forms - experiential (cases
in the case base) and general principles (e.g., adapta-
tion rules). MAX’s knowledge repository is created sys-
tematically with an emphasis on information quality
(i.e., correctness, completeness, reproducibility). The
case base stores cases, which are individual experi-
ments with diverse crystallization outcomes (e.g., noth-
ing happened, amorphous precipitate, crystalline pre-
cipitate, prisms). General principles can be useful rules
acquired from crystallographers, or principles derived
using knowledge-mining tools. These are needed dur-
ing the case adaptation process.

The need for image-based reasoning comes from the
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fact that there is no general solution to quantitatively
evaluate reaction outcomes under the microscope. The
major weakness of existing scoring methods is the ten-
dency to confuse micro crystalline and amorphous pre-
cipitates (Ducruix & Giege 1992). For this reason 
store crystallization outcomes as images. We use com-
puter vision techniques (Glasgow &~ Jurisica 1998) 
preprocess images (i.e., image alignment, recognizing
precipitates in the micro pipette, etc.), to automati-
cally recognize different crystallization outcomes, and
to extract important image features for further analy-
sis. It is important to note that this approach produces
objective results, and thus may have the potential to
be useful during knowledge discovery.

Current Implementation Status of MAX

To support scalability, we have redesigned and re-
implemented 7-,43. The core of the library has been
implemented in Java. We have extended the case man-
agement module to enable easier migration of cases, to
support multimedia storage, and to improve scalabil-
ity. Currently, T.A3 works with both a memory-resident
case repository and a JDBC-compliant database (e.g.,
IBM DB2 UDB).

We plan to evaluate individual components of MAX
as we progress, but the final evaluation will be done af-
ter the information repository is populated and all rea-
soning and analysis tools implemented. The ultimate
test is to take unknown proteins, use MAX to suggest
crystallization strategies, and evaluate the results.

Using a limited data set, we have tested the suit-
ability and accuracy of similarity-based retrieval using
the solubility reaction index. A similarity function was
used to determine which cases are most relevant to the
given problem. Currently we incorporate precipitation
indices as a quantitative measure of similarity. The
index encodes precipitation reactions from a set of ini-
tial precipitation cocktails as a binary string. As the
project develops we will also consider other attributes
(such as protein sequence, molecular weight, etc.) and
assess their usefulness in the retrieval stage of the sys-
tem. The context-based retrieval method, implemented
in the TA3 system, provides the user with a flexible
interface for restricting or relaxing the context in or-
der to retrieve fewer or more cases as necessary. The
relaxation preferences for the reaction index category
were initialized to favor reduction over generalization.
Our preliminary results indicate that TA3’s variable
context, similarity-based retrieval module is suitable in
protein crystallography domain. However, our evalua-
tion is limited by the fact that reaction index was based
on only 160 precipitation reactions performed. Cur-
rently, we are acquiring experimental data with a sig-
nificantly larger number of precipitation reactions and
for many more proteins.

The image processing system is divided into the re-
trieval and analysis modules. The retrieval module uses
a simplified version of TA3’s variable context retrieval.
Each case is assumed to have only one attribute, which

is a two-dimensional array of values. Contexts are rep-
resented by two arrays indicating a maximum and a
minimum. Thus, the domain of a context is a contin-
uous range of values. Contexts can be specialized and
generalized, and sets of cases support regular and iter-
ative retrieval, as well as an explain function. A set of
cases is represented as a list of images resulting from a
set of experiments.

The analysis module is used to extract features from
the raw image to create a case. Image preprocessing
isolates the region of interest in the image (i.e., the
contents of the micro pipette) and attempts to stan-
dardize images with regards to lighting, size and ori-
entation. Post-processing implements the classification
strategy. While we investigate several possible strate-
gies, currently only the analysis of the two-dimensional
Fourier transform is implemented.

Although this is still only a prototypical version, our
preliminary results are encouraging. We can now auto-
matically clean up and align images, evaluate their simi-
larity, and classify them into categories of "nothing hap-
pened" and "something happened" (e.g., amorphous
precipitate, crystalline precipitate). We are working on
extending the current implementation with additional
algorithms for image feature extraction.

Discussion
Successful knowledge management must be systematic.
Without it, important data might be missing or in-
correct, the representation formalism may be limited,
or only a subset of available experience may be repre-
sented. Recently, other groups approached the prob-
lem of crystallography experiment design (Rosenberg
et al. 1999). Similarly to our approach, they start by
systematically archiving information about crystalliza-
tion experiments, using machine-learning techniques to
identify regularities in data, and suggest plausible crys-
tallization experiments.

%’aditionally, CBP~ focuses on technical domains
or clinical medicine. Knowledge warehousing has
been introduced in business-oriented domains (Fire-
stone 1999). Our approach extends both CBR and
knowledge warehousing techniques and applies them to
scientific domains.

CBB. is an important paradigm for knowledge man-
agement because: (a) it is similar to human problem
solving and thus it can complement the user; (b) 
supports evolving domain models and thus can help to
increase domain understanding; and (c) it diminishes
the problem of exceptions and over-generalizations.

Flexible similarity-based retrieval is required in com-
plex application domains (Jurisica et al. 1998). It
is also critical in biomedical domains, because similar
structures are likely to have similar biological activi-
ties. It is, however, paramount that the case retrieval
in such domains be scalable and user-guided, leading to
conversational CBR (Munoz-Avila ~ Aha 1999). The
prototype system 7-,43 can be used to satisfy these fea-
tures (Jurisica ~ Glasgow 1997; Jurisica et al. 1998;



Jurisica, Glasgow, & Mylopoulos 1999). Further work
is needed to extend the model to support reasoning
about images, including automated extraction of image
features and the assessment of geometric and spatial
similarities (Glasgow ~ Jurisiea ]998). Our prelimi-
nary results show that taking this multimodal approach
to representation and reasoning has substantial benefits
for knowledge management (Luft et al. 1999). Once the
prototype becomes publicly accessible, additional prob-
lems with quality assurance will need to be addressed.

The unique aspect of this research is in its focus on
domains where processing only symbolic information is
not sufficient and where one representation formalism
is not adequate to satisfy diverse users and support var-
ious tasks. The combination of a CBR paradigm with
computer vision techniques may bring advances to de-
cision support in this and similar domains. In addi-
tion, due to problem complexity, we focus on interac-
tive rather than automatic tools. Results of this re-
search are applicable beyond biomedical domains, pro-
vided experience-based reasoning is applicable. 1

If biomedical decision-support systems (DSSs) can
address these challenges, two important goals will si-
multaneously be achieved: (1) research in computing
will be more focused and would progress faster since real
world data is being used; and (2) research in biomed-
ical domains will be enhanced by the application of
new technology, which may help to establish underlying
principles.
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