
Examining Machine Learning for Adaptable End-to-End Information

Extraction Systems

Oren Glickman
Math and Computer Science Department

 Bar Ilan University
 Ramat Gan, Israel

glikmao@cs.biu.ac.il

Rosie Jones
Language Technologies Institute

 Carnegie Mellon University
 Pittsburgh, PA USA
rosie@cs.cmu.edu

Abstract
All components of a typical IE system have been the object
of some machine learning research, motivated by the need to
improve time taken to transfer to new domains. In this paper
we survey such methods and assess to what extent they can
help create a complete IE system that can be easily adapted
to new domains. We also lay out a general prescription for
an IE system in a new domain, employing existing
components and technologies where possible. The goal is a
system that can be adapted to a new domain with minimal
human intervention (say by someone who may be a domain
expert but need not be a computational linguist). We
propose research directions for automating the process
further, reducing the need for hand-tagged training data by
relying on biases intrinsic to the information extraction task,
and employing boot-strapping and active learning.

Introduction

Information extraction (IE) is a process that takes unseen
texts as input and produces fixed-format unambiguous data
as output, as typified by the Message Understanding
Conference (MUC) evaluations.
Building an information extraction system in a new domain
is difficult and time consuming, often requiring months of
effort by domain specialists and computational linguists.
This is mainly due to the domain specific nature of the task
(Cardie 97). To address this problem of portability, recent
research has focused on applying empirical methods
throughout the IE process. Indeed IE is an attractive
prospect for the application of machine learning, since
increasing availability of online texts encourages
construction of data-intensive approaches which profit
from some labeled data, and larger pools of unlabeled data.
Traditional information extraction has consisted of the end-
to-end concatenation of components, where it is assumed
that separate research on these parts is a semi-solved
problem and that the accuracy of individual pieces will not
affect the whole too badly. A naive application of machine
learning would apply to the individual pieces, leaving the
overall set-up unchanged. A more sophisticated change
would reflect trends in other areas of artificial intelligence
including speech recognition and machine translation,

which have seen the overhaul of the solution architecture.
In the next sections we will discuss how component-by-
component integration of machine learning technologies
has been applied to information extraction. These methods
of automating components employ domain independent
methods and resources to varying degrees. We will discuss
how each furthers the overall goal of system adaptability
and portability.
In the final section we will discuss how an end-to-end
portable information extraction system could be
constructed; which components can be taken off the shelf,
which should be modeled as part of the integrated whole,
and where the borders between modules could be drawn to
provide helpful bias for the overall system, while allowing
task-specific components to inform one another. We will
describe what data and techniques are necessary in moving
to a new domain, given existing machine learning
techniques, and in the ideal system.

 Application of Machine Learning to the
Components of IE

Information extraction systems can be classified into those
operating on (a) structured texts (such as web pages with
tabular information), (b) semi-structured texts (such as
online personals) and (c) free text (such as news articles).
In this paper we focus primarily on the more difficult
problem of extraction from free text.
Though IE systems vary in their architecture, a typical IE
system for extraction from free text is built from the
following components (Cowie and Lehnart 96, Cardie 97,
Appelt 97, Grishman 96):
_ A filtering component (domain dependent),
_ linguistic processing including a tokenization step,

morphological and lexical processing, and syntactic
analysis (all generally assumed to be domain
independent) ,

_ semantic tagging (arguably domain dependent),
_ scenario pattern matching, discourse analysis and

template generation (domain dependent).
The components above will be executed roughly in the
order stated and might use the output of earlier stages. In
the following sections we discuss how Machine Learning

From: AAAI Technical Report WS-99-11. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

(ML) methods have been applied and how they fit in or
contribute to an adaptable IE system.

Filtering

Filtering (Lewis 92) determines the relevance of the text or
parts of the text. This component filters text that will not
create a template or be processed by the subsequent stages
(Cowie et al 94). Such a filtering component is useful and
sometimes essential if the system gets its input from an IR
system or from a stream of data. In the case of long texts,
relevant information may appear only in a few paragraphs.
Although the main purpose of this component is of speed-
up, an increase in IE performance has also been reported.
Systems differ in the point at which filtering is done, either
before or after significant linguistic analysis is done. The
tradeoff is clear – the earlier filtering is done the more can
be gained from it in terms of system speed-up and
improvement in precision, but the greater the risk of
reducing system coverage.
Note that though this process is similar to information
retrieval (IR), it is not identical. Usually it is used to filter
documents retrieved by an IR or spidering system. By
definition the filtering component is domain-specific. On
the other hand, it requires only the labeling of whole
documents or sections of documents, which is easy for the
novice user. It also lends itself to unsupervised and semi-
supervised learning (see for example Nigam et al 98),
which means that rapid deployment in a new domain
requires only labeling a small set of initial training
documents.

Linguistic Processing

In this section we address linguistic processing
components, which have been viewed as more-or-less
domain independent. Hence little research has been
conducted on applying ML techniques to adapt them to
new domains in the context of IE.
Tokenization: locates word and sentence boundaries. Input
text is divided into smaller units – headings, paragraphs,
sentences and tokens. Tokens could be words, symbols,
constructs or idiomatic phrases that appear in the
dictionary. The algorithm may take into account special
formatting such as HTML. This is usually a set of rule-of-
thumb techniques with no machine learning applied. If the
system gets inputs in similar formats across domains
(streams of Reuters news articles, for example) there is no
need to adapt this component. On extraction systems that
take special formatting cues into account see the Wrapper
Induction section under Scenario Pattern Matching. There
is a body of research into automatic word segmentation for
Asian languages (for example Matsumoto et al 97). Speech
transcriptions have also been the object of research in
finding punctuation, sentence boundaries and document
structure (Beeferman et al, 98, 99).

In general, tokenization systems can be applied in a new
domain without much modification. Special cases do exist,
such as HTML mark-up, and speech recognizer output
without capitalization and other cues present in written
texts, but these form a small set which expands only when
a new technology makes a new type of text available.
Morphological and Lexical Processing: determines word
properties by looking them up in a lexicon. A part-of-
speech tagger is usually applied to compute the most likely
tag based on the context in which it occurs. These tags
might be used by semantic-structure finding components
downstream, but note the existence of named entity
extractors such as Nymble (Bikel et al 97) which we will
describe in the next section, which side-step part-of-speech
tagging altogether.
There has been much work in corpus-based morphological
analysis such as part-of-speech tagging (Brill 92, Church
88, Kupiec 92, and others). Most IE systems that use
morphological information do use components that were
trained using a machine learning algorithm. However the
corpus used is a tagged one (such as the Wall street Journal
or Brown Corpus) and might be very different from texts
the IE system is supposed to process. Most systems
assume that part-of-speech tagging is domain independent
enough and that the high performance achieved from
current taggers is sufficient. In the case of a standard
Hidden Markov Model (HMM) based implementation, it is
most probably the case that the markovian dependence of a
tag given previous tags is the same across domains of
similar style. But it is definitely not the case that the
distributions of possible tags for each word are similar
among different domains. There is no need to tag each
domain text with morphological information in such a
system, because an Expectation Maximization (EM), or
Baum-Welch, algorithm could be applied to achieve an
unsupervised adaptation of the tagger to a new domain. It
is an interesting question as to how many errors in current
IE systems are due to errors in the morphological analysis
and if such domain adaptation could reduce their number.
Syntactic Analysis: discovers sentence level structure
required by the information extraction task. Identifies
syntactic constructs such as noun phrases, and may identify
subject and objects of a verb. A detailed parse tree may not
be needed, and most systems suffice with just partial
parsing (Grishman et al 95).
Though there has been work on automatic grammar
induction, current IE systems tend to use handcrafted
grammars. A robust syntactic parser that infers parses for
unknown words and structures can be applicable across
domains. Another promising direction for out-of-the-box
information extraction systems is semantic grammars,
which can be augmented by novice users, such as SOUP
(Gavalda and Waibel 98).

Semantic Processing: Named Entities, and Others
The semantic processing component of an information
extraction system comprises tasks such as word sense
tagging, name recognition and identification, and other

semantic tagging. This component might for example
identify company names, locations and identify and
classify various products. In MUC this was assigned as a
sub-task referred to as Named Entity (NE) identification
(and classification), for which a tagged corpus was given as
training data. The following systems learn to identify and
classify such entities automatically from a training corpus:
Nymble(BBN) (Bikel et al. 97) This system uses training
data tagged with the presence of names, and their types, to
build a hidden markov model (HMM) which can detect the
presence of name types in unlabeled test data. It uses both
word-identity, and word-features (capitalization, contains-
digits, etc). An accuracy of over 90% for both English and
Spanish, in both mixed-case and capitalized texts is
reported. It is important to note that these results rely only
on the presence of labeled training data; they do not require
lists of names. The system’s accuracy can be achieved with
100,000 words of training data. Note that labeling this
amount of training data is a reasonable burden in switching
to a new domain. However, it would be interesting to see
this approach trained from a very small amount of labeled
data and allowed to complete its learning using expectation
maximization (EM).
MENE (NYU) (Borthwick et al 98). This system uses
many word-features similar to those in the Nymble system
described above, as well as incorporating dictionaries
where available. The maximum entropy approach
effectively allows probabilistic incorporation of many
possibly correlated information sources. This system relies
on hand-labeled training sets, but can use the output of
other systems (with errors which may be uncorrelated) to
bootstrap to higher performance.
At NYU, decision trees were used for Japanese named
entity extraction (Sekine et al 98). This system relies on
Japanese tokenization and part-of-speech tagging, and
dictionaries for semantic classes (including organizations,
proper names of people, locations and so forth). Rules over
word-tokenization and dictionary features, as well as word
identity are learned from labeled training data using a
decision tree. The authors demonstrate the domain
independence of this approach by showing that the same
techniques and dictionaries can be adapted to a new
domain by retraining the tree on new labeled data, without
the need to modify the underlying tokenization and
dictionary components. New labeled training data is
required for the new domain however, as cross-domain
train-test conditions show degraded performance, even
while the target semantic classes (such as names) remain
unchanged.

The greatest weakness of these approaches, in terms of
easy domain transfer, is that they include word-identity as
one of the features. This means that statistics must be
compiled over individual words, necessitating large
amounts of labeled training data. To the extent that word-
classes can be discovered from a small amount of hand-
labeling, these systems will be more applicable. This could
take the form of task-independent but document-collection-

dependent clustering (Ushioda 96), or learning semantic
classes by bootstrapping (Riloff and Jones 99).
An important observation is that the named entity task as
defined in MUC has a fixed set of seven classes to be
identified – person names, organizations, locations, dates,
times, monetary values and percentages. Though these
classes are very general and were important for the
Management Succession task, they tend to be easily
captured by information in the local context and rely
strongly on word-features. For other tasks different entities
would be of particular importance. It would be interesting
to examine the performance of the systems described above
on other sets of semantic classes.

Scenario Pattern Matching
This task consists of identifying domain specific relations
among relevant entities in the text, and is basically the only
component of an IE system that is unique to the task of
information extraction. IE systems require a separate set of
rules for each domain, making it a very domain specific
task. Machine learning is therefore an attractive option (see
Muslea 98, Cardie 97, Soderland 99). Following are a few
of the systems that automatically identify domain specific
extraction rules.
Autoslog (Riloff 93) acquires extraction patterns from
training examples. Autoslog operates over syntactically
bracketed fields (verb, subject, object, etc.) and assumes
that entities are semantically tagged. Autoslog learns
extraction patterns in the form of domain-specific semantic
case frames called concept nodes with a maximum of one
slot per frame. Each rule is associated with a ‘trigger’
which is the phrase that activates the pattern. As a training
corpus it requires a set of texts and their answer keys and
depends on the existence of a partial parser, a small lexicon
with domain-specific semantic class information and a set
of more-or-less domain independent linguistic patterns.
Any proposed extraction pattern is presented to a person
for acceptance or rejection. The extraction rules are simple
enough for a domain expert who is not a computational
linguist to understand. It is important to note that Autoslog
learns a rule per slot of training set templates in a one shot
manner. Autoslog has no automatic induction step – all
output is passed to a human and is not passed back to the
learning algorithm.
CRYSTAL (Soderland et al. 95), like AutoSlog, learns
extraction patterns in the form of semantic case frames or
Concept Nodes (CNs). It uses a covering algorithm to learn
extraction patterns. First it creates a set of CN definitions
for each positive training instance from the training corpus.
It then gradually relaxes the constraints on these initial
definitions to broaden their coverage, while merging
similar definitions to form a more compact dictionary. The
CN definitions in CRYSTAL’s final dictionary are
generalized as much as possible without producing
extraction error on the training corpus. CRYSTAL unifies
two similar definitions by finding the most restrictive
constraints that cover both.

PALKA (Kim & Moldovan 95) learns extraction patterns
that are similar in form to Autoslog’s concept nodes. A
pattern consists of a set of possible trigger verbs and
generic semantic case frame definitions from a concept
hierarchy of semantic classes. To learn extraction patterns,
each new training instance could cause a rule to either be
generalized moving up in the semantic hierarchy of
specialized by replacing a semantic class with some of its
children.
LIEP (Huffman 95): rather than learning one extraction
pattern for each slot in a training template, generates a
single rule for all slots. LIEP does not rely on a tagged
training set, but rather allows a user to interactively
identify events in texts. For each sentence of a training text
given by the user, entities of interest (e.g. people,
companies and titles) are identified and the user can then
choose which combinations of the entities signify events to
be extracted. LIEP tries to build a set of extraction patterns
that will maximize the number of extractions of positive
examples and minimize spurious extractions. Given a new
example that is not already matched by a known pattern,
LIEP first attempts to build a new pattern based on the
example. LIEP searches for syntactic relationships between
each pair of constituents by performing a depth-first
algorithm.
HASTEN (Krupka 95) uses a class of extraction patterns
called Egraphs that contain semantic labels paired with
constraints such as semantic class, verb root, verb voice or
exact word. Weights for each pattern template are learned
in a training phase from positive examples. In the
extraction phase, HASTEN uses a similarity metric to
compare an Egraph with the input text.
RAPIER (Califf & Mooney 97) is a system for semi-
structured text that uses a form of Inductive Logic
Programming and requires no prior syntactic analysis.
Induces rules from a tagged corpus of texts with tier target
templates. The text is considered to have three fields – the
target field itself, a pre-filler of token before the target
phrase and a post-filler of tokens after it. RAPIER’s rules
specify an ordered list of lexical, semantic and
morphological constraints to be matched for each of these
fields. The Inductive Logic Programming (ILP) algorithm
starts with the most specific rule that matches each target
slot from the training. It then pairs randomly chosen rules
relaxing them taking their least general generalization
(LGG) and adding constraints, if needed to operate
correctly on the training set. This process is repeated until
no progress is made.
WHISK (Soderland 99) is possibly the most general rule
extraction system to date, using regular expression like
extraction patterns. It is not restricted to specific pre-
processing of the text and hence good for structured as well
as semi-structured and free text. WHISK uses supervised
learning inducing a set of rules from hand-tagged training
examples. To minimize the human effort involved, active
learning is employed by interleaving the annotation of the
training data with the presentation instances that are likely
to be near the decision boundaries of the system. WHISK

rules are based on a form of regular expression patterns
that identify the context of relevant phrases and the exact
delimiters of those phrases. Predefined domain-specific
semantic classes are used, and when applied to free text,
the text is also segmented into syntactic fields. WHISK
uses a covering algorithm inducing rules top-down, by first
finding the most general rule that covers the seed and then
extending the rule by adding terms one at a time as long as
it is below a certain threshold of errors.
SRV (Freitag 98), targeted for extraction from semi-
structured text, converts the extraction problem by
considering all possible phrases as potential slot fillers. The
system adopts a multi-strategy approach and combines
evidence from three classifiers: a rote learner, a naive
Bayes classifier and a relational rule learner. The rote
learner simply compares the phrase to a list of all correct
slot fillers found in training. The naive Bayes classifier
computes an estimated probability that the tokens in the
phrase are found in a correct slot filler. The relational
learner induces in a top-down manner a set of constraints
such as the length of the phrase or existence of words in or
near it.

Note that all systems designed to handle free text depend
on prior syntactic processing and semantic labeling.
Wrapper Generation (Kushmerick et al. 97, Ashish &
Knoblock 97, Hsu & Dung 98) Independently of the
traditional IE community, systems that learn to transform
one or multiple web pages into the equivalent of database
entries have emerged. Though such systems can not handle
information extraction from free text some of the ideas and
techniques used here could be incorporated as in the lower
level components such as tokenization.
Automatic Template Deduction
All the systems described above perform supervised
learning of extraction rules from annotated texts. The user
is assumed to have an already developed set of templates.
Recently, others have addressed the problem of generating
such patterns automatically without the need for
annotation.
AutoSlog-TS (Riloff & Shoen 95) is an extension of
Autoslog. A user needs only to classify texts into relevant
vs. not relevant. The system generates an extraction pattern
for every phrase in the training corpus. It then evaluates the
extraction patterns by processing the corpus a second time
and generating relevance statistics for each pattern. The
patterns are then ranked in order of importance to the
domain. The user hand-filters the best patterns.
Other ongoing research (Collier 98, Nobata & Sekine 98,
Pierce 98) further extends this approach, trying to
automatically induce pertinent entities and relationships
between them from a set of relevant texts. More recent
work focuses on customizing templates by user interests.
(Karkaletsis et al. 97, Yangarber & Grishman 97). This
new trend is an interesting extension to the traditional IE
paradigm in which a pre-defined template is assumed.

Discourse Processing and Template Generation
Discourse Processing. In this stage, coreference and
anaphora resolution are done. Coreference resolution is
responsible for knowing when different descriptions refer
to the same entity. A text might contain, for example, the
expressions: ‘Bill Clinton’, He, ‘William J. Clinton’ and
‘The president’ all referring to the same person. A
discourse model will examine each entity encountered in
the text and determined whether it is new and should be
added to the discourse model.
While there have been previous investigations of empirical
approaches to coreference outside of the scope IE scope
(Dagan et al 95, Anone and Bennett 95), these have
generally centered on the task of assigning correct
references for anaphoric expressions and assume full
parsed text as input. Because coreference resolution is
crucial to the success of an IE system it was designated as
another sub-task of MUC. A corpus with tagged entities
was created for training for participating sites. Given all
marked entities in a text, coreference resolution can be
performed by training.
RESOLVE (McCarthy & Lehnert 95) and MLR (Aone &
Bennett 95) both used an annotated corpus to train decision
trees that decide whether two phrases refer to the same
object. In both systems the attributes or their values might
be domain dependent and therefore the system needs to be
retrained for each domain for good results.
Template Generation. Assembles events, entities and
relationships between them into a pre-specified template
structure. In some cases set fillers are desired (human/non-
human, for example) or normalization of fillers is needed.
In Wrap-Up (Soderland & Lehnart 94) decision tree are
used to handle the merging and co-reference
simultaneously. Another system (Kehler 97) uses a
probabilistic method to do the same, and in later work
(Kehler 98) applies unsupervised and weakly supervised
techniques to the task, albeit with little increase in
performance. While one technique applied attempted to
find an optimal distance metric for clustering, and still did
not increase performance, the class of features considered
for the distance metric may have lead to this result.
Nevertheless this opens the way to the types of machine
learning we see as most applicable to rapid-deployment IE
systems.

Automating the Whole

As has been shown in the previous sections, all
components of an IE system have been more or less
automated. The remaining problem of a rapid shift to a new
domain consists of putting all the pieces together, with
minimum additional work.
It is useful for us to note that some machine learning
techniques have been found effective for multiple
components in an IE system, as follows:

- HMMs have been used for part-of-speech tagging and
named entity extraction

- ILP for parsing (Zelle & Mooney 94), scenario pattern
matching and coreference resolution.

- Decision trees for named entity extraction, parsing
(Magerman 95) and coreference resolution.

- Maximum entropy for part-of-speech tagging and
shallow parsing (Skut and Brants 98) and for named
entity extraction.

This suggests a methodology in which a single learning
mechanism is applied simultaneously or sequentially to
multiple components in the system. We can be motivated
in taking this tack by examining trends in other areas of AI.
Complex tasks have been accomplished at first by
identifying the pieces that need to be addressed, plugging
those pieces together in a knowledge-intensive ad-hoc way,
and later unifying the end-to-end process.
IE for the Commercial User: Our goal is a system for
information extraction which novice end users can quickly
train for their own needs through ongoing interaction.
As suggested throughout this paper, current portable
techniques rely heavily on annotated texts in the new
domain. In order to meet the goal of system adaptability,
researchers in IE should investigate further ML algorithms
that rely on only small amounts of labeled training data.
This can be addressed with:

1) Methods which reduce the amount of labeled training
data required, reducing human annotation time:

• More fully unsupervised methods (which identify
properties of text of new domain)

• More weakly supervised methods (bootstrapping
from small sets of annotated data).

• Active Learning/Selective Sampling (use human
time judiciously, once the maximum underlying
structure has been identified).

2) Methods which allow the target extraction in the new
domain to be used to increase accuracy at all levels
simultaneously, and which allow components to
operate at the maximum efficacy as an end-to-end set

• Indirectly supervised methods with the end-task
driving learning of lower-level components

• Combination of learners of different types
• Tightly coupling components by allowing multiple

hypotheses from one be the input to the next, and
even allowing them to iteratively learn from one
another.

3) Online Algorithms (so the system keeps adapting after
deployment).

By combining the training of components as we suggested
in the previous section, results should improve over-all.

The Biases We Need
Weakly supervised information extraction systems could
be built to operate out-of-the-box by assuming the
following:

 1. Our semantic classes can be described by giving a
few prototypical exemplars – these can be used as seeds
for clustering or boot strapping of the whole semantic
class.

 2. Relationships between semantic entities in the target
domain – a small set of semantic classes and
relationships can be postulated for template
construction (eg Huffman 95).

 3 . Co-ocurrence of coreferring expressions in
reasonably close proximity – nearby occurrences of the
same semantic class may well correspond to the same
entity; these are good candidates for a system which
hypothesizes coreference rules.

 4. Documents can be tagged as relevant or irrelevant to
the domain – these can be used to generate a large
corpus of relevant and irrelevant texts. Features that
distinguish these two types of text may be good
candidates for extraction patterns (e.g. Riloff 95).

These biases allow weakly supervised methods to limit
their search space, and still generate reasonable results. The
extent to which these assumptions fail in a particular new
domain will determine the ability of our out-of-the-box
methodology to be adapted to the new domain.

Information Extraction for a New Domain –
Today and Tomorrow

Appelt and Israel (97) and Cunningham et al (97) describe
methodologies for constructing complete information
extraction systems. However, they do not address the full
range of machine-learning and hence rapidly deployable
techniques available now, and which could be built given
current research knowledge.
Given the state-of-the-art for automated components for an
information extraction system described in previous
sections, we are now in a position to enumerate the steps
necessary for transition to a new domain, while using
existing data and technology as much as possible. We will
address this both as a practical description of what is
currently feasible, and the ideal, which we would like to
see come to fruition.

Today:

Data Required:
1) Texts from new domain (100,000+ words)

2) publicly available dictionaries

Technology, Code Required:
1) Domain independent linguistic processing components

(part-of-speech tagger, trained on publicly available
corpus, shallow syntactic parser).

2) Learner(s) (e.g. HMM, decision tree, inductive and
covering rule learners)

Steps Required:
1) Label named entities in domain-specific texts.
2) Fill in templates for domain specific texts.
3) Tag coreferring examples in domain specific texts.

4) Train named-entity, semantic classes using rule-builder
and labeled text.

5) Tag and parse training data, incorporating named entity
finding from step 4.

6) Use learner to construct extraction patterns.
7) Train coreference and anaphora resolution component,

using learner and labeled training data (including
output from previous stages).

Tomorrow:
Data Required:
1) NewText - Texts from new domain (100000+ words)
2) Publicly available dictionaries
Technology, Code Required:
1) Part-of-speech tagger, trained on publicly available

corpus.
2) Syntactic Parser (shallow).
3) Rule-builder(s) (e.g. HMM, decision tree, covering rule

learner, regular expression constructor).
4) Maximum entropy system.
5) Clustering code.
6) Active-learning, boot-strapping wrapper for learners.
7) Information Extraction Toolkit

Steps Required:
1) Provide 10 or so examples of each semantic class.

2) Label a small number of texts as relevant or irrelevant.

3) Watch IE toolkit while it:

_ Uses named entity examples as seeds for vocabulary
clustering.

_ Uses labeled documents as seeds to build up large
clusters of relevant and irrelevant documents.

_ Iteratively builds up semantic classes which
distinguish relevant and irrelevant texts, and
identifies domain-specific concepts.

_ Constructs candidate templates containing target
semantic concepts provided as examples, and
presents them to the user for verification using
active learning.

_ Finds entities from the same semantic class
occurring close to one another, and presents them to
the user to classify to aid in active learning of
coreference resolution.

_ Makes the tea, and writes the research paper.

Conclusion

We have outlined state-of-the-art research in machine
learning applications to information extraction, and
summarized how these can be tied together to port to a new
domain. We have emphasized the dependence of these
approaches on supervised learning from labeled data, and
have outlined the biases which would enable more weakly
supervised methods to perform the task with much less
user involvement and expertise. A research agenda
following these lines will develop information extraction

systems which can be rapidly deployed in new domains,
and which will require only the minimum of human
assistance for successful adaptation.

Acknowledgments

We would like to thank Ido Dagan, Zvika Marx and Yuval
Krymolowski for their helpful feedback on this paper.
Rosie Jones’ research is supported in part by the DARPA
HPKB program under contract F30602-97-1-0215, and by
the National Science Foundation under grant SBR-
9720374.

References

Aone, C.; Bennett, S. W. 1995. Evaluating automated and
manual acquisition of anaphora resolution strategies. In
Proceedings of the 33rd Annual Meeting of the Association
for Computational Linguistics, 122-129. Cambridge, MA.

Appelt, D. E.; Israel D. 1997. Building Information
Extraction Systems. ANLP-97 Tutorial.

Ashish, N.; Knoblock, C. 1997. Wrapper Generation for
semi-structured Internet sources. SIGMOD 26(4):8-15.

Bikel, D.; Miller, S.; Schwartz, R.; Weischedel, R. 1997.
NYMBLE: a High-Performance Learning Name-finder. In
proceedings of the Second Conference on Empirical
Methods in Natural Language Processing, Providence, RI,
109-116.

Beeferman, D.; Berger, A.; and Lafferty, J, 1999 Statistical
models for text segmentation Machine Learning 34,
Special Issue on Natural Language Learning (Cardie, C.
and Mooney R. Eds)

Beeferman, D.; Berger, A.; and Lafferty, J, 1998
Cyberpunc: a lightweight punctuation annotation system
for speech, IEEE conference on acoustic, speech and signal
processing, Seattle, WA 1998

Borthwick, A.; Sterling, J.; Agichtein, E.; Grishman, R.
1998. Exploiting Diverse Knowledge Sources via
Maximum Entropy in Named Entity Recognition. In
Proceedings of the Sixth Workshop on Very Large
Corpora, Universite de Montreal, Montreal, Canada..

Brill, E. 1992. A simple rule based part-of-speech tagger.
In Third Conference on Applied Natural Language
Processing, 152-155, Trento, Italy.

Brown, P.; Cocke, J.; Della Pietra, A; Della Pietra, V;
Jelinek, F.; Lafferty, J.; Mercer, R.; Roossin, P. 1990. A
Statistical Approach to Machine Translation

Califf, M. E.; Mooney, R. J. 1997. Relational Learning of
Pattern-Match Rules for Information Extraction. In
Proceedings of the ACL Workshop on Natural Language
Learning, 9-15. Somerset, NJ: Association for
Computational Linguistics.

Cardie, C. 1997. Empirical Methods in Information
Extraction. AI Magazine 39(1):65–79.

Cardie, C. 1993. A Case-Based Approach to Knowledge
Acquisition for Domain-Specific Sentence Analysis. In
Proceedings of the Eleventh National Conference on
Artificial Intelligence, 798-803. Menlo Park, CA:
American Association for Artificial Intelligence.

Church, K. 1988. A stochastic parts program and noun
phrase parser for unrestricted text. In proceedings of ANLP,
136-143. Morristown, NJ: Association for Computational
Linguistics.

Collier, R. 1998. Automatic Template Creation for
information Extraction, an Overview. Ph.D. Proposal,
University of Sheffield.

Cowie, J; Wakao, T.; Guthrie, L.; Jin, W.; Pustejovsky, J.;
Waterman, S. 1994. The Diderot Information Extraction
System PACLing-94

Cowie, J.; Lehnert, W. 1996. Information Extraction.
Communications of the ACM 39(1):80–91.

Cunningham, H.; Humphreys, K.; Wilks, Y.; Gaizauskas,
R. 1997 Software Infrastructure for Natural Language
Processing ANLP-97

Dagan, I.; Justenson, J.; Lappin, S.; Leass, H.; Ribak, A.
1995. Syntax and Lexical statistics in anaphora resolution.
Applied Artificial Intelligence, 9(6):633-644.

Freitag, D. 1998. Multistrategy Learning for Information
Extraction. ICML-98.

Grishman, R. 1995. The NYU system for MUC-6 or
where’s the syntax? In Proceedingsof the Sixth Message
Understanding Conference. San Fransisco, CA: Morgan
Kaufmann.

Grishman, R. 1997. Information Extraction: Techniques
and Challenges. SCIE-97 10–27.

Hsu, C.; Dung, M. 1998. Wrapping Semistructured Web
Pages with Finite State Transducers. CONALD-98.

Huffman, S., B. 1995; Learning Information Extraction
Patterns from Examples. IJCAI-95 workshop on New
Approaches to Learning for Natural Language Processing.

Gavalda, M; and Waibel, A. 1998 Growing Semantic
Grammars COLING/ACL-98

Karkaletsis, V.; Spyropoulos, D.; Benaki, E. 1997.
Customising Information Extraction Templates according
to Users Interests. In Proceedings of the International
Workshop on Lexically Driven Information Extraction,
Frascatti, Rome.

Kehler, A. 1997. Probabilistic Coreference in Information
Extraction. In proceedings of The Second Conference on
Empirical Methods in Natural Language Processing, 163-
173. Somerset, NJ: Association for Computational
Linguistics.

Kehler, A. 1998. Learning Embedded Discourse
Mechanisms for Information Extraction. In proceedings of
AAAI Spring Symposium on Applying Machine Learning to
Discourse Processing. CA.

Kim, J.; Moldovan, D. 1995. Acquisition of Linguistic
Patterns for Knowledge-based Information Extraction.
IEEE Transactions on Knowledge and Data Engineering.

Kupiec, J. 1992. Robust part-of-speech-tagging using a
hidden markov model. Computer Speech and Language,
6:225-242.

Krupka, G. 1995. Description of the SRA system as used
for MUC-6. In Proceedings of the sixth Message
Understanding Conference, 221-236. San Fransisco, CA:
Morgan Kaufmann.

Kushmerick, N.; Weld, D.; Doorenbos, R. 1997. Wrapper
Induction for Information Extraction. IJCAI-97.

Lewis, D. D. 1992. Text Filtering in MUC-3 and MUC-4.
In Proceedings of the Fourth Message Understanding
Conference, 51-66. Morgan Kaufmann, San Mateo, CA.

Magerman, D. M. 1995. Statistical decision-tree models for
parsing. In Proceeding of the 33rd Annual Meeting of the
Association for Computational Linguistics, 276-283.
Cambridge MA.

McCarthy, J.; Lehnert W. 1995. Using Decision Trees for
Coreference Resolution. Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence.

Muslea, I. 1998. Extraction Patterns: from Information
Extraction to Wrapper Generation. Unpublished.

Matsumoto, Y.; Kurohashi, S.; Yamaji, O.; Taeki, Y. and
Nagao, M. 1997 Japanese morphological analyzing
System: JUMAN Kyuoto University and Nara Institute of
Science and Technology

Nigam, K.; McCallum, A.; Thrun, S.; Mitchell, T. 1998.
Learning to Classify Text from Labeled and Unlabeled
Documents AAAI-98

Nobata, C.; Sekine, S. 1998 Automatic Acquisition of
Patterns for Information Extraction, unpublished.

Pierce, D. 1998. An Interactive Information Extraction
Environment. Unpublished.

Riloff, E. 1993. Automatically Constructing a Dictionary
for Information Extraction Tasks. AAAI-93.

Riloff, E.; Shoen, J. 1995. Automatically Acquiring
Conceptual Patterns Without an Annotated Corpus.
Proceedings Third Workshop on Very Large Corpora.

Riloff, E.; Jones, R. 1999. Learning Dictionaries for
Information Extraction by Multi-level Boot-strapping
AAAI-99 (forthcoming)

Sekine, S.; Grishman, R.; Shinou, H. 1998. A Decision
Tree Method for Finding and Classifying Names in
Japanese Texts Sixth Workshop on Very Large Corpora,
Canada

Skut, W.; Brants, T. 1998. A maximum-entropy partial
parser for unrestricted text, In Proceedings of the Sixth
Workshop on Very Large Corpora, Montreal, Canada.

Soderland, S.; Fisher, D.; Aseltine, J.; Lehnert, W. 1995.
Crystal: Inducing a Conceptual Dictionary. IJCAI-95.

Soderland, S. 1999. Learning Information Extraction Rules
for Semi-structured and Free Text. Machine Learning.

Ushioda, A. 1996 Hierarchical Clustering of Words and
Application to NLP Tasks Proceedings of the 4th Workshop
on Very Large Corpora

Yangarber, R.; Grishman, R. 1997. Customization of
Information Extraction Systems. In Proceedings of the
International Workshop on Lexically-Driven Information
Extraction, Frascati, Italy.

Zelle, J.; Mooney, R. 1994. Inducing Deterministic Prolog
Parsers from Tree Banks: A Machine-Learning Approach.
In Proceedings of the Twelfth National Conference on
Artificial Intelligence, 748-753. Menlo Park, CA:
American Association for Artificial Intelligence.

