
Anti-Unification Based Learning of T-Wrappers
for Information Extraction

Bernd Thomas
Institut fiir Informatik, Universit~t Koblenz

Rheinau 1, 56075 Koblenz, Germany
Email: bthomas@uni-koblenz.de

Abstract

We present a method for learning wrappers for
multi-slot extraction from semi-structured doc-
uments. The presented method learns how to
construct automatically wrappers from positive
examples, consisting of text tuples occurring in
the document. These wrappers (T-wrappers) are
based on a feature structure unification based pat-
tern language for information extraction. The
presented technique is an inductive machine learn-
ing method based on a modified version of least
general generalization (TD-Anti- Unification) for
a subset of feature structures (tokens).

Introduction

The programming of hand-crafted wrappers (Wieder-
hold 1992) for information extraction (IE) from semi-
structured documents, e.g. web pages, is a tedious and
time consuming process. Furthermore, hand-crafted
wrappers are not usable for intelligent web informa-
tion agents whose task is to collect information from
documents autonomously, that have not been analyzed
before. Thus it is obvious that they need the capability
to learn how to construct wrappers automatically.

Our approach to automatic wrapper construction is
based on inductive machine learning techniques. The
major differences to related approaches in this field
(Asish ~ Knoblock 1997; Califf ~ Mooney 1997; Kush-
merick 1997) are: Our learned wrappers (T-Wrappers)
are based on a features structure (Smolka ~ Treinen
1994) and unification-based (Knight 1989) pattern lan-
guage (Thomas 1999b) for multi slot IE. This approach
offers various possibilities to constrain the matching and
extraction process by unification techniques on special
feature structures (tokens). The main intention for its
development was to use logic programs (Lloyd 1987)
combination with wrapper techniques to build intelli-
gent web mediators (Wiederhold 1992) and information
agents.

Instead of using examples that need hand-crafted tag-
ging (Soderland 1997) or labeling (Kushmerick 1997)

Copyright Q1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

our approach works with examples consisting of text tu-
ples occurring in the document. Therefore simple copy
and paste actions can provide examples to our learner,
no knowledge about internal processes or data struc-
tures is required. Furthermore we use an un-supervised
learning method, which makes it suitable for use with
intelligent information agents. The presented approach
is able to learn T- Wrappers given only a handful of pos-
itive examples (1 to 10) and not restricted to special
structural representations (e.g. tables).

Let us depict the general idea of learning T- Wrappers
by a small example: If a user reads a web page con-
taining a list of publications, he might think of a re-
lation like: publication(Author, Title). The instances
of this relation are the information that can be found
in the list of publications shown on the particular web
page (e.g. publication(Knuth, Latex)). Now we ask
the user to determine some instances of this particu-
lar relation, such that they are contained in the list of
publications. These instances will be our positive set
of examples E+. Then the learning task is to find a
definition for the relation publication such that all ex-
amples from E+ and all other listed publications are in-
stances of the relation publication. This means we have
to learn an extraction procedure that is able to extract
the instances in E+ and remaining instances presented
on the page. We show that such an extraction proce-
dure directly corresponds to a certain wrapper class,
the T- Wrappers. Next we will give a brief introduction
into T-Wrappers. Then our basic learning method is
described. Thereafter the generalization of automat-
ically generated extraction patterns from example in-
stances and techniques for the automatic construction
of T-Wrappers from generalized extraction patterns is
defined. Finally a brief conclusion is presented.

T-Wrappers

The basic intention of T-Wrappers is to extract infor-
mation from semi-structured documents and to rep-
resent it as relational instances. This relational rep-
resentation allows the concepts of T-Wrappers and
logic programs (Lloyd 1987) to be combined more eas-
ily and to guide the extraction process with inter-
fering inference processes. Therefore we interpret T-

15

From: AAAI Technical Report WS-99-11. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Wrappers as special theories and handle Logic Programs
extended with T-Wrappers by means of theory reason-
ing (Stickel 1985). These methods are discussed
(Thomas 1999b).

In general a T-Wrapper defines a relation, where its
instances are obtained by extracting information from
a document with an associated pattern (T-Pattern). A
T- Wrapper is said to be successful if its set of instances
is not empty. The general definition of a T-Wrapper is
as follows wrapper_name(D,V,P) := {V~, J wither
substitution obtained From matching pattern P with
variables V on document D} The following example
7"-Wrapper definition is capable of extracting links
from HTML documents:
template link(D, Link, Desc) := #any and html(tag
a, hre] = Link) and Desc ~- +not(html_end(tag = a)

Two basic assumptions must hold to apply our IE
techniques as described in (Thomas 1999b): (1) Only
semi-structured documents are considered. Here semi-
structured means: documents containing special anno-
tations, like tags as in HTML or command sequences
as in OTE/V documents. Such text sequences, are used
as anchors, that mark the beginning and end of the rel-
evant information to be extracted. (2) Documents are
pre-processed (tokenized). That means, any document
is transformed into a list of special feature structures
(Smolka & Treinen 1994).

Tokens and T-Patterns We call a simple and
acyclic feature structure a token if and only if it has
a feature named type and all feature values consist
either of variables or constants. That is, no fea-
ture value consists of another feature. Variables are
written in capital letters and constants are quoted
if they start with a capital letter. Furthermore, we
choose a term notation for feature structures that
does not code the features to a fixed argument po-
sition. Instead the arguments of the annotated term
are extended, by the notation Feature = Value. For
example the text Pentiura 90 may be writ-
ten as the list of tokens: [token(type=html, tag=b),
token(type=word, txt=’Pentium ’), token(type=int,
val=90), token(type=html_end, tag=b)]. Tokens are
not used only to classify the symbol sequences appear-
ing in a document, they also can provide additional in-
formation depending on the tokenizer used. This may
be of great interest for additional linguistical process-
ing of documents. To recognize a certain token or token
sequence in a tokenized document we need techniques
to match a given token description with a correspond-
ing token. For feature structures a special unification
was defined in (Shieber 1986). For our purposes
need a modified version of this unification, the token-
unification.
Definition 1 (Token-Unification) Let T1 =
token(fl = vl,f2 ---- v2,...,fj = vj) j >_ 1 and
T2 = token(f; = v~,f~ = v~,...,]~ = v~) k > 1 be to-
kens. Let A1

k ~
[_J~=l{(fi, vl)} and A2 == Ui__t {(f~, vi)}

be the feature-value sets of the tokens T1 and T2.
It must hold that {fl,...,fj} C {fl,...,f~}. If this
is not the ease, we call T1 and T2 not token-unifiable,
written 7"1 ~ T2.
Let F = {fl (f,v) A1} betheset of f eatures Tt
and T2 have in common. The terms T[and T~ are
defined as follows: T~ := token(f1 = vt,..., f~ = vn)
and T~ := token(ft = v~,...,f~ = v~) with fi
F A (fi, vi) ¯ At A (fi, v~) ¯ A2 A 1 < i < n A n = IFI-
TI and T2 are token-unifiable iff T~ is unifiable with
T~. The most general unifier (mgU) ~ of T1 and T2
the mgU of T~ and T~ wrt. the usual definition (Lloyd
1987). We write T1 Uo T2 iff T1 is token-unifiable with
T2 and ~ is the mgU of the unification from T[with
T~ . []

Token-Unification is motivated by the idea of in-
terpreting the left token to be a pattern to match
the right token, it allows us to set up feature con-
straints in an easy way. By simply adding a fea-
ture to the left token we restrict the number of pos-
sible matches or by decreasing its features we extend
it. To ease the construction of T-Patterns, tokens are
written as token_type(ml=w1 ,...,mn=wn), for example
token(Vpe= ord, txt=money) - word(txt=money).
The needed retransformation, to be able to test for
token-unification is then straightforward. Therefore we
do not differentiate between these two notations in the
following sections.

Example 1 (Token-Unlfication)
html(href=Y) Ua token(type=html, tag=a, href=
’pubs.html’) with ~r= [Y/’pubs.html]
word(len=4,txt=X) ~ token(type=word, txt=telefon,
len=7)

T-Patterns consist of the following basic elements:
Iteration operators like # or +; operators for Pat-
tern conjunctions: and, or; Extraction variable as-
signments: Vat =pattern; Negation or exclusion of
tokens: not(tokent,...,token,~). The whole language
of T-Wrappers and the semantics of T-Patterns is de-
scribed in detail in (Thomas 1999b).

Definition 2 (T-Pattern Match) Let p be a T-
Pattern then £(p) defines a set of token sequences de-
scribed by p. A T-Pattern p matches on a tokenized
document D, iff 3 s ¯ £(p) and 3 d subsequence of
such that Isl = Idl (s and d have the same number of

tokens.) and d is the sequence of the first]~] token in
D and 3 E such that Vi = 1... is[: tI u~ q, where t~
denotes the i-th token of s. d is called the matched se-
quence of p on D. The substitution o’i of an extraction
variable Xi = patterni occurring in p is the token sub-
sequence exi from d matched by the sub-pattern patterni
of p. The substitution E is called extracted information
from D by p. []

Example 2 (Token-Matching)Given a document
like "Order 10 apples and 60 oranges." and its to-
kenization as D=[word(txt=’Order’), int(val=lO),
word(txt=apples), word(txt=and), int(val=60),

16

word(txt--oranges)]. Let p (~ any and int(val=X)
and word(txt=Y) be a T-Pattern. Matching p on
computes the substitution E={ (X / 10, Y / apples),
(X / 60, Y / oranges)}. Matching a T-Wrapper
price(D,X,Y) := p on D results in the set tuples
{(100, apples), (60, oranges)}.

Learning T-Wrappers

The general task of learning T-Wrappers can be stated
as follows: Let an arbitrary web page D be given that
contains information representable as a set of instances
E of a relation r, where each argument of an instance
is occurring in D. Let E+ C E be a set of examples.
The learning task is to find an T-Pattern p and corre-
sponding T-Wrapper t with the help of E+ such that
t(D, l~,p) C_ E. This leads to the definition Of three
different types of wrappers that are important for ma-
chine learning based IE tasks:

Definition 3 (sound, correct, perfect) Let E+ be
a set of example relation instances of a relation r for
a document D. Further let E D E+ be the set of all
relation instances of r from D. A learned T-Wrapper
T from E+ for r wrt.,D is

sound iff E+ C T.
correct lifT C E and T is sound.
perfect iff E = T. []

The method presented in this paper is separated into
three major steps: (1) automatic example pattern gen-
eration, (2) generalization of example patterns, (3)
tomatic construction of T- Wrappers.

Example Pattern Generation For semi-structured
documents it showed that the surrounding text parts
(anchors) of the information to be extracted are of ma-
jor interest. Thus the key idea of our approach is to
collect these anchors and to learn a general pattern for
the recognition of them. This involves the construc-
tion and matching of T-Patterns for each given exam-
ple in E+. For example, let E+ = {tv(18.30,News),
tv(20.15, Voyager} be an example set wrt. a web page
containing the daily TV-program. The pattern genera-
tion, according to a certain wrapper class, and match-
ing process results in a set of instantiated (grounded)
patterns with following general structure as shown in
Example 3. Whereas an Anchori is a list of matched
token sequences, e.g. [html(tag--b), html(tag--img,
src=star.gif)], and ArgJ denotes a pattern for the j-th
argument of the example instances.

Example 3 (General Structure of T-patterns)
Begin_Anchor and Argl and Middle_Anchor2 and Arg2
and ... Middle_Anchor~ and Argm and End_Anchor

Because we generate one example pattern for each given
relation instance, we already know the instantiations
of the argument extraction patterns. All we have to
do is to instantiate the extraction variables of the Arg
patterns with the appropriate tokenized arguments of
the example instances. This is the basic idea to find

the surrounding anchors. These sub-patterns have to
match because we know that the arguments of an ex-
ample relation instance is contained in the document.
To recognize the surrounding text parts of these argu-
ments special extraction patterns are defined. They will
extract the surrounding token sequences of the example
arguments which then will be used for the generaliza-
tion process.

Relation Instances and Example Patterns If we
talk about example instances and the generation of ex-
ample patterns some basic assumptions are to be taken:
Examples: Our methods work on positive examples ex-
clusively, which means the relation instances provided
have to be valid instances due to the actual web page;
the arguments have to appear as text on the page. Fur-
thermore the examples should all share a basic struc-
tural syntactic type. Otherwise the attempt to learn
a common syntactical representation makes no sense.
Left to right text appearance: The argument order of
the example instances represent the linear appearance
of the arguments in the document, e.g. argi must ap-
pear before argi+l in text. Shortest argument distance:
It is assumed that the text sequence between two rela-
tion arguments argi and argl + 1 occurring in a docu-
ment does not contain either argi or argi + 1. Minimal
match: Because of the shortest argument distance it fol-
lows, that we always have to find the minimal matched
sequence s of an example pattern p.

Definition 4 (Minimal Match)
Let r(argl,..., argn) be an example relation instance

wrt. a document D. Let p be a T-Pattern matching
argl, . . ., argn in D. Then s E £(p) is minimalmatch
of p iff s matches on D and there is no m E L(p) such
that m matches on D with [m[< [s[. []

Generating Example T-Patterns Assume we
want to learn a T- Wrapper that extracts all instances of
a relation r with arity n, which set of instances I is pre-
sented on a web page D. Let e := r(argl,...,argn) E
be an example instance of r shown on D. We proceed
as follows:

1. Tokenize each argument argi of the example instance
eCI.

2. Create an example pattern with n extraction vari-
ables Exi = ~any with i = 1...n, where n is the
number of arguments of e.

3. Instantiate the extraction variables Exi of the exam-
ple pattern with the according tokenized arguments
argi.

According to the wrapper class to use, insert extrac-
tion variables A,~ and special anchor patterns for
later detection of the anchors. The number and lo-
cation of these Am : pattern units depend on the
chosen wrapper class.

5. Match the created pattern p on D.

6. Calculate the minimal match of p.

.

17

After matching p on D the example pattern is fully in-
stantiated (grounded), that means, for every extraction
variable occurring in p exists a substitution <r calculated
by the matching procedure (Definition 2). Our main
goal is to find anchors for the further generalization
process of the example patterns. The use of extraction
variables for anchors allows us easily to obtain the rel-
evant anchors for each example by means of unification
processes (Definition 1). How these anchor token se-
quences in fact will look like depends on the anchor pat-
terns of the chosen wrapper class. We leave out the dis-
cussion of various wrapper classes (Thomas 1999a) and
give a brief remark remark on wrapper classes for the
generation of example patterns: (1) Restrictions on the
anchor patterns is highly important to keep the num-
ber of match alternatives low. (2) Restrictions on an-
chor patterns can be too restrictive and thus causes the
whole example pattern to fail (no sound wrapper). (3)
Considering the text sequences between two arguments
as one anchor leads often to huge anchors. Especially
when the distance between the arguments increases. (4)
Too Short anchors will lead to over-generalizations. In
general anchors vary, because the web page author is
not that disciplined to use always the same syntacti-
cal structures to represent semantically related infor-
mation in the same way or additional informations are
presented. Therefore the anchors are shifted within the
text. Normal term generalization on short anchors (e.g.
least general generalization (lgg) (Plotkin 1971))
lead to over-generMization. (5) What is needed is
wrapper class that enumerates as few matches as possi-
ble for a given example instance (performance), but still
ensures that all the given relation instances are matched
(soundness) and that performs well on finding anchors
(correctness).

Island-Wrapper We mainly focus on the Island
Wrapper class (Thomas 1999a) that is suited for a vari-
ety of extraction tasks, especially multi-slot extraction
where the text distance between extraction arguments
vary a lot. This class uses an iterative method to esti-
mate the maximal length (is/and radius) of the relevant
surrounding text parts (anchors) such that the gener-
ated pattern still returns the minimal match.

Example 4 (Island Wrapper for generation)
Begin I any
Argi [tokenized example argument i
Middle Righti = times(N, any) and any_but(Argi)
Anchori and Lefti = times[N, any)
End any

times(N,any) matches g arbitrary tokens; any_but(A)
matches every sequence except the token sequence A.

Thus we think of information islands by separating the
middle anchors, e.g. Anchor1, into a left pattern, build-
ing the right island part (right anchor) of the preceeding
extraction argument and a corresponding right pattern,
building the left island part (left anchor) of the suc-
ceeding argument. A middle pattern is then allowed
to match any sequence but the one matched by the

succeeding right anchor. The length of the sequences
matched by the left and right anchors is determined by
the estimated island radius. We use Island Wrappers
for the g~neration of example patterns (Example 4) and
the construction of learned T- Wrappers (Example 8).

Generalization of T-Patterns
After the calculation of the minimal grounded pattern
for each example, we finally have a set of example pat-
terns we can start to generalize. But instead of gener-
alizing the whole set of patterns we only generalize on
the matched anchors of these patterns. Thus we learn a
more general T-Pattern for the recognition of anchors.

Generalization of Feature Structures Our main
intention to learn a T- Wrapper from a set of grounded
example patterns is based on the assumption to learn by
generalizing matched text-sequences (token sequences).
So far we figured out that the important sub-sequences
of a match sequence are the anchor sequences. These
token sequences are a list of special feature structures.
Therefore to generalize anchors means to provide a
method to generalize feature structures.

Next we give a definition for the generalization of
acyclic and simple feature structures (tokens). This
generalization is closely related to the definition of anti-
unification (Knight 1989) or the calculation of the least
general generalization of terms (Plotkin 1971). The
reason why the standard generalization methods are
not applicable is the variable position and number of
feature-value pairs tokens can have. Furthermore, we
specify a special least general generalization for tokens,
the TD-Anti- Unification.

Definition 5 (TD-Anti-Unifieation) Let T1 and T2
be tokens with T1 := token(fa = vl,..., fn = vn) and
T2 :=token(f~ v~, . . ’ - ’= ,f:n-Vm) tokens. Lettl andt2
be the token types of T1 and T2 that is given by (type
tl) E {fl=vl,...,f~=vn} and (type-=t2) e {f~
V~ ~ , .

/ -- l.,::,_v,,}.
Let A1 = Ui~=, { (fi, vi)} and A2 = Uim=l{(f/, v~)} be the
feature-value sets of the tokens T1 and 772.
Further let F =- {(f, vx,v2)l(f, vl) e A1 A (f, v2) E A2}
be the set of triples, where f denotes the features T1 and
T2 have in common.
The T-Anti-Unification of tokens T1 and T2, written as
T1 n T2, is defined as follows:

T1 nT2 := token(fl=ul,... ,fa=uk)
with U~=l(f~,u~) {(f,u)l(f,v~,v2) e

u = anti-unify(v1, v2)}

The function anti-unify calculates the anti-unification
(generalization) of two terms according to the usual def-
inition as defined in (Knight 1989).
The TD-Anti-Unifieation of tokens T1 and T~, written
as T1 ~D T2, is defined as follows:

Iftl 5£ t2 then 771 rl D T2 := {T1,T2}

else T1 riD T2 :: {T1 I-I T2} []

18

The definition of TD-Anti-Unification is strongly mo-
tivated by the practical usage of T-Anti-Unification
for the generalization of anchor sequences. The T-
Anti- Unification as defined in Definition 5 of two to-
kens with different types results in a token with vari-
able token type. This generalized token is too general
for the subsequent matching process of relevant an-
chor sequences. For example, the anti-unification of
word(txt =’ hallo’) ~ html(tag = b) results in a vari-
able what corresponds to the token any. Keeping both
tokens as generalization and interpreting the result as
a disjunction of both, gives a least general generaliza-
tion which suits the process of constructing anchor pat-
terns from generalized anchor sequences much better
and does not lead to over-generalization.

Example 5 (T/TD-Anti-Unification)
html(tag=a, hre]=" a.html") ~ html(tag=img, src= " a.gi]")
= html(tag=X)
html(tag=img, src="dot,gif", width=lO0) R html(tag=img,
src=" circle.gif") -- html(tag=img, src=
word(tzt="Hallo") n int(val=999)= token(type=X)
word(txt= "Hallo ") ~ D int(val=999) = { word(txt=" Hallo"),
int(val=999)}

Anchor Matrices Assume the case that n grounded
example patterns are given. Each pattern contains the
same number of anchors. If these example patterns be-
long to the class of island wrappers they have exactly
(2 * r) anchors where r is the arity of the example re-
lation instances. Example 6 shows a general example
island-pattern set. Now we enumerate the anchors of
each example pattern from 1 to 2 * r and build anchor
sets AS/(multi sets) labeled i = 1 to 2,r, such that ASi
contains all anchors from the example set with anchor
number A) with k = 1 to n. Thus an anchor set ASi
consists of all token sequences that have been matched
by each anchor i of the example patterns 1 to n,

An anchor matrix MA$i according to a given anchor
set ASi is built by constructing every row of Mns~ from
a G ASi. Thus the tokens of a sequence in ASi can be
indexed as MAcs~, where r denotes the row and c the
column of the matrix MA~’. In Example 6, an exam-
ple anchor set and the corresponding anchor matrix is
shown¯

Example 6 (Anchor Matrices)
Example Pattern Set:

A1 EX,1 A ,r¯.. A2,r_1

A’I ~ EX~ A~ ... A’~,r_ 1 EX~ A~,~

Anchor Columns:
A{ A{,~

A? A’~,~

Anchor set ASi :
{[html(tag=a)], [word(txt=no), html(tag=b),

html(tag=h2)], [word(txt=yes), html(tag=i)jr}

Anchor matrix MAS~ :

html(tag = b)
word(txt = no) html(tag = b) html(tag = h2)
word(txt = yes) html(tag =

The generalization of anchor matrices is defined by gen-
eralizing each column of a matrix.Therefore generaliz-
ing an anchor matrix with n columns results in a set
with n generalized token sets. Example 7 shows the
generalized anchor matrix of matrix MAs~ from Exam-
ple 6.

Example 7 (Generalized Matrix)
html(ta9 = b)

word(txt = X) htrnl (tag = Y) html (tag =- h2)

Generating Generalized T-Patterns The basic
interpretation of a generalized anchor matrix is to in-
terpret each column to form a disjunctive token-pattern
and the conjunction of these disjunctive token-patterns
form the complete anchor pattern.

An important point to mention is the order of the
column tokens. A token tl of row i in column k and a
token t2 of row i in column k + 1 represents the fact that
the corresponding anchor pattern for row i matched
tl before t2. Thus the column indices state the order
of the matched tokens that has to be preserved and
construction of generalized T-Patterns.

Assume we generate the following pattern from the
example matrix given in Example 7: (html(tag=b)
word(txt=X)) and html(tag= Y) and html(tag=h2), ac-
cording to the initial interpretation. Furthermore re-
consider the anchors of matrix Mas~ shown in Example
6. Obviously the generated pattern does not match the
token sequence in row 1 of matrix MAs~ of Example
6. That means the chosen matrix interpretation and
following pattern construction processes clearly violate
the condition of a sound wrapper defined in Definition
3. If a sub-pattern of a conjunction of patterns fails
to match it follows that the whole pattern does not
match. The reason is that matched anchor sequences
can differ in its length. Therefore it is simply wrong to
generate a pattern that matches only the longest given
sequence. More clearly the matched anchor sequences
given in Example 6 have a length of 1, 3 and 2. But the
generated anchor pattern matches only token sequences
with a length of 3; three conjunctive combined patterns
each matching one token.

A solution to this problem is to remember the length
of the example anchors and to extend the pattern with
an additional operator. A special operator for an al-
ternative match possibility is introduced, whenever the
end of a example match sequence is reached. For ex-
ample: Starting with the disjunction of column 1, that
is (html(tag=b) or word(txt=X)). Because we know
that the first example anchor (row 1) has a length
of one, we know that any pattern that would match
only more than one token would not suffice this ex-
ample anymore. Therefore the conjunction and and
the alternative match operator ? (matching once or
never the following pattern) followed by the remain-

19

ing patterns for each column is added. Applying this
procedure recursively results in the generalized patten
(html(tag=b) or word(txt=X)) and ? (html(tag=Y)
and ? html(tag=h2)).

Automatic Construction of T-Wrappers
The fact that the learned anchor patterns match the
text sequences given as examples does not ensure a over-
all correct wrapper. Because one important point is still
left untouched: the patterns used for the extraction of
the relation arguments

Therefore using only learned anchor-patterns clearly
is not enough to construct T- Wrappers for IE. It is also
necessary to restrict the patterns for the extraction of
the relation arguments. For example, a sub-pattern like
anchor1 and (X = #any) and anchor2 is obviously
to general. Because it is possible that ~any1 matches
a sequence described by the anchor pattern anchor2.
The pattern #any would "ignore" the border of the
anchor. What is needed is a more restrictive pattern,
like not_in(anchor2), that matches any sequence not in
£(anchor2). It does not "ignore" the borders setup by
the anchor patterns. This leads to the definition of var-
ious wrapper classes as discussed in (Thomas 1999a).
this paper we state only the basic idea using the Island-
Wrapper class for automatic wrapper construction from
learned anchor patterns.

Example 8 (Island Wrapper for IE)
Begin Learned_Left1
Argi Argi = longest_not_in(Learned_Lefti or

I Learned-Righti)
Middle Learned_Righti and
Anchori shortest_not_in(Learned_Lefti+ x) and

Learned_Lefti+ 1
End Learned_Right~

shortest_notAn(P) and longest_not_in(P) matches the
shortest (longest) possible token sequence s if[s ~ £(

The construction of the final Island Wrapper is straight-
forward now. We just have to use the scheme of a
general island wrapper class for information extraction
presented in Example 8 and insert the learned anchor
patterns and extraction variable patterns.

Conclusion
We presented an inductive machine learning method
for the automatic construction of wrappers for multi-
slot extraction from semi-structured documents. T-
Wrappers are learned from relation instances only,
whereas no further interaction is needed. Current tests
showed that for some domains (e.g. computer hard-
ware) even the examples can be automatically derived
from knowledge databases. To generalize constructed
example patterns, the TD-Anti-Unification of tokens
and a matrix based algorithm for pattern generation is
defined. We tested our method on web pages with var-
ious structured information: HTML environments like

1Matches arbitrarily often any token; beginning with the
shortest possible match

tables, lists; non rigid structures like announcements.
Especially the Island Wrapper class performed very well
in experiments. Currently we are using the presented
techniques and learned T-Wrappers for developing an
intelligent information agent for the web. One advan-
tage of our approach is the small number and the form
of examples needed to learn wrappers. Furthermore it
has the ability to learn wrappers extracting information
tuples separated by large text units and supports the
infromation extraction from less rigid formatted doc-
uments. Though first tests are very promising, more
exhaustive testing is needed. Future work and research
on the PAC-Learnability and complexity investigations
of our approach must be done.

References
Asish, N., and Knoblock, C. 1997. Wrapper generation
for semi-structured information sources. In A CM SIG-
MOD. Workshop on Management of Semi-structured
Data.

Califf, M. E., and Mooney, R.J. 1997. Relational
Learning of Pattern-Match Rules for Information Ex-
traction. In Working Papers of the ACL-97 Workshop
in Natural Language Learning.

Knight, K. 1989. Unification: A multidiseiplinary
survey. ACM Computing Surveys 21(1):93-124.
Kushmerick, N. 1997. Wrapper Induction for Infor-
mation Extraction. Ph.D. Dissertation, University of
Washington.

Lloyd, J. 1987. Foundations of Logic Programming.
Springer-Verlag, 2 edition.

Plotkin, G. 1971. Automatic Methods of Inductive In-
ference. Ph.D. Dissertation, University of Edinburgh.

Shieber, S. M. 1986. An Introduction to Unification-
Based Approaches to Grammar. Leland Stanford Ju-
nior University: CSLI. CSLI Lecture Notes 4.

Smolka, G., and Treinen, R. 1994. Records for Logic
Programming. Journal of Logic Programming 18:229-
258.
Soderland, S. 1997. Learning to extract text-based
information from the World-Wide-Web. In 3rd Int.
Conference on Knowledge Discovery and Data Mining.
Stickel, M. 1985. Automated Deduction by Theory
Resolution. Journal of Automated Reasoning 1:333-
355.
Thomas, B. 1999a. Learning T-Wrappers. Technical
report, University of Koblenz. to appear.

Thomas, B. 1999b. Logic programs for intelligent web
search. In 11th International Symposium on Method-
ologies for Intelligent Systems - ISMIS. Springer, Lec-
ture Notes in Computer Sience. to appear.

Wiederhold, G. 1992. Mediators in the architecture of
future information systems. IEEE Computer 38-49.

2O

