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Abstract

Information in text form remains a greatly underuti-
lized resource in biomedical applications. We have
begun a research effort aimed at learning routines for
automatically mapping information from biomedical
text sources, such as MEDLINE, into structured rep-
resentations, such as knowledge bases. We describe
our application, two learning methods that we have
applied to this task, and our initial experiments in
learning such information-extraction routines. We
also present an approach to decreasing the cost of
learning information-extraction routines by learning
from "weakly" labeled training data.

Introduction
The MEDLINE database is a rich source of infor-
mation for the biomedical sciences, providing biblio-
graphic information and abstracts for more than nine
million articles. A fundamental limitation of MED-
LINE and similar sources, however, is that the infor-
mation they contain is not represented in structured
format, but instead in natural language text. The
goal of our research is to develop methods that can
inexpensively and accurately map information in sci-
entific text sources, such as MEDLINE, into a struc-
tured representation, such as a knowledge base or
a database. Toward this end, we are investigating
methods for automatically extracting key facts from
scientific texts.

There are three aspects of our work that we think
will be of particular interest to the machine learning
for information extraction community. First, our ap-
plication domain is novel and challenging. Second,
we investigate an approach to decreasing the cost
of learning information-extraction routines by learn-
ing from "weakly" labeled training data. Weakly la-
beled instances consist not of precisely marked up
documents, but instead consist of facts to be ex-
tracted along with documents that may assert the
facts. Third, we employ a learning method we have
recently developed that incorporates statistical pred-
icate invention into a relational learner.

The system we are developing is motivated by sev-
eral different types of tasks that we believe would
greatly benefit from the ability to extracted struc-
tured information from text:

¯ Database construction and updating. Our
system could be used to help construct and up-
date databases and knowledge bases by extracting
fields from text. We are currently working with a
team that is developing a knowledge base of protein
localization patterns (Boland, Markey, & Murphy
1996). We are using our system to assist in de-
veloping an ontology of localization patterns and
to populate the database with text-extracted facts
describing the localization of individual proteins.

¯ Summarization. Another promising application
of our system is to provide structured summaries
of what is known about particular biological ob-
jects. For example, we are working with scientists
who are studying the genetic basis of diseases by
identifying gene products that are found in differ-
ent concentrations in tissues in various states (e.g.
healthy vs. diseased). Frequently, these scientists
do time-consuming MEDLINE searches to deter-
mine if some candidate gene product is likely to be
related to the disease of interest. When performing
these searches, the scientists typically are trying to
answer such questions as: In what types of tissues,
cells and subcellular locations is the protein known
to be expressed? Is the protein known to be as-
sociated with any diseases? Is the protein known
to interact with any pharmacological agents? We
plan to partially automate the task of extracting
answers to these questions from text.

¯ Discovery. An especially compelling application
of our system is its potential application to scien-
tific discovery. The articles in MEDLINE describe
a vast web of relationships among the genes, pro-
teins, pathways, tissues and diseases of various sys-
tems and organisms of interest. Moreover, each ar-
ticle describes only a small piece of this web. The
work of Swanson and Smalheiser (1997) has demon-
strated that significant but previously unknown re-
lationships among entities (e.g., magnesium and
migraine headaches) can be discovered by automat-
ically eliciting this information from the literature.
Swanson’s algorithm detects relationships among
objects simply by considering the statistics of word
co-occurrences in article titles. We conjecture that
such relationships can be detected more accurately
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by our method of analyzing sentences in the ar-
ticle’s abstract or text. Moreover, whereas Swan-
son’s algorithm posits only that some relation holds
between a pair of objects, our system is designed
to state what the specific relation is.

The Information Extraction Task

In the applications we are addressing, we are pri-
marily interested in extracting instances of relations
among objects. In particular, we want to learn ex-
tractors for the following:1

¯ subcellular-localization(Protein,
Subcellular-Location): the instances of this relation
represent proteins and the subcellular structures in
which they are found.

¯ cell-localization(Protein. Cell-Type): the cell types
in which a given protein is found.

¯ tissue-localization(Protein, Tissue): the tissue types
in which a given protein is found.

¯ associated-diseases(Protein, Disease): the diseases
with which a given protein is known to have some
association.

¯ drug-interactions(Protein, Pharmacologic-Agent):
the pharmacologic agents with which a given pro-
tein is known to interact.

In our initial experiments we are focusing on the
subcellular-localization relation. As an example of the
IE task, Figure 1 shows several sentences and the in-
stances of the subcellular-localization relation that we
would like to extract from them.

Extraction via Text Classification

Our first approach to learning information extractors
uses a statistical text classification method. With-
out loss of generality, assume that we are addressing
the task of extracting instances of a binary relation,
r(X, Y). This approach assumes that for the variables
of the relation, X and Y, we are given semantic lexi-
cons, L(X) and L(Y), of the possible words that could
be used in instances of r. For example, the second
constant of each instance of the relation subcellular-
localization, described in the previous section, is in
the semantic class Subcellular-Structure. Our seman-
tic lexicon for this class consists of words like nucleus,
mitochondrion2, etc. Given such lexicons, the first
step in this approach is to identify the instances in
a document that could possibly express the relation.
In the work reported here, we make the assumption
that these instances consist of individual sentences.
Thus, we can frame the information-extraction task
as one of sentence classification. We extract a relation

1We use the following notation to describe relations:
constants, such as the names of specific relations and the
objects they characterize, start with lowercase letters; the
names of variables begin with uppercase letters.

SOur lexicons also include adjectives and the plural
forms of nouns.

instance r(x, y) from the sentence if (i) the sentence
contains a word x E L(X) and a word y e L(Y), 
(ii) the sentence is classified as a positive instance 
a statistical model. Otherwise, we consider the sen-
tence to be a negative instance and we do not extract
anything from it. We can learn the statistical model
used for classification from labeled positive and neg-
ative instances (i.e. sentences that describe instances
of the relation, and sentences that do not).

As stated above, we make the assumption that in-
stances consist of individual sentences. It would be
possible, however, to define instances to be larger
chunks of text (e.g. paragraphs) or smaller ones (e.g.
sentence clauses) instead. One limitation of this ap-
proach is that it forces us to assign a single class label
to each instance. This limitation provides an argu-
ment for setting up the task so that instances are
relatively small.

In order to learn models for classifying sentences,
we use a statistical text-classification method. Specif-
ically, we use a Naive Bayes classifier with a bag-
of-words representation. This approach involves
representing each document (i.e. sentence) as 
bag of words. Given a document, d of n words
(wl, w2,..., w,), Naive Bayes estimates the probabil-
ity that the document belongs to each possible class
cj E C as follows:

Pr(cjld) = Pr(cj) Pr(dlej) Pr(cj) I-Ii~l Pr(wileJ)
Pr(d) ~ Pr(d)

The prior probability of the document, Pr(d) does
not need to be estimated directly. Instead we can get
the denominator by normalizing over all of the classes.
The conditional probability, Pr (wi I c j), of seeing word
wi given class cj is estimated from the training data
using a Laplace estimate.

To evaluate our approach, we assembled a cor-
pus of abstracts from the MEDLINE database. This
corpus, consisting of 2,889 abstracts, was collected
by querying on the names of six proteins and then
downloading the first 500 articles returned for each
query protein, discarding entries that did not in-
clude an abstract. We selected the six proteins
for their diversity and for their relevance to the re-
search of one of our collaborators. We created a
labeled data set for our IE experiments as follows.
A collaborator (Johan Kumlien), who is trained 
medicine and clinical chemistry, hand-annotated each
abstract in the corpus with instances of the tar-
get relation subcellular-localization. To determine if
an abstract should be annotated with a given in-
stance, subcellular-localization(x, y), the abstract had
to clearly indicate that protein x is found in location
y. This labeling process resulted in a total of thirty-
three instances of the subcellular-localization relation.
Individual instances were found in from one to thirty
different abstracts. For example, the fact that cal-
cium channels are found in the sarcoplasmic reticu-
lum was indicated in eight different abstracts.

The goal of the information-extraction task is to
correctly identify the instances of the target relation
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Immunoprecipitation of biotinylated type XIII collagen from
surface-labeled HT-1080 cells, subcellular fractionation, and im-
munofluorescence staining were used to demonstrate that type XIII
collagen molecules are indeed located in the plasma membranes of
these cells.

HSP47 is a collagen-bindlng stress protein and is thought to be
a collagen-specific molecular chaperone, which plays a pivotal role
during the biosynthesis and secretion of collagen molecules in the
endoplasmic reticulum.

su bcellular-localization (collagen,
plasma-membranes)

su bce ll u lar-localization (collagen,
endoplasmic-reticulum)

Figure 1: An illustration of the IE task. On the left are sentences from MEDLINE abstracts. On the right are instances
of the subceHular-Iocalization relation that we might extract from these sentences.

that are represented in the corpus, without predict-
ing spurious instances. Furthermore, although each
instance of the target relation, such as subcellular-
localization(calcium-channels, sarcoplasmic-reticulum),
may be represented multiple times in the corpus, we
consider the information-extraction method to be cor-
rect as long it extracts this instance from one of its
occurrences. We estimate the accuracy of our learned
sentence classifiers using leave-one-out cross valida-
tion. Thus, for every instance in the data set, we in-
duce a classifier using the other instances as training
data, and then treat the held-out instance as a test
case. We compare our learned information extractors
against a baseline method that we refer to as the sen-
tence co-occurrence predictor. This method predicts
that a relation holds if a protein and a sub-cellular
location occur in the same sentence.

We consider using our learned Naive Bayes models
in two ways. In the first method, we use them as
classifiers: given an instance, the model either clas-
sifies it as positive and returns an extracted relation
instance, or the model classifies it as negative and
extracts nothing. In the second method, the model
returns its estimated posterior probability that the
instance is positive. With this method, we do not
strictly accept or reject sentences.

For each method, we rank its predictions by a con-
fidence measure. For a given relation instance, r(x, y),
we first collect the set of sentences that would assert
this relation if classified into the positive class (i.e.
those sentences that contain both the term x and the
term y). For the sentence co-occurrence predictor,
we rank a predicted relation instance by the size of
this set. When we use the Naive Bayes models as
classifiers, we rank a predicted relation instance by
the number of sentences in this set that are classified
as belonging to the positive class. When we use the
probabilities produced by Naive Bayes, we estimate
the posterior probability that each sentence is in the
positive class and combine the class probabilities us-
ing the noisy or function (Pearl 1988):

N
confidence = 1 - H [1 - Pr(c = pos [sk)].

k

Here, Pr(c = pos [sk) is the probability estimated by
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Figure 2: Precision vs. recall for the co-occurrence pre-
dictors and the Naive Bayes model.

Naive Bayes for the kth element of our set of sen-
tences. This combination function assumes that each
sentence in the set provides independent evidence for
the truth of the asserted relation.

Figure 2 plots precision versus recall for the three
methods on the task of extracting instances of the
subcellular-localization relation. The figure illustrates
several interesting results. The most significant re-
sult is that both versions of the Naive Bayes predic-
tor generally achieve higher levels of precision than
the sentence co-occurrence predictor. This result in-
dicates that the learning algorithm has captured in its
models some of the statistical regularities that arise in
how authors describe the subcellular localization of a
protein. None of the methods is able to achieve 100%
recall since some positive relation instances are not
represented by individual sentences. In the limit, the
recall of the Naive Bayes classifiers is not as high as it
is for the baseline predictor because the former incor-
rectly classifies as negative some sentences represent-
ing positive instances. Since the Naive Bayes mod-
els with noisy-or do not reject any sentences in this
way, their recall is the same as the baseline method.
Their precision is lower than the Naive Bayes classi-
tier, however, indicating that even when Naive Bayes
makes accurate classifications, it often does not es-
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timate probabilities well. An interesting possibility
would be to combine these predictors to get the high
precision of the Naive Bayes classifiers along with the
high recall of the Naive Bayes moles using noisy-or.
Provost and Fawcett (1998) have developed a method
especially well suited to this type of combination.

Exploiting Existing Databases for

Training Data

Although machine learning offers a promising alterna-
tive to hand-coding information extraction routines,
providing labeled training data to the learner is still
quite time-consuming and tedious. In fact, labeling
the corpus used in the previous section required ap-
proximately 35 hours of an expert’s time. In this sec-
tion, we present an approach to learning information
extractors that relies on existing databases to provide
something akin to labeled training instances.

Our approach is motivated by the observation that,
for many IE tasks, there are existing information
sources (knowledge bases, databases, or even simple
lists or tables) that can be coupled with documents
to provide what we term "weakly" labeled training
examples. We call this form of training data weakly
labeled because each instance consists not of a pre-
cisely marked document, but instead it consists of
a fact to be extracted along with a document that
may assert the fact. To make this concept more con-
crete, consider the Yeast Protein Database (YPD)
(Hodges, Payne, ~ Garrels 1998), which includes 
subcellular localization field for many proteins. More-
over, in some cases the entry for this field has a ref-
erence (and a hyperlink to the MEDLINE entry for
the reference) to the article that established the sub-
cellular localization fact. Thus, each of these entries
along with its reference could be used as a weakly la-
beled instance for learning our subcerlular-localization
information extractors.

In this section we evaluate the utility of learning
from weakly labeled training instances. From the
YPD Web site, we collected 1,213 instances of the
subcellular-localization relation that are asserted in the
YPD database, and from MEDLINE we collected the
abstracts from 924 articles that are pointed to by
these entries in YPD. For many of the relation in-
stances, the associated abstracts do not say anything
about the subcellular localization of the reference pro-
tein, and thus they are not helpful to us. However,
if we select the relation instances for which an asso-
ciated abstract contains a sentence mentioning both
the protein and a subcellular location, then we get
336 relation instances described in 633 sentences.

As in the previous section, we treat individual sen-
tences as instances to be processed by a Naive Bayes
text classifier. Moreover, we make the assumption
that every one of the 633 sentences mentioned above
represents a positive training example for our text
classifier. In other words, we assume that if we
know that relation subcellular-localization(x, y) holds,
then any sentence in the abstract(s) associated with
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Figure 3: Precision vs. recall for the Naive Bayes model
trained on the YPD data set.

subcellular-localization(x, y) that references both x and
y is effectively stating that x is located in y. Of course
this assumption is not always valid in practice, and
we are currently investigating approaches that allow
us to relax it. We take the remaining sentences in the
YPD corpus as negative training examples.

The hypothesis that we consider in this section
is that it is possible to learn accurate information-
extraction routines using weakly labeled training
data, such as that we gathered from YPD. To test
this hypothesis we train a Naive Bayes model using
the YPD data as a training set, and then we evalu-
ate it using our hand-labeled corpus as a test set. We
train our statistical text classifier in the same manner
as described in the previous section.

Figure 3 shows the precision vs. recall curves for
the YPD-trained model and for the baseline sentence
co-occurrence predictor described in the previous sec-
tion. From this figure we can see that the curve for
the Naive Bayes model learned from the YPD data is
comparable to the curve for the models learned from
the hand-labeled data. Whereas the Naive Bayes clas-
sifiers from the previous section achieved 69% preci-
sion at 30% recall, the Naive Bayes classifier trained
on the YPD data reaches 77% precision at 30% recall.
Moreover, the YPD model achieves better precision
at comparable levels of recall than the sentence co-
occurrence classifier.

These two results support our hypothesis. It should
be emphasized that the result of this experiment was
not a foregone conclusion. Although the YPD data
set contains many more positive instances than our
hand-labeled data set, it represents a very different
distribution than our test set. The YPD data set has
a particular focus on the localization of yeast proteins.
The test set, in contrast does not concentrate on pro-
tein localization and barely mentions yeast. We argue
that the result of this experiment is very significant
result because it suggests that effective information-
extraction routines can be learned without an expen-
sire hand-coding or hand-labeling process.
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Extraction via Relational Learning
The primary limitation of the statistical classification
approach to IE presented in the preceding sections
is that it does not represent the linguistic structure
of the text being analyzed. In this section, we de-
scribe an approach that involves parsing sentences,
and learning relational rules in terms of these parses.
Our approach uses a sentence analyzer called Sun-
dance (Riloff 1998) that assigns part-of-speech tags
to words, and then builds a shallow parse tree that
segments sentences into clauses and noun, verb, or
prepositional phrases. Given these parses, we learn
IE rules using a relational learning algorithm that is
similar to FOIL (Quinlan 1990).

The objective of the learning algorithm is to
learn a definition for the predicate: localization-
sentence(Sentence-ID, Phrase-ID, Phrase-ID). Each in-
stance of this relation consists of (i) an identifier
corresponding to the sentence represented by the in-
stance, (ii) an identifier representing the phrase in the
sentence that contains an entry in the protein lexicon,
and (iii) and identifier representing the phrase in the
sentence that contains an entry in the subcellular lo-
cation lexicon. Thus, the learning task is to recognize
pairs of phrases that correspond to positive instances
of the target relation. The models learned by the
relational learner consist of logical rules constructed
from the following background relations:

¯ phrase-type(Phrase-ID, Phrase-Type): This relation
allows a particular phrase to be characterized as a
noun phrase, verb phrase, or prepositional phrase.

¯ next-phrase(Phrase-ID, Phrase-lD): This relation
specifies the order of phrases in a sentence. Each
instance of the relation indicates the successor of
one particular phrase.

* constituent-phrase(Phrase-ID, Phrase-ID): This re-
lation indicates cases in which one phrase is a
constituent of another phrase (e.g., prepositional
phrases usually have constituent noun phrases).

¯ subject-verb(Phrase-ID, Phrase-ID),
verb-direct-objeet(Phrase-ID,Phrase-ID): These re-
lations enable the learner to link subject noun
phrases to their corresponding verb phrases, and
verb phrases to their direct object phrases.

¯ same-clause(Phrase-ID, Phrase-ID): This relation
links phrases that occur in the same sentence
clause.

This set of background relations enables the learner
to characterize the relations among phrases in sen-
tences. Our learner also has the ability to describe
the words occurring in sentences and phrases by us-
ing a statistical predicate-invention method (Slattery

Craven 1998). This predicate-invention method
devises Naive Bayes models on the fly to character-
ize phrases or sentences as a whole, and the learner
considers using these Naive Bayes models as Boolean
predicates in rules.

Using a procedure similar to relational pathfinding
(Richards ~ Mooney 1992), our learning algorithm
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Figure 4: Precision vs. recall for the relational classifier
trained on the YPD data set.

initializes each rule by trying to find the combination
of next-phrase, constituent-phrase, subject-verb, verb-
direct-object, and same-clause literals that link the
phrases of the greatest number of uncovered positive
instances. After the rule is initialized with these liter-
als, the learning algorithm uses a hill-climbing search
to add additional literals.

To evaluate our relational IE approach, we learned
a set of rules using the YPD data set as a training
set, and tested the rules on the hand-labeled data
set. Our relational method learned a total of 26 rules
covering the positive instances in the training set.

Figure 4 shows the precision vs. recall curve for the
learned relational rules. The confidence measure for
a given example is the estimated accuracy of the first
rule that the example satisfies. For comparison, Fig-
ure 4 also shows the precision vs. recall curves for the
YPD-trained Naive Bayes classifier discussed in the
previous section, and for the sentence co-occurrence
baseline. As this figure illustrates, although the re-
call of the relational rule set is rather low (21%), the
precision is quite high (92%). In fact, this precision
value is considerably higher than the precision of the
Naive Bayes classifier at the corresponding level of
recall. This result indicates the value of represent-
ing grammatical structure when learning information
extractors. We believe that the recall level of our re-
lational learner can be improved by tuning the set of
background relations it employs, and we are investi-
gating this issue in our current research.

Discussion and Conclusions
One may ask whether the learned classifiers we de-
scribed in this paper are accurate enough to be of
use. We argue that, for many tasks, they are. As dis-
cussed in Section , two of the motivating applications
for our work are (i) providing structured summaries
of particular biological objects, and (ii) supporting
discovery by eliciting connections among biological
objects. As demonstrated by the work of Swanson et
al. (1997), even word co-occurrence predictors can 
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quite useful for these tasks. Therefore, any method
that can provide a boost in predictive power over
these baselines is of practical value. For tasks such as
automatic genome annotation, where the predictions
made by the information extractors would be put di-
rectly into a database, the standard for accuracy is
higher. For this type of task, we believe that extrac-
tion routines like those described in this paper can
be of value either by (i) making only high-confidence
predictions, thereby sacrificing recall for precision, or
(ii) operating in a semi-automated mode in which 
person reviews (some) of the predictions made by the
information extractors.

Perhaps the most significant contribution of our
work is the approach to using "weakly" labeled train-
ing data. Most previous work in learning information
extractors has relied on training examples consisting
of documents precisely marked with the facts that
should be extracted along with their locations within
the document. Our approach involves (i) identifying
existing databases that contain instances of the tar-
get relation, (ii) associating these instances with doc-
uments so that they may be used as training data,
(iii) dividing the documents into training instances
and weakly labeling these instances (e.g. by assuming
that all sentences that mention a protein and a sub-
cellular location represent instances of the subcellular-
localization relation). Currently, we are investigating
objective functions for learning that take into account
the nature of the weakly labeled instances. We be-
lieve that this approach has great promise because it
vastly reduces the time and effort involved in assem-
bling training sets.

Several other research groups have addressed the
task of information extraction from biomedical texts.
Our research differs considerably, however, in the
type of knowledge we are trying to extract and in
our approach to the problem. A number of groups
have developed systems for extracting keywords from
text sources. Andrade and Valencia (1997) describe 
method for extracting keywords characterizing func-
tional characteristics of protein families. In similar
work, Ohta et al. (1997) extract keywords using 
information-theoretic measure to identify those words
that carry the most information about a given docu-
ment. Weeber and Vos (1998) have developed a sys-
tem for extracting information about adverse drug re-
actions from medical abstracts. Their system isolates
words that occur near the phrase "side effect" and
then uses statistical techniques to identify words that
possibly describe adverse drug reactions. Fukuda et
al. (1998) consider the task of recognizing protein
names in biological articles. Their system uses both
orthographic and part-of-speech features to recognize
and extract protein names. The prior research most
similar to ours is that of Leek (1997), who investi-
gated using hidden Markov models (HMMs) to ex-
tract facts from text fields a biomedical database.
The task addressed by Leek, like our task, involved
extracting instances of a binary relation pertaining to

location. His location relation, however, referred to
the positions of genes on chromosomes. The principal
difference between Leek’s approach and our approach
is that his HMMs involved a fair amount of domain-
specific human engineering.

In summary, we believe that the work presented
herein represents a significant step toward making
textual sources of biological knowledge as accessible
and interoperable as structured databases.
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