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Abstract

The progressive negotiation model is one approach
for organizing multiagent negotiations among
autonomous utility-maximizing agents. The model
specifies how agents are divided into a number
of subgroups, and how sub-coalitions emerge after
sub-negotiations take place among agents in each
of these subgroups progressively.  These sub-
coalitions will then participate in the subsequent
sub-negotiation until a grand coalition involving all
agents is formed. While the effect of subgroup size
on the solution quality (in terms of efficiency and
Pareto optimality) has been investigated, little is
known on how other design settings in progressive
negotiations would affect the solution in terms of
time and individual utilities. This paper reports on
work we have done to analyze formally the relation-
ships between the order of the sub-negotiations (i.e.
participation points) and agents’ self-utilities, and
between the subgroup size and negotiation time.

Introduction

One major concern in distributed artificial intelligence
(DAI) is how to build effective mechanisms to fur-
ther coordination among autonomous utility-maximizing
agents. The problem is non-trivial because it demands
a practical scheme to exchange and to process inform-
ation at the right abstraction level. Moreover, it must
provide these inherently non-cooperative agents with the
incentive of coordinating with one another.

We are concerned with the coordination of utility-
maximizing agents that have conflicting goals, and we
analyze how to use negotiation to further coordination.
A model of progressive multiagent negotiation has been
proposed [Lee, 1996a; 1996b], which allows agents to
conduct negotiation by exchanging minimal information,
and provides them with a risk function whereby agents
could evaluate their relative losses of expected-utility due
to concession with that as a result of conflict. Further-
more, the model has some proven desirable properties
such as finiteness, and sufficient conditions for deadlock
avoidance. Negotiations proceed by dividing agents into

*Copyright © 1999, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.
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a number of subgroups which conduct sub-negotiations
progressively. A sub-coalition, which emerges after each
sub-negotiation, will then participate in the subsequent
sub-negotiation. This process continues until a grand
coalition is formed.

To design a progressive negotiation, the size of sub-
groups and the order (participation points) of the sub-
negotiations have to be specified; but different paramet-
ers lead to different negotiation processes, resulting in
different solutions in terms of utility and negotiation
time. This paper investigates the impact of these para-
meters on solutions.

Related Work in DAI

Research into multiagent negotiation has many different
strands in DAL One approach explores how to model
computationally human negotiation strategies [Sycara,
1988) or how to build sophisticated distributed search
techniques for artificial systems inspired by human nego-
tiations [Durfee and Montgomery, 1991; Lander and
Lesser, 1993]. It aims to find ways to understand and
improve (usually cooperative) agents’ coordination abil-
ities. Another approach attempts to predict the prop-
erties of negotiations under formal theoretical frame-
works such as game-theoretical tools to study how agents
should react in a given specific interaction [Zeuthen,
1930; Rosenschein and Zlotkin, 1994]. A third approach
in negotiation is to model the negotiation processes com-
putationally, and then to analyze the impact of the nego-
tiation processes on the solution quality [Wooldridge et
al., 1996]. Another trend is to use evolutionary tech-
niques [Matos et al., 1998] or learning [Zeng and Sycara,
1997] to refine the negotiation processes, and to use vari-
ous algorithms to form coalitions [Shehory and Kraus,
1998; Zlotkin and Rosenschein, 1994].

This paper is concerned with the coordination of
utility-maximizing agents. Since agents are self-
interested, any model using the social consensus meta-
phor like voting or social laws [Shoham and Tennen-
holtz, 1995] can be unstable!. Agents are also thought
to be rationally bounded, thus the use of some prescript-
ive solutions (e.g. Nash solution) could be too expensive

1Nonetheless, see [Tennenholtz, 1998].



in the multiagent case [Binmore, 1992]. Therefore, the
third approach is adopted. Unlike many coalition form-
ation models where characteristic functions of all pos-
sible coalitions are assumed to be common knowledge
and utility is divided among agents using Shapley value
[Zlotkin and Rosenschein, 1993], our model is basically
descriptive and analytical. Agents does not know about
the value of any coalition, and a coalition is only formed
when agents have agreed of how their tasks (hence util-
ity) should be re-distributed (subsection ).

Much as Shehory and Kraus distinguish a social level
and a strategy level in their model [Shehory and Kraus,
1996] where in social level agent designers agree in
advance the negotiation designs, we also focus on the
strategy level since we aim to uncover the trends between
certain negotiation designs and the solution quality.
Since designers are also self-interested entities (otherwise
their agents would not be), finding a consensus among
them also involves negotiation. Our work therefore have
implications to this meta-level negotiation (section ).

To reduce complexity for rationally bounded agents,
- Sandholm and Lesser defines their characteristic func-
tion as a function of the computational time [Sandholm
and Lesser, 1997]. Our model extends monotonic nego-
tiations [Rosenschein and Zlotkin, 1994] and demands
progressive negotiations: negotiations always converge
provided that agents can compute at least one proposal
at a time. Ketchpel also proposes a similar progressive
coalition formation model where 2-agent coalitions are
formed by mutual selection [Ketchpel, 1994]; whilst ours
generalize the process to n : n > 2 agents. We also
report the empirical results of different orders of coali-
tion formations (section ).

A Model of MultiAgent Negotiation

The model PEA is a utility-driven iterative process of
proposal announcement, evaluation, and adjustment.
When every agent is given a set of tasks to achieve, they
negotiate at discrete times on how their tasks can be
re-distributed so that everyone benefits. At each time
instant, every agent chooses and announces a proposal of
tasks re-distribution from their negotiation sets to other
agents, where the proposal is a tentative proposition of
how tasks are distributed among them. The utility of
any proposal to an agent is defined by the difference in
cost between achieving its original tasks and the tasks
according to the proposed new task re-distribution.

When agents receive proposals announced by other
agents, they are in a particular negotiation state defined
by the set of proposals announced. An agent’s negoti-
ation set is defined as a set of all possible known pro-
posals organized in monotonic decreasing order of the
agent’s self-utilities. If many proposals have the same
self-utility to the agent, they are assumed to be organized
randomly among themselves. During negotiation, pro-
posals are chosen on the basis that they would provide
agents with the greatest ezpected-utility at the time. If
there is more than one such proposal, agents select one
randomly.
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It is worth noting that the model defines and assumes
the existence of a negotiation set; nevertheless, when
agents negotiate based on this model, they are not
required to pre-enumerate a complete set. As it will
become clear later, the convergence of the model using
the monotonic negotiation protocol () only requires
agents to be able to compute proposals in monotonic
decreasing order of their self-utilities during the course
of negotiation, even if agents can only produce one pro-
posal at every time instant.

To encourage convergence and avoid deadlock?, the
monotonic negotiation protocol that specifies the set of
proposals eligible for announcement at any time and
state is used. If there are more than one eligible proposal,
then agents use their negotiation strategies to determine
the actual proposal for announcement. When a nego-
tiation state occurs where all proposals are identical in
terms of utility distribution, the negotiation ends with
any proposal in it as the solution.

Monotonic Negotiation Protocol

It is found that if at any time at least one agent will
make a concession by either accepting another agent’s
proposal or conceding a new (never announced) proposal
demanding no more utility to itself than any previous
proposal, deadlock will never occur [Lee, 1996b]. The
monotonic negotiation protocol (MNP) is thus defined
to specify the eligibility of proposals for announcement
at any time and state. It also determines which agents
should make the next concession by means of a mul-
tiagent risk function extended based on Zeuthen’s risk
function [Zeuthen, 1930]:

n
Ri=[]rs
=1

i
1 if Ui(P; ) = Ui(Pe)
1 if Ui(P; ) < Ui(Pje)
1 if V(Pit) > V(Pry)

Tij = where 1<k <n, k#1

if P;; € NS;; and

Ui(Pi,)=Ui(Pj,1)
Ui(Pi,1)=-Ui(Pc 3
Pjs # Pjt-1.

The semantics of the four conditional equations, respect-
ively, corresponds to four axioms: (1) individual ration-
ality (prefer any proposal to conflict); (2) utility max-
imizing; (3) local-joint efficiency assumption (always

2Deadlock occurs when two identical negotiation states
appear. The negotiation will terminate and agents must then
pursue their original tasks individually.

8P, is the proposal of agent i at any time ¢, while P,
is called the conflict proposal (i.e. agents have no deal and
pursue their individual tasks.). Furthermore, U;(P;,) refers
to the utility of P, i.e. the utility of proposal P;; to agent
7 where ¢ and j are not necessarily distinct. Let n be the
number of agents, V(Pi:) = (vi,...,vs) refers to the utility
vector of P;; where U;j(Pi,) = vj. For any two vectors V, V',
V>V'ifvie Vvl € V',vi > vl,Vi € (1,n). NS, is the
negotiation set of agent i at time t.



prefers the most efficient proposal); (4) Zeuthen’s risk
formula. This risk function allows agents to determ-
. ine, independently but coherently, their risk limits by
comparing their overall relative losses of expected-utility
due to concession with that resulting from conflict. The
lower the limit, the greater loss an agent will suffer
should a conflict occur. If agents are assumed to be
rational in such a way that they will always act to max-
imize their expected-utility, those agents which have the
minimum risk limit should make the next concession.
On the other hand, if an agent does not have the min-
imum risk limit, it may either accept other’s proposal (if
the offered utility is at least as great as that of its own
proposal) or insist on its own proposal.

Progressive Negotiation

Progressive PIFA replaces the grand negotiation by a
number of sub-negotiations in a number of stages. Agents
are first divided into a number of subgroups where each
agent will participate in only one subgroup. These sub-
groups will perform sub-negotiation progressively; on
completion the sub-coalition formed will then particip-
ate in the sub-negotiation at the subsequent stage as if
it were an individual agent called the sc-agent. The util-
ity obtained by an sc-agent from a sub-negotiation will
be proportionally distributed to every individual agent
(and sc-agent) in the subgroup from which the sc-agent
" is formed, and the distribution is based on the utility dis-
tribution agreed during its formation [Lee, 1996b]. The
progressive negotiation ends with a grand solution when
a grand coalition containing all the agents is formed*.

In this paper, for simplicity, we confine our analysis to
a specific class of progressive negotiations where only one
sub-negotiation occurs at any stage. Moreover, every
sub-coalition formed is assumed to participate in the
sub-negotiation at the next stage.

Let us explain how a progressive negotiation proceeds
by a simple example. Suppose in a progressive negoti-
ation agents ¢, j, and k are divided into two subgroups
Al = {i,5} and A? = {a!,k} where a! is the sc-agent
formed when the sub-negotiation of A! is finished. This
progressive negotiation has two stages and each sub-
group has size 2. Let the solution of the two sub-
negotiations be P41 and Pj2, respectively. After the
first sub-negotiation, the utility allocated to 7 will be
U;(Pa1). After the second sub-negotiation, #’s utility
share from P42 will then be

Ui(Pa1)
ZzEAl Uz (PAl)a
and i’s aggregate utility is therefore U;(Pa1) + Ui(Pa2).

U,'(PAz) = Uax(PAz) X

Analysis
To design a progressive negotiation, three factors are
required to determine: (1) the subgroup size, i.e. the
number of agents in sub-negotiations; (2) how these sub-
groups are organized into successive stages; and (3) how

1Formal specifications can be found in [Lee, 1996a).
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those agents are allocated to these subgroups, i.e. par-
ticipation points. This paper investigates the impact of
different participation points and subgroup sizes.

The Effect of Participation Points

According to the model, the aggregate utility that any
agent will obtain in a progressive negotiation is the
sum of all the utility obtained in each sub-negotiation.
If any agent ¢, instead of randomly allocated to sub-
negotiation, is fixedly allocated to a sub-negotiation at
an early stage (i.e. lower participation point), ¢ will par-
ticipate in more sub-negotiations than if ¢ were allocated
to a sub-negotiation at a later stage (i.e. higher parti-
cipation point). As a result, the hypothesis is that

Hypothesis 1 The average aggregate utility to an agent
decreases with its participation point.

The Effect of SubGroup Sizes

Before we can analyze the effect of subgroup size on nego-
tiation cycle (i.e. the number of iterations required for a
negotiation, which is used to estimate the actual negots-
ation time), we need first to establish the fact that the
MNP negotiation will converge. Let us call negotiation
state at any time the pre-solution state if a solution will
be reached at the next time instant.

Theorem 1 MNP negotiations will always terminate
with a solution in finite time if Vi, j € A, NS;; = NS;j1°.

Proof: (Sketch) Let

where S is the negotiation state (i.e. set of announced
proposals), A is the set of agents, P is a proposal and
U(P) is the utility of a proposal. First we show that
G is the minimal set of pre-solution negotiation states
because in each member at least one proposal is efficient.
It is also easy to see that & is non-empty if Vi, j € A,
NS;,1 = NS; 1.

Since the number of agents is finite, and so are their
negotiation sets, and MNP demands that at least one
agent must announce a new proposal at every time
instant, therefore it will only take finite time for a mem-
ber in & to be announced, after which the negotiation
will terminate with a solution.

Theorem 2 Provided that (i) the MNP protocol is
the only constraint; (i1) only one proposal is differ-
ent between any two consecutive negotiation states; (iii)
Vi, j € A,NS;1 = NS;1 and n > 2, then

tmax =1 I NSi,l | -2
where tmax ts the mazimum negotiation time.

5It means that all agents have identical negotiation sets.
Detailed proofs of theorems in this paper can be found in
[Lee, 1996a]
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Figure 1: Self-utility as a function of participation point

Proof. (Sketch) The result can be obtained from the
following three cases: (1) the maximum number of time
instants required for (n—1) agents to announce proposals
with the minimum utility — the utility they would have
gained had they not engaged in any negotiation; (2) the
maximum number of time instants that the last agent to
_ produce a proposal with utility just above the minimum;
and (3) the maximum number of time instants that dur-
ing the process of (1) and (2) these agents could accept
others’ proposal but without resulting in a solution.

Since a pre-solution state cannot be reached unless
agents’ self-utility levels have been reduced through con-
cession, which involves discarding a-certain number of
proposals, whilst the number of concessions required for
reaching those self-utility levels depends on the sizes of
the negotiation sets which in turn increases with the sub-
group size [Lee, 1996a). Thus,

Hypothesis 2 The average negotiation time increases
with subgroup size m.

Empirical Results
Methodology

Four runs of simulation experiments were carried out
based on the reformulated multiagent Tileworld domain
[Pollack and Ringuette, 1990]. In each run, ten agents
(initially situated at the four corners randomly) are given
a set of 5-10 random holes to visit in a 2-dimensional 10
by 10 grid-cells. The only cost to agents is the traveling
cost that is proportional with the number of steps agents
move. Agents negotiate with one another to re-distribute
* their holes so as to reduce their traveling bills. The util-
ity is defined as the the cost difference between the new
set of holes (after re-distribution) and the original set of
holes.

Participation Points

Here, we assume all sub-negotiations have size 2. In
each run, 10000 simulations where participation points
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Figure 2: Negotiation cycle as a function of subgroup size

are randomly assigned to agents have been carried out®.
Then we calculated the average and variance of the
aggregate utility of each agent at a specific participation
point. It is found that whichever agent is chosen as the
subject of investigation, the result presented a consist-
ent trend where average aggregate utility decreases with
participation points, as Figure 1 shows. Furthermore,
the variance of each aggregate utilities are also included
in the graph, whose modest intervals suggest that the
trends are likely to hold irrespective of other random
factors such as how agents are allocated to subgroups.
Hence hypothesis 1 is verified.

Subgroup Sizes

Here, a progressive negotiation of subgroup size m means
as many sub-negotiations as possible has size m’. Each
run has nine sets of 1000 simulations where each set cor-
responds to a particular subgroup size. In each set agents
are allocated to subgroups randomly.

The average and variance of the number of negoti-
ation cycles are then measured. Figure 2 shows that the
average number of negotiation time (measured by the
number of negotiation cycles) increases with subgroup
sizes, which supports the hypothesis. Similarly, the rel-
ative small variance in number of cycles with respect to
the mean indicates the trend is unlikely to be affected by
other random factors. Note also that the actual number

8To perform an exhaustive participation point assignment
is an extremely expensive process. For n agents and size
m sub-groups, it involves C};, different allocations. In fact,
we did perform some exhaustive simulations on runs with
smaller number of agents, and compared them with results
from random simulations. It is found that both of the results
have consistent trends.

"For example, for a negotiation involving 10 agents has
subgroup size 3, it means that the first four sub-negotiations
all have 3 agents while the last sub-negotiation has two
agents.



of negotiation cycles is well below the theoretical max-
imum bound as predicted in [Lee, 1996a).

An Opposite Trend

In all the above experiments, the concession rate, defined
by the rate at which agents decrease their self-utility dur-
ing concession, has so far been chosen to be the smal-
" lest. That is to say, agents will only choose a proposal
with less self-utility than the existing one when there is
no more proposal with equal self-utility (MNP prohibits
agents to choose any proposal with greater utility than
before). This also explain why the negotiation process
is so lengthy.

When we repeated the experiment using the fast-
est concession rate, the trend for the negotiation time
verse subgroup size was expected to remain unchanged
although the overall scale of negotiation time should be
lowered. However, we found that the negotiation time
decreases with the subgroup size, as shown in figure 3.

Further investigation reveals that there are probably
two factors that contribute to this surprising result.
First, the size of the negotiation set at the fast concession
rate becomes time-insignificant. Secondly, the number of
stages in the progressive negotiation becomes the more
time-dominating factor.

When agents use very fast concession rates, since only
one (or a few) proposals from each self-utility partition of
their negotiation sets® will be chosen for announcement,
it will not take much time for a negotiation to reach a
particular state where all agents have announced propos-
als with the minimum utility. With the fastest conces-
sion rate, it will only require L; number of concessions for
any agent ¢ to reach minimum utility proposal, where L;
is the number of utility levels to 7 in its NS. A corollary
from theorem 1 and 2 states that a solution must occur
when every agent has reached its minimum utility pro-
posals [Lee, 1996a}, hence in this case tmax = Z:;l L;.

Although the size of NS increases with subgroup size,
[Lee, 1996a) has found that that L; does not vary very
much as subgroup size rises. Hence, with fast conces-
sion rate, the negotiation time required, whatever the
subgroup size m, is relatively of the same order of mag-
nitude.

However, there are a fewer number of stages in any
progressive negotiation with a larger m than that with a
smaller m. For example, for five-agent progressive nego-
tiations, if m = 5, there is only one stage; whereas there
are two stages if m = 4, or m = 3, and four stages if
m = 2. Since the time required for each sub-negotiation
is relatively constant at fast concession rate, this implies
the overall negotiation time now depends on the num-
ber of sub-negotiations to perform — the more number of
sub-negotiations the longer the negotiation time. This
explains why the negotiation time decreases with sub-
group size at fast concession rate.

8Every self-utility partition of a negotiation set refers to
the set of proposals that has the same self-utility. See Section.

22

Negotiation Cycles

1
10

] 6 7
Subgroup Size

Figure 3: Negotiation cycle as a function of subgroup size

Conclusion

We have presented a model of progressive multiagent
negotiation, which guarantees the convergence of the
negotiation processes. It also provides a risk function
that allows agents to determine independently but coher-
ently which agents should make the next concession on
the basis of relative loss of expected-utility due to conces-
sion with that as a result of conflict. This model does not
assume unbounded rationality: provided an agent can
compute new proposals in monotonic decreasing order of
self-utility during the course of negotiation (even if only
one proposal at every time instant), the model guaran-
tees the negotiation to terminate with a solution. Fur-
thermore, formal analysis and an empirical study suggest
that there are consistent trends between various design
choices in the negotiation settings and solution quality.

This paper has analyzed the effect of participation
points on self-utility and of subgroup sizes on negoti-
ation time. The relations between subgroup sizes, solu-
tion efficiency and Pareto optimality have already been
reported: it is found that as the hierarchical levels of
progressive negotiations (i.e. subgroup size) increases,
the solution quality in terms of efficiency and Pareto
optimality would be worse off and computational cost
increases [Lee, 1996b]. Here we found that the negoti-
ation time would also increase. Nevertheless, under cer-
tain conditions such as fast concession, the negotiation
time decreases with subgroup size.

This paper also showed that, on the other hand, the
point at which an agent engages in progressive negoti-
ation tends to be proportional to its resulting aggreg-
ate self-utility, while at the expense of computational
cost since it is required to perform more number of sub-
negotiations. These results provide valuable information
as to how to design a progressive multiagent negotiation
so that certain long term expectations on solution qual-
ity such as negotiation time, Pareto optimality, as well
as self-utility, and resources considerations like compu-
tational cost can be intelligently compromised.



Our next step is to look into the inter-relationships
among negotiation time, subgroup size, and concession
rate: can we design negotiations with a particular (aver-
age) negotiation time? We also want to relax our initial
constraint on the progressive negotiations: i.e. only one
sub-negotiation at each stage. Further investigation is
also needed to find out the impact of different utility
propagation functions and various risk functions based
on different rationality.

Our long term goal is, by thoroughly investigating
how different negotiation processes affect the outcome
of negotiations in several classes of negotiation models
(where PIEA focuses on superadditive domain), we could
_ gain a better understanding of how to build negotiation
models with analyzable as well as predictable properties.
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