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Abstract

Studies of human conversation suggest that agents whose
world models are in consensus can work well together us-
ing only very narrow bandwidths. The total bandwidth re-
quired between agents could hence be minimised if we could
recognise when model consensus breaks down. At the break-
down point, the communication policy could switch from
some usual-case low value to a temporary high value while
the model conflict is resolved. To effectively recognise the
breakdown point, we need tools that recognise model con-
flicts without requiring extensive bandwidth. A mathemati-
cal model of probing and-or graphs suggests that, for a large
range of interesting models, the number of probes required to
detect consensus breakdown is quite low.
Keywords: Agent communication, Negotiation protocols,
Negotiating to maintain coalitions, Facilitating the negotia-
tion process

Agents running on distributed computers may interact un-
der a variety of resource restrictions. One restriction is band-
width. Every transmission also takes time since it must be
processed by both the sender and the receiver. Studies of hu-
man communication suggests that failure to optimise the use
of available resources can result in inefficient communica-
tion within organisations and consequent task errors (Coiera
1996). How can we minimize the use of those resources
for agents, and maximise the likelihood that communication
tasks are successfully completed?

Consider two humans communicating via a channel with
a certain bandwidth. A robust finding from human conver-
sations is that restricting bandwidth has little impact on the
effectiveness of the outcomes of many collaborative problem
solving tasks (McCarthy & Monk 1994). This occurs when
the communicating individuals have a high degree of shared
common ground. A particularly striking finding is that hu-
mans assume they share common world views in conversa-
tion until they detect an error, and then attempt to probe the
cause of the error. Interestingly, human conversation seems
to consist of both an explicit small set of exchanges devoted
to testing or confirming understanding, as well as the pri-
mary exchange (J Clarke 1991).

Can we use these observations to minimize the bandwidth
required between computational agents? Suppose agents
move through alternating stages of assumed model con-
sensus, detection of model conflict, and then model repair.
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While agent models are in conflict, we broaden the band-
width between them. When models are in consensus, we
restrict the bandwidth by assuming shared knowledge be-
tween agents. As a result, bandwidth is conserved during
conversation until it is explicitly demanded to reconcile the
world models of conversing agents. Time is also conserved
by minimising unnecessary sharing of knowledge between
agents (Coiera 1999).

This "assume-consensus" assumption has another advan-
tage. Consider agents with a learning component. Such
agents may update their world model. If they wish to co-
ordinate with other agents, then they would need to reflect
on the beliefs of their fellows. In the worst case, this means
that each agent must maintain one belief set for every other
agent in its community. This belief set should include what
the other agent thinks about all the other agents. If that
second-level belief set includes the original agents beliefs,
an infinite regress may occur (e.g. "I think he thinks I think
that he thinks that I think that."). This "assume-consensus"
model addresses the infinite regress problem. Agents in as-
sumed consensus only need to store their own beliefs and
one extra axiom; i.e. "if I believe that she believes what I
do, then my beliefs equals her beliefs".

To apply this approach, agents have to continually test that
other agents hold their beliefs. One method for doing this
would be to ask agents to dump their belief sets to each other.
We consider this approach impractical for three reasons:

¯ It incurs the penalty of the infinite regress, discussed
above.

¯ Such belief-dumps could exhaust the available band-
width.

¯ Agents may not wish to give other full access to their in-
ternal beliefs. For example, security issues may block an
agent from one vendor accessing the beliefs of an agent
from another vendor.

Without access to internal structures, how can one agent
assess the contents of another? Software engineering has
one answer to this question: black-box specification-based
probing (Hamlet & Taylor 1990; Lowrey, Boyd, & Kulkarni
1998). Agent-A could log its own behaviour to generate 
library of input-output pairs. In doing so, Agent-A is using
itself as a specification of the expected behaviour of Agent-
B, assuming our two agents are in consensus. If Agent-A
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Figure 1: C = 1 - (1 - a)N. Theoretically, 4603 probes are required to achieve a 99% chance of detecting moderately
infrequent items; i.e. ones that only occupy which 10--~-th of the model. (Hamlet & Taylor 1990).

sees those outputs when Agent-B is presented with those in-
puts, then Agent A could infer that Agent B has the same
beliefs as itself.

Unfortunately, black-box probes can be very bandwidth
expensive. Equation 1 shows a widely-used statistical model
connecting the number of probes N to the confidence C that
we will find an error with frequency of occurrence ~.

C = 1- (1 - a)iv (I)

Equation 1 says that for probes to be 99% certain of de-
tecting anomalies, then the number of black-box probes re-
quired is 4.6 times divided by the frequency of that anomaly
(see Figure I). For example, to be 99% certain that Agent-B
has less than 1% difference in its beliefs to Agent-A, then
460 probes would be required. This statistical model is
hence very pessimistic on the possibility of Agent-A accu-
rately assessing its consensus with Agent-B, without using
large bandwidths for the probing.

This paper will argue that Figure I is a gross over-estimate
of the number of probes. Figure I assumes no knowledge of
the internal structure of our agents. If we commit to some
view of structure, then estimates can be generated for the
odds of finding differences between Agent-A and Agent-B.
Hence, assuming that agents are usually in consensus, then
we can reduce inter-agent bandwidth as follows:

¯ Assume consensus and restrict bandwidth.

¯ As part of the normal inter-agent dialogue, Agent-A occa-
sionally drops a probe question to Agent-B. If the number
of probes required is very small, then these process will
add little to the overall bandwidth.

¯ If conflicts are detected, increase the bandwidth between
Agent-A and Agent-B to allow for discussions.

The rest of this paper is structured as follows. First, we
present a simple mathematical model of the odds of reaching
some random node in an and-or graph from some inputs.
Secondly, we present simulation results suggesting that the
average odds of finding a random node has only one of two
behaviours:

¯ The odds quickly asymptotes to a high plateau

¯ The odds quickly fall to nearly zero.

The simulation model also offers clear guidelines as to
which of these two behaviours will occur. That is, when
we design agents, the simulation model can indicate what
system features allow agents to quickly assess each other.

Two caveats before continuing. This paper presents a
probabilistic model of how agents of a particular form (an
and-or graph) can assess each other. Hence:

¯ It offers average case results which will be inaccurate in
certain circumstances. For mission-critical systems, our
average-case analysis is hence inappropriate.

¯ The psychological likelihood of this model is question-
able and we should not use these results to make state-
ments about how humans should co-ordinateI.

A Model of Probing
Roughly speaking, probing is a process of finding a needle
in a haystack. What are the odds of finding some random
needle? To answer this question, we have commit to some
model of a program. The following model applies to any
program which can be reduced to a directed and-or graph
between concepts. For example, a propositional rule base is
such an and-or graph where the primitive concepts are (e.g.)
a=true or a=false.

Graphs

We represent a program a directed-cyclic graph G contain-
ing vertices {V/, Vj, ...} and edges E. G has roots roots(G)
and leaves leaves(G). A vertex is one of two types:

¯ Ors can be believed if any their parents are believed or it
has been labeled an In vertex (see below). The average
number of parents for the ors is

parentsor = IParents(°rs(G))l (2)Io s(G) 
Each or-node contradicts 0 or more other or-nodes, de-
noted no(V/) = {Vj, Vk, ...}. The average size of the no
sets for all V/is denoted constraints(G).

1Exception: in the special case where humans are collaborating
to test software, these results could be used to optimise their testing
efforts.
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¯ Ands can be believed if all their parents are believed. The
average number of parents for the ands is

parentsand = Iparents(ands(G))l (3)
lands(G) 

Proofs
The aim of our probing is to generate proofs across G to
some output goal Outi. Outi comes from a test suite. A test
suite is the database {< In1, Out1 >, ... < Inn, Outn >}.
We also assume that each Ini,Outi contains only or-
vertices. Each output Outi can generated 0 or more proofs
{Px, Py, ...}. We make no other comment on the nature of
Outi: it may be some undesirable state or some desired goal.

In and Out are sets of vertices from G. A proofP C_ G is
a tree containing the vertices uses(Px) = {Vi, Vj, ...}.The
proof tree has:

¯ Exactly one leaf which is an output; i.e.

Ileaves(uses(Px))l = 1A
V~ E leaves(uses(Px)) h V~ E Out

¯ 1 or more roots roots(uses(P,)) C_ 

¯ Height height(P,) being the largest pathway from the
leaf to the roots.

When growing a proof, a new vertex is added to the set
of vertices already on that proof. The new vertex must not
contradict the vertices already in the proof; that is, the new
vertex Vnew must not satisfy:

Votd e uses(Px) A Vnew e no(Vold) (4)

Odds of Finding Outi
Based on the above, we can compute OddsRH, the odds of
reaching some arbitrary output Vi E Out use a proof tree
of height H. The section assumes that the probability that
a new vertex does not conflict with the no sets already in
a proof with odds OddsOKH (this probability is computed
later).

An output in a tree of height H = 1 can only be believed
if it is also an input. Only or-vertices can be inputs, so:

IlnlOddsR~r - IV- ~ * OddsOK~r (5)

OddsR~nd = 0 (6)

Otherwise, for H > 1:

¯ If ~ is an and-vertex, then we believe it with the proba-
bility of believing all its parents; i.e.

OddsRaHnd= ( OddsRn-1)Parentsana , OddsO K~nd
(7)

¯ If Vi is an or-vertex, then we believe it with the probability
of believing any of its parents; i.e.

OddsR~ = (parentsor) * OddsRH_l * OddsOKff
(8)

From Equations 7 and 8, we make the following predic-
tions:

Prediction 1 If and-nodes dominate G, then OddsR will
decrease very rapidly. If or-nodes dominate G, then OddsR
will increase very rapidly2.

Also, from Equation 5 and 8 it follows that:

Prediction 20ddsRH c< ~2~

The probability of believing some arbitrary Vi is some com-
bination of

¯ The probability that it is an and-vertex and it is believed.

¯ The probability that it is an or-vertex and it is believed.

For the moment, we will assume that the combining function
is the maximum of the two probabilities (and experiment
with this later). That is:

lands(G) ~OddsR~l’~d ’

The maximum value for OddsRH is when OddsR~nd or
OddsR~nd is 1, i.e.

)
Hence:

Prediction 3 We expect OddsRH to be asymptotic to some
percentage of the ratio of ands~ors in G.

Odds of OddsOKH

Let OddsOKH be the probability of the one world assump-
tion; i.e. the odds that a new vertex at height H can be added
into the current proof of height H - 1 without contradicting
anything else in that proof.

At H = 1, we are adding a vertex into an empty proof;
hence, the chances of a new vertex contradicting existing
proof vertices is zero and:

OddsOK1 = 1 (10)

And-vertices have no no set. Hence for all H:

OddsOK~ind = 1 (11)

For H > 1, the odds of an or-vertex contradicting another
or-vertex on the proof is the compliment of the sum of the
number of or-vertices on that proof times the frequency of
constraint violations:

(12)

Prediction 4 Unless constraints(G) is a very large frac-
tion oflVI, then OddsOK will be very large.

2Note that this prediction, and the ones to follow, are not certain
inferences since feedback factors may influence our results.
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Figure 2: Simulation results at y = 0, repeats = 1.
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IWl = 554.. 55400
ISnl = 4

constraints(G) = 2..40
lands(G)l = 0.6" IVl
Iors(a)l = IVl- lands(a)l = 0.4

parentsand = normal_dist(#pands, apands)
parentsor = normal-dist(#pors, apors)

#pands ---- 2
#pots = Z $ #ands

O’pands
---- y * ~tpands

apors = Y * #pots
y = 0.. 0.5
z = 0.5..2.0

repeats = 1..20

Table 1: Simulation parameters

Simulations
Table 1 shows parameters for an and-or graph from the
real-world model of neuroendocrinology (Smythe 1989) ex-
plored previously by Menzies & Compton (Menzies 
Compton 1997). Initial experiments with our formulae as-
sumed y = 0, repeats = 1; i.e. the number of parents
of and-nodes and or-nodes was constant. The results of the
y = 0, repeats = i run are shown in Figure 2. Note that for
a range of graph sizes and number of constraints, the same
pattern emerges:

¯ Confirming predictions 1 and 2, when or-nodes dominate
(above z = 1.25), the odds of reaching some random
nodes asymptotes to the percentage of or-nodes in the
graph (in these simulations, es]~ = 0.4). When and-

nodes dominate (below z = 1.25), the odds of reaching 
node drops dramatically.

¯ Confirming prediction 3, OddsR1 of the top two plots of
Figure 2 are 100 times larger than OddsRz of the bottom
two plots. This follows since the ratio of ~ decreased
by a factor of 100 when IYl moved from 554 to 55400
and IINI remained constant.

¯ Confirming prediction 4, an order of magnitude change
in constraints(G) had little effect on OddsRH since
(constraints(G) = 40) << (IYl = 554).

¯ In the case of the asymptotic effect, after a certain proof
depth, the odds of reaching a node are not improved by
further searching. In these simulations, that point was
H = 10 (for small theories with IVI = 554) and H = 
(for large theories with IVI = 55400).

In summary nodes are either very reachable or barely
reachable, depending on the average number of and-node
parents and the average-number of or-node parents. Hence,
if we design our agents with more or-parents than and-
parents, these results suggest that the agents will be able to
check for consensus very easily. Figure 3 is an expansion
of the far left-hand-side of Figure 1 and shows that (e.g.)
4 probes gives a 87% confidence of finding a node when
OddsRH = 0.4. 4 probes is a very small overhead to an
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on-going conversation. On the other hand, if we make the
internal logic of our agents very complex (more and-nodes
than or-nodes) then it will be very hard to monitor consensus
without requiring many probes and a very large bandwidth.

External Validity
This section explores the generalizability of the above re-
sults.

There are at least three challenges to the above results.
Firstly, they assume a simple model of the graph being pro-
cessed; i.e. uniform distributions of and-parents and or-
parents. How sensitive are the above findings to changes
in the distributions? To explore this issue, the runs of Fig-
ure 2 were repeated several times with increasing variance
in the distributions on node parents. In terms of Table 1, this
meant runs with repeats = 20, y = 0..0.5. The results of
these runs is shown as:

¯ The standard error on the mean of OddsR...

¯ Expressed as a percentage of the mean (e.g. a 50% stan-
dard error means that our expectation of X varies from
0.5X to 1.5 ¯ X).

Large deviations were only noted for H > 50 (see the curves
marked H < 150, H < 125, H < 100,H < 75 in Fig-
ure 4). Returning to Figure 2, note that by H > 50, the odds
have either risen to their plateau or fallen away to be vanish-
ingly small. That is, increasing the variances (by changing
y) only effects our results in uninteresting regions.

Secondly, the above runs used Equation 9, which made
the optimistic assumption that

OddsRH = maximum( OddsRaH~d, OddsR~)

What happens if we reason pessimistically, i.e.

OddsRH = minimum(OddsR~"d, OddsR~)

To study this, a parameter A was introduced:

¯ A = 0 implies Equation 9 uses minimums;

¯ A = 10 implies Equation 9 uses maximums;

¯ 1 < A < 9 moves Equation 9 on a linear sliding scale
between minimum and maximum.
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The run of Figure 2 was repeated for IV] = 554 and
constraints(G) = 2. The results (see Figure 5) show that
minimization, or even averaging (A = 5), is inappropriate.
Only when we nearly maximize (A > 7) do we get any be-
haviour at all (i.e. maximum OddsRH rises above zero).

Thirdly, we could refute Figure 2 by showing that it does
not accurately reflect the behaviour of known search en-
gines. Two predictions can be generated from Figure 2:

¯ As z is altered, the odds of reaching solutions switches
suddenly from very low to very high (this was observed
at the z = 1.25 point).

¯ Recalling the discussion around Figure 3, Figure 2 is say-
ing that a small number of probes should reach as many
nodes as a large number of probes.

Both these behaviours has been noted in the literature:

¯ Sudden phase transitions in solvability: In many NP-hard
problems, it has been noted that there exist very narrow
regions around which problems switch from being easily
solvable to easily unsolvable (Cheeseman, Kanefsky, 
Taylor 1991).

¯ A small number of probes suffices: HT4 is a multi-world
reasoner that searches for worlds that contain the most
known behaviour of a system. HT4 explores all assump-
tions that could potentially lead to desired goals. HT0 is a
cut-down version of HT4 which, a small number of times,
finds one random world. In millions of runs over tens of
thousands of theories, HT0 reached 98% of the desired
goals as HT4 (Menzies 1999). Dozens of analogous re-
sults showing that a small number of probes suffice have
been reported in the software engineering and knowledge
engineering literature (Menzies & Cukic 1999).

Discussion
If we make some assumptions about the internal structure
of an agent, we can generate estimates of how many probes
are required to test if that structure conforms to an external
specification. In the case of and-or graphs, the total number
of probes is either very large or very small depending on
certain design choices (average number of and-node parents
and or-node parents).

A partial list follows of language features that generate
theory dependency graphs with many or-nodes:

¯ Disjunctions.

¯ Any indeterminacy, such as a conditional using a ran-
domly generated number and a threshold comparison.

¯ Polymorphism: one "or" would be generated for each
type in the system that is accessed by this polymorphic
operator.

¯ Calls to methods implemented and over-ridden many
times in a hierarchy: one "or" would be generated for each
possible received of the message.

A clear research direction from this work is the further
definition of language features that simplify the time re-
quired to check consensus amongst agents.
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