
Modeling Multiagent Systems with Local Model Semantics

Massimo Benerecetti 1, Fausto Giunchiglia 1’2 and Luciano Serafini2

1 DISA - Universit£ degli Studi di Trento,
Via Inama 5, 38100 Trento, Italy.

2 IRST - Istituto Trentino di Cultura,
38050 Povo, Trento, Italy.

e-maih bene©cs .unitn. it, fausto©irst, itc. it, serafini©irst, itc. it

Abstract

Local Model Semantics (Giunchiglia & Ghidini 1998)
has been proposed as a formal framework to model con-
textual reasoning. The basic ideas underlying this se-
mantics are the principles of locality of representations
and of compatibility among representations. In this pa-
per shows how Local Model Semantics can be effec-
tively used to model dynamic Multiagent Systems. In-
tuitively, each agent have local representations (views)
of (mental attitudes of) other agents. Thanks to its
locality property, the resulting semantics allows us to
design and model multiagent systems in a modular and
incremental way.

Introduction
The goal of this paper is to show how Local Model Se-
mantics (Giunchiglia & Ghidini 1998) can be effectively
employed in modeling dynamic multiagent systems in a
way to allow for a modular specification of multiagent
systems, a feature which seems necessary when dealing
with real world complex systems (see (Giunchiglia 
Giunchiglia 1996) for a discussion on this topic).
We model agents as concurrent reactive non-

terminating finite state processes able to have what we
call BDI attitudes, i.e., beliefs, desires and intentions
(Bratman 1990; Rao & Georgeff 1991). The specifica-
tion of an agent has therefore two orthogonal aspects: a
temporal aspect and a "mental attitudes" aspect. The
key idea underlying our approach is to keep these two
aspects separated. In practice things work as follows:

¯ when we consider the temporal evolution of an agent
we treat BDI atoms (i.e. atomic formulas expressing
belief, desire, or intention) as atomic propositions.
The fact that these formulas talk about BDI attitudes
is not taken into consideration.

¯ The fact that an agent al has BDI attitudes about
another agent a2 is modeled as the fact that al has
access to a representation of a2 as a process (one
representation for each BDI attitude). Then, any
time it needs to verify the truth value of some BDI
atom about a2, e.g., B2AF ¢, al simply tests whether,
e.g., AF ¢ holds in its (appropriate) representation 
a2. BDI attitudes are essentially used to control the

"jumping" among processes. This operation is iter-
ated in the obvious way in case of nested BDI atti-
tudes.

An agent is therefore modeled as a set of processes,
each representing a "view" on some other agent’s men-
tal attitude evolving over time. Each such view can
be thought of as a local (contextual) representation
of that agent and formally captured by a suitable ex-
tension of the Local Model Semantics. This allows us
to achieve modularity as these processes (and the way
BDI attitudes enforce relations among them) can be
independently defined. This modeling approach has
been applied to make model checking-based verifica-
tion of multiagent systems possible (see (Benerecetti,
Giunchiglia, & Serafini 1998) which describes a com-
plete model checking algorithm based on this frame-
work).
The first section of the paper describes the context-

based extension of a propositional temporal logic, called
MultiAgent Temporal Logic (MATL), that allows 
to express properties of multiagent systems. The de-
scription is given incrementally over the standard model
checking notions. In particular, we adopt CTL (Clarke,
Grumberg, & Long 1994) as the propositional temporal
logic used to state specifications. The following section
describe a finite state presentation of the semantics of
MATL that can be used to specify multiagent systems
in a modular way. We conclude with some remarks.

Multiagent temporal logic

The logic we propose, called MATL (MultiAgent Tem-
poral Logic), is the composition of two logics, one
formalizing temporal evolution, the other formalizing
BDI attitudes. We start from the temporal component
CTL (for more details see (Clarke, Grumberg, & Long
1994)). We then present the Hierarchical MetaLogic
(called HML) formalizing BDI attitudes. HML is 
variation of the logics introduced in (Giunchiglia & Ser-
afini 1994) (syntax and proof-theory) and (Giunchiglia
& Ghidini 1998) (semantics). Finally, in the third sub-
section, we integrate the two logics into MATL.

From: AAAI Technical Report WS-99-14. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



CTL

CTL is a branching time propositional temporal logic.
Let us consider in turn the language and semantics.
Language. Given a set P of propositional atoms, the
set of CTL formulas ¢ is defined inductively as follows:

¢,¢ ::=pl ~¢ I ¢^¢ I EX¢ I A(CU¢) I E(¢ 

where p E P. We have the following intuitive meanings:
KX ¢ means that there is a path such that ¢ will be true
in the next step; A (¢ L/¢) means that ¢ will be true 
a state in the future and that ¢ will be true in all the
states before, for all paths; E (¢ U¢) means that there
exists a path such that ¢ will be true in a state in the
future and that ¢ will be true in all the states before.
The following abbreviations are used:

¢ D ¢ dej _~(¢A_~¢) AF¢ dej A (T U¢)
EF¢ d~j E(TU¢) AGe dej -~E(T Z,(-~¢)

EG ¢ clef= -~A (T Z,/~¢) AX¢ aef= ~EX --,¢

Semantics. The semantics for CTL formulas is the
standard branching-time temporal semantics based on
Kripke-structures. A CTL structure is a tuple m =
/S, so, R, L), where S is a set states, so E S is the initial
state, R is a total binary relation on S, and L : S --4
7~(P) is labeling fu nction, which associates toeach
state s E S the set L(s) of propositional atoms true
at s. A path x in m is an infinite sequence of states
Sl,S2,... such that for every i _> 1, siRsi+l.
Satisfiability of a formula ¢ in a CTL structure m at

a state s is defined as follows:

¯ m,s~:pif[pEL(s);

¯ m,s~ -~¢iffm, s V= ¢;

¯ m,s~¢A¢iffm, s~¢andm, s~¢;

¯ m,s ~ EX¢ iff there’s a s~ with sRs~, such that
m, s’ ¢;

¯ m,s ~ A(¢//¢) iff for every path x = (s 
sl,s2,...) there’s a k > 1 such that m, sk ~ ¢ and,
for everyl<j <k,m, sj ~ ¢;

¯ m,s ~ E(¢LI¢) iff there’s a path x = (s 
Sl,S2,...) and a k > 1 such that m, sk ~ ¢ and
for everyl<j<k,m, sj ~ ¢.

¯ m~¢iffm, so~¢.

HML

Let us consider in turn the language(s) and the seman-
tics.
Language(s). Suppose we are modeling a situation
with a set I of agents. Each agent has its own be-
liefs, desires, and intentions about itself and the other
agents. Let us adopt the standard notation to express
attitudes. Bi, Di, and Ii, for any i E I, are called BDI
operators for agent i (or simply BDI operators). 
denotes any BDI operator for agent i. Bi¢ (Die, Ii¢)
means that agent i believes (desires or intends) ¢. Let

O = {n, D, ~} be a set of symbols, one for each BDI atti-
tude. Let OI* be the set (O x I)*, i.e., the set of finite
(possibly empty) strings of the form olil ... o,in with
ok E O and ik E I. We call any a E OI*, a view. Intu-
itively, each view in OI* represents a possible nesting
of BDI attitudes. We also allow for the empty string, e.
The intuition is that e represents the view of an external
observer which, from the outside, "sees" the behavior of
the overall multiagent system. Depending on the goals,
the external observer can represent the person design-
ing the system, or a selected process of the multiagent
system which is given this privileged status. Figure 1
shows pert of the tree of views for a multiagent system
with two agents s and r.
It is important to notice that the crucial notion is that

of view. An agent, e.g., i, is thus represented by three
trees rooted in the views that the external observer has
of i’s beliefs, desires and intentions respectively (e.g.
the views Bi, Di and li). Notice also that the view that
an agent has of another agent is in general different from
the agent itself. This allows us for instance to model the
fact that agent i might have false beliefs about agent j.
We associate a logical language /:~ to each view

a E OI*. Intuitively, each £a is the language used
to express what is true (and false) in the representa-
tion corresponding to a. In particular, the language £~
is used to speak about the whole multiagent system.
Thus, intuitively, a formula p A Bi-~p E /:~, (denoted
by e : p A Bi-~p) means that p is true and that agent i
believes that p is false. The languages /:si £Di, and
£//are the languages that i adopts to represent its be-
liefs, desires and intentions, respectively. The language
~,BiIj is used to specify i’s beliefs about j’s intentions,
and so on. Intuitively, the formula pA Bi-~p E £Dj (de-
noted by Dj : p A Bi-,q) means that agent j desires two
things: that p is true and that agent i believes that p
is false.
Notice that we do not put any restriction on the lan-

guages £a, except that Oi¢ must be an atomic for-
mula of £~ if and only if ¢ is a formula of £aoi (see
(Giunchiglia & Giunchiglia 1996) for a study of how
this condition can be modified in order to capture var-
ious interesting properties). We allow also for empty
languages. However/:~ cannot be empty as we need to
be able to talk about the whole multiagent system.
Semantics. We need to define the semantics of the
family of languages a {£~,}o, eox. (hereafter we drop
the index a). To understand the semantics we need
to understand two key facts. On the one hand the se-
mantics of formulas depend on the view. For instance~
the formula p at the view B/ expresses the fact that i
believes that p is true. The same formula in the view
sj expresses the fact that j believes that p is true. As
a consequence, the semantics associates locally to each
view a a set Ma of interpretations of £a. On the other
hand there are formulas in different views which have
the same intended meaning. For instance Bjp in view
S/, and p in view BiBj both mean that i believes that
j believes that p is true. This implies that only certain



Figure 1: A tree of views.

subsets of interpretations of different views are compati-
ble, and these are those which agree on the truth values
of the formulas with the same intended meaning. To
capture this notion of compatibility we introduce the
notion of chain.
Let a be any view, a a-chain c is a finite sequence

(ce,...,c~,...,ca>, where c~ = m E M~ is an interpre-
tation for £:;~ and ~ is a prefix of a (i.e. a = ;37 for
some 7). A compatibility relation C on {La} is a set
of a-chains, for every a. Intuitively, C will contain
all those c’s whose elements ca, c~ (where a, ;3 are two
views in OI*) assign the same truth values to the for-
mulas with the same intended meaning. (For a detailed
discussion about these intuitions and also for a techni-
cal presentation, see (Giunchiglia, Serafini, & Simpson
1992) and (Giunchiglia & Ghidini 1998).)
Let us now define the semantics of HML. We start

with satisfiability local to views (first step) and suppose
that for each view a there is a satisfiability relation
between Ma and formulas of £:a- With an abuse of
notation, we denote all these satisfiability relations with
the same symbol ~. The context always makes clear
which relation we mean. The second step is to define
(global) satisfiability taking into account chains. To 
this we need some notation. Let ~ denote satisfiability
also for chains.

For any a-chain c and for any formula in £:~, satisfia-
bility relation ~ is defined only when either a is a prefix
of ;3 or ;3 is a prefix of a. (i.e. when either a = ;3T or
;3 = aT). If a = ;3T then c~ ~ ¢ iff ¢ is true in c~. If
;3 = aT then c;9 ~ ¢ for any ¢.
Let us extend the satisfiability relation to sets of for-

mulas: x ~ Y if and only if for any y E Y, x ~ y.
We are now ready to define the notion of model for

HML (called HM structure), and then that of satisfia-
bility between HM structures and formulas of a view.

Definition 1 (HM structure) A nonempty compat-
ibility relation C on {~:a) is a Hierarchical MetaStruc-
ture (HM structure) on {Ca} if given any a;3-chain

!c E C, ca ~ Oi¢ if/for every aT-chain cI E C, ca = ca
implies Cao~ ~ ¢.
The intuitions underlying Definition 1 are described

in detail in (Giunchiglia & Ghidini 1998). Briefly: the

nonemptyness condition for C guarantees that the ex-
ternal observer has a consistent view of the world; the
only if part in the definition guarantees that each view
has correct BDI attitudes, i.e. any time O1¢ holds at
a view then ¢ holds in the view one level down in the
chain; the if part is the dual property and ensures the
completeness of each view.

Given an HM structure C, a formula ¢ and a view a,
C ~ a : ¢ is read as ¢ is true in C (or equivalently, 
holds in C, or ¢ is satisfied by C) at view a, and it is
defined as follows:

C ~ a : ¢ iff for all a;3-chain c E C, ca ~ ¢ (1)

The intuition is that in order to check the satisfiability
of ¢ at the view a we need to check all the interpre-
tations of £:a allowed by the compatibility imposed by
the chains we are considering.

MATL

Let us consider in turn the language(s) and the seman-
tics.
Language(s). We define MATL as a kind of HML
where each language £:~ is a CTL language. We want
to allow for (agents and) views with different languages.
Let {Pa} be a family of sets of propositional atoms.
Each Pa allows for the definition of a different lan-
guage (also called an MATL language (on {Pa})). Since
(agents and) views have BDI attitudes, we need to ex-
tend the propositional atoms of each MATL with the
appropriate BDI atoms. Therefore, the family of MATL
languages on {Pa} is the family of CTL languages {/:a}
where £:a is the smallest CTL language containing the
set of propositional atoms Pa and the BDI atoms 0i¢
for any £aoi formula ¢.
Semantics. The semantics for a family of MATL lan:
guages is defined in terms of HM structures, where the
semantics local to each view is a set of CTL structures.
Given a CTL structure m = (S, so, R, L) and a state
s of m, let m[s/so] be the CTL structure (S, so,R,L)
obtained by replacing the initial state so of m by s.

Definition 2 (MATL structure) A MATL structure
on {Pa} is an HM structure C for a family of MATL
languages on {Pa}, such that for any a;3-chain c E C,



if the CTL structure ca = m, then for any state s of m,
!there is a at3-chain c’ 6 C such that ca = m[s/so].

A MATL structure is a particular kind of HM
structure.1 Therefore it keeps the same notion of satis-
fiability given by (1).
Satisfiability in a MATL structure can be understood

on the basis of two crucial observations, concerning the
mutual nesting of CTL operators and BDI operators.
The first, concerning the nesting of CTL operators in-
side BDI operators is that ca ~ ¢ is computed using
the notion of satisfiability in a CTL structure. There-
fore, a chain links the fact that a BDI atom holds in
the initial state of a CTL structure in one view with
the fact that its argument holds in the initial state of
a CTL structure in the view below. The second ob-
servation concerns the nesting of BDI operators inside
temporal operators. (Temporal operators which involve
no BDI atoms are treated as in CTL structures, that is,
without jumping among views). Consider for instance
the formula EX Bip. To assess the truth of EX Bip we
need to be able to assess the truth of Bip in some fu-
ture state s of the CTL structure we are considering,
e.g., m = (S, so,R,L). The only way to establish this
is to request that in s we have a chain d which gives
access to a CTL structure in the view below. Given
the fact that chains connect CTL structures only for
what holds in their initial state, the only solution is to
request that s is the initial state of a CTL structure
d, = m’ = m[s/so] with c’ 6 C. Given the fact that
temporal operators allow us to state facts about all the
states in a CTL structure, this operation must be re-
peated for each state s 6 S. But this is exactly what
Definition 2 says.

Multiagent finite state machines
MATL structures are in general infinite structures. In
fact, CTL structures can have an infinite number of
states, and also a labeling function which maps to an
infinite number of atoms, while HM structures can have
an infinite number of chains (corresponding to an infi-
nite compatibility relation), chains with infinite branch-
ing (corresponding to an infinite number of attitudes
per agent and/or an infinite number of agents) or in-
finitely long chains (corresponding to the case of un-
bounded nested BDI attitudes).
In many applications, like automatic model checking-

based verification of systems, we are interested in hav-
ing a finite presentation of the semantics. For instance
in model checking one deals with finite CTL structures,
i.e., CTL structures which have a finite set of states, and
also a labeling function mapping to a finite number of
atoms. The crucial observation is that finite CTL struc-
tures can be seen as finite state machines (FSMs), 

1Each view of a MATL structure contains many CTL
structures which differ only for the initial state. This re-
dundancy is admitted for the sake of simplicity. In Section
we show how these structures can be presented with only
one structure.

FSM being an object f = (S, so, R, L) (with everything
finite). Our solution is to extend the notion of FSM
to that of MultiAgent Finite State Machine (MAFSM),
where, roughly speaking, a MAFSM is a finite set of
FSMs. A first step in this direction is to restrict our-
selves to finite HM structures, i.e., those HM structures
which have a finite number of chains, and a finite num-
ber of views (~ such that there is a a-chain (notice that
this limits both the number and the depth of chains).
Thus, let OIn denote a finite subset of OI* obtained by
taking the views in any finite subtree of OI* rooted at
view e. However this is not enough as finite HM struc-
tures allow for an infinite number of BDI atoms. Even
if we have a finite number of processes we cannot model
them as FSMs. We solve this problem by introducing
the notion of explicit BDI atom. Formally if {L:~} is a
family of MATL languages, then Expl(oi, (~) is a (pos-
sibly empty) finite subset of the BDI atoms of/:~. The
elements of Expl(oi, a) are called explicit BDI atoms.
We have the following.

Definition 3 Let {f~} be a family of MATL lan-
guages on { P~}. A MultiAgent Finite State Machine
(MAFSM) F = {F,~} for {/:,~} is a reeursive total func-
tion such that:

1. F~#O;
2. for all views a 60In C 0I* (with OIn finite),

it associates a nonempty finite set Fa of FSMs on
the MATL language on the following atoms: P~,
Expl(Bi, (~), Expl(Di, a) and Expl(xi, a), for 
I;

3. for all views a 6 0I* \ OIn, F~ = @.

The first condition (dual to the condition £:~ # ~ im-
posed in Section, and to Condition 1 in Definition 1 of
HM structure in Section ) is needed as otherwise there
is nothing we can reason about; the second allows us to
deal with finite chains, and the third allows us to deal
with finite sets of atoms.
Given the notion of MAFSM, the next step is give a

notion of satisfiability in a MAFSM. We start from the
notion of satisfiability of CTL formulas in an FSM at
a state. This notion is defined as in CTL structures.
This allows us to determine the satisfiability of all the
propositional and explicit BDI atoms (and all the for-
mulas belonging to the corresponding MATL language).
For these formulas we do not need to use the machinery
associated to BDI attitudes. However, this machinery
is needed in order to deal with the (infinite) number
of BDI atoms which are not memorized anywhere in
MAFSM.
Let the set of implicit BDI atoms of a view a, written

Impl(oi, a), be defined as the (infinite) subset of all
BDI atoms of ga which are not explicit BDI atoms,
i.e. Impl(oi, a) = {Oi¢ 6 L:a \ Expl(oi,(~)}. Let
ArgExpl(oi, a, s) be defined as follows.

ArgExpl(oi, a, s) 
{¢ 6 L:aoi I 0i¢ ¯ L(s) N Expl(oi, 



Intuitively, ArgExpl(oi, (~, s) consists of all the formu-
las ¢ E /:~o~ such that the explicit BDI atom Oi¢ is
true in s. Restricted to s and to the explicit BDI atoms,
ArgExpl(oi, a, s) is the set of formulas which satisfies
Conditions 1 and 2 (of correctness and completeness)
in the definition of HM (and MATL) structure, Defi-
nition 1 in Section . At this point, to define the sat-
isfiability in a MAFSM, it is sufficient to use the fact
that we know how to compute ArgExpl(oi, a, s) (it is
sufficient to use CTL satisfiability and then to compare
the results of the relevant CTL structures) and exploit
ArgExpl(oi,a, s) to compute the implicit BDI atoms
which satisfy the two conditions of correctness and com-
pleteness.

Definition 4 (Satisfiability in a MAFSM) Let F
be a MAFSM, a a view, f = (S, so,R,L) E F~ 
FSM, and s e S a state. Then, for any formula ¢ of
F.a, F, a, f, s ~ ¢ is defined as follows:

1. F, ~, f, s ~ p, where p is a propositional atom or an
explicit BDI atom: the same as FSM satisfiability;

2. satisfiability of propositional connectives and CTL
operators: the same as FSM satisfiability;

3. /7, (~, f, s ~ Oi¢, where Oi¢ is an implicit BDI atom,
iff for all f’ e Faoi and s’ state off’, F, aoi, f’, s’
A ArgExpl(oi, (~, s) 

We have furthermore:

4. F,a,f ~ ¢ iff F, a,f, so ~ ¢;

5. F,a ~ ¢ iff for all f e F~, F,a,f ~ ¢;

6. F~a:¢iffF, a~¢.

In the definition of F, a, f, s ~ ¢, item 3 is the cru-
cial step. A ArgExpl(oi, a,s) is the conjunction of
all the elements of ArgExpl(oi, a, s). We need to use
ArgExpl(oi, a, s) in order to compute the formulas ¢
such that 04¢ is an implicit BDI atom as, as said at the
end of Section, in MATL BDI operators have the same
strength as modal K(3m). In particular, we have that
if F D ¢ is a theorem in a view then OiF D Oi¢ is a
theorem in the (appropriate) view above. The remain-
ing items are the natural counterpart of the respective
definitions given for MATL structures. In particular,
item 4 states that a FSM satisfies a formula if the for-
mula is satisfied in its initial state. Item 5 states that
a formula is satisfied in a view if it is satisfied by all
the FSMs of that view. Finally item 6 states that a
labeled formula a : ¢ is satisfied if ¢ is satisfied in the
view corresponding to the label.
Finally, the last step is to relate the notion of satis-

fiability in MAFSMs to the notion of satisfiability in
MATL structures. We say that a MATL structure is
equivalent to a MAFSM F if in every view they satisfy
the same set of formulas.

Proposition 1 For each MATL structure which is a
finite HM structure there is an equivalent MAFSM and
vice versa.

Conclusion
In this paper we have defined a logic for multiagent
systems based on Local Model semantics fro contex-
tual reasoning. We have shown the specification logic
and the language for specifying finite state automata.
This modeling framework has been used as a basis for a
model checking algorithm (Benerecetti, Giunchiglia, 
Serafini 1998). The approach allows us to specify multi-
agent systems incrementally and to reuse, in principle,
technology and tools already developed in model check-
ing as the problem of modeling and verifying multiagent
system specifications has been reduced to the problem
of modeling and verifying processes. In doing this, the
notion of context (view) plays a crucial role. It allows
us to view agents as collections of local representation
modeling beliefs, desires and intentions of other agents
connected among them by compatibility relations. The
intrinsic locality of this semantics allows us to design
and specify multiagent systems in a modular and incre-
mental way.

References
Benerecetti, M.; Giunchiglia, F.; and Serafini, L. 1998.
Model Checking Multiagent Systems. Journal of Logic
and Computation, Special Issue on Computational
Logical Aspects of Multi-Agent Systems 8(3):401-423.
Bratman, M. E. 1990. Intention, plan and practical
reason. Harvard University Press.

Clarke, E.; Grumberg, O.; and Long, D. 1994. Model
Checking. In Proceedings of the International Summer
School on Deductive Program Design.
Giunchiglia, F., and Ghidini, C. 1998. Local Mod-
els Semantics, or Contextual Reasoning = Locality +
Compatibility. In Proceedings of the Sixth Interna-
tional Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’98), 282-289. Trento:
Morgan Kaufmann. Short version presented at the
AAAI Fall 1997 symposium on context in KR and NL.
Giunchiglia, E., and Giunchiglia, F. 1996. Ideal and
Real Belief about Belief. In Practical Reasoning, Inter-
national Conference on Formal and Applied Practical
Reasoning, FAPR’96, number 1085 in Lecture Notes
in Artificial Intelligence, 261-275. Springer Verlag.
Giunchiglia, F., and Serafini, L. 1994. Multilanguage
hierarchical logics (or: how we can do without modal
logics). Artificial Intelligence 65:29-70.
Giunchiglia, F.; Serafini, L.; and Simpson, A. 1992. Hi-
erarchical meta-logics: intuitions, proof theory and se-
mantics. In Proc. of META-92, Workshop on Metapro-
gramming in Logic, number 649 in LNCS, 235-249.
Uppsala, Sweden: Springer Verlag.
Rao, A. S., and Georgeff, M. P. 1991. Modeling ra-
tional agents within a BDI architecture. In Alien, J.;
Fikes, R.; and Sandewall, E., eds., Proceedings of the
2nd International Conference on Principle of Knowl-
edge Representation and Reasoning. Morgan Kauf-
mann Publishers.

10




