
Semantic Context for Object Exchange

Leo Obrst, Gregory Whittaker, Alex Meng

The MITRE Corporation
1820 Dolley Madison Blvd., W640 McLean, VA 2210

{obrst, greg, meng}@mitre.org

Abstract
Enterprise wide interoperability means distributed
computing on heterogeneous hardware using heterogeneous
implementation languages. Successful information exchange
between interoperating systems today depends on data
standardization. There are several problems, however, with
this approach. This paper looks at some ingredients for a
more complete notion of semantic interoperability. Semantic
interoperability is defined as the enablement of software
systems and in particular object-based systems to
interoperate at a level in which the exchange of information
is at the enterprise level. This means each system (or object
of a system) can map from its own conceptual model to the
conceptual model of other systems, thereby ensuring that the
meaning of its information is transmitted, accepted,
understood, and used across the enterprise. We argue that
the primary way by which semantic interoperability can be
realized is by defining a notion of context which includes
the object to be exchanged and its internal state, its
interpretation with respect to both the source and the target
system object models, and the particular use of and intent for
the object in both the source and target systems.

Introduction

Our entry point into a discussion of the notion of context is
by way of considering the requirements of semantic
interoperability for interacting distributed object systems.
Enterprise wide interoperability means distributed
computing on heterogeneous hardware using heterogeneous
implementation languages. Successful information
exchange between interoperating systems today depends on
data standardization. There are several problems with this
approach. In order to satisfy the needs of all consumers a
particular standard data item ideally provides the union of
all consumer needs, while at the same time the data
standard can only be depended upon for the intersection of
all producer output data elements. One can view this
problem as a dispute over a mapping from one
multidimensional information space, or context, to another
where neither producers nor consumers agree on all of the
pertinent dimensions or basis vectors. A data standard is in
effect a particular rigid translation between these spaces, or
contexts. The data value or meaning of such a translation is
dependent on the basis vectors assumed by the mapping.
The fact that one set of basis vectors does not fit all needs
results in tension between multiple users and has led to a
plethora of closely related data standards.

For the purposes of this investigation, semantic
interoperability is defined as the enablement of software
systems and in particular object-based systems to
interoperate at a level in which the exchange of information
is at the enterprise level. This means each system (or object
of a system) can map from its own model to the conceptual
models of other systems, thereby ensuring that the meaning
of its information is transmitted, accepted, understood, and
used across the enterprise. This is analogous to providing
the basis vectors of the originating information in addition
to the particular embodied values so that the basis can be
compared, added or transformed into the information space
of the receiver and properly translated for application.
Misinterpretation often arises from an implicit projection of
local meaning on foreign data. We differentiate, however,
our object system-based view of semantic interoperability
from that of the database community, though of course this
literature has much to bear on the topics of this paper.1

The fundamental problem for inter-system semantic
interoperability is to define what a context is, the necessary
elements of any specific context, and how one can map
between or compare contexts. Although our focus in this
paper is on the notion of contexts for semantically
interoperable object-based systems, we believe our
discussion has applicability to the wider “context” research
community.

The format of this paper is as follows. First, we discuss
the dimensions of semantic interoperation for distributed
object systems, arguing that a context for semantic
interoperation needs to include interpretations of the object
with respect to its source system and virtually with respect
to its target system which involves both the semantics and
the use and intent of those systems. Also required then is a
mapping from the source interpretation to the target
interpretation of that object. We illustrate the notion of
semantic interoperation with some increasingly more
complex examples, thereby demonstrating the need for our
hypothesized contextual components. Second, we describe
more formally the components of the individual aspects of
context and point to future elaboration.

1 See, for example, (Kashyap and Sheth 1997, 1998; Mena et al.. 1998;
Ouksel and Naiman 1994; Subrahmanian 1994; Sheth and Ouksel 1999;
Smith and Obrst 1999).

From: AAAI Technical Report WS-99-14. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Basic Idea

The fundamental concept of object exchange is that
semantic interoperation happens when objects, viewed as
messengers, are properly interpreted and used by
interdependent applications (for general notions of formal
interoperability among systems, see (Meseguer 1998)). We
envision the future in terms of objects traveling across
dynamically determined domain boundaries and application
contexts arising in the course of execution. Conceptually, a
context embodies the mechanism necessary for a system to
receive an object at runtime and to examine, interrogate,
and interpret it to determine if it can be assimilated. More
formally, a context can be viewed as a tuple with the
following components:

(1) Def. Context := <O1, O2, [[O1]], [[O2]],
map([[O1]], [[O2]]>

A. Object O2, a variable or virtual object, the kind of
object that the receiver system can currently handle

B. Interpretation of object O1 in sender object model OM1

(language L1, models M1)
C. Interpretation of object O2 in receiver object model

OM2 (language L2, models M2)
D. Mapping between the interpretations of objects O1 and

O2 (accessibility relations Ri defined in a language L3,

having models 213 MMM I⊆ .

This is a complex context with respect to two (possibly)
interacting systems. Abstracting away from multi-system
interaction, an object always exists in a simple context in
its source system. This simpler context is minimally a 4-
tuple <object O1, object model OM11, environment E,
interpretation(O1, OM1, E)>, where interpretation(O1, OM1,
E) denotes the interpretation of O1 with respect to OM1 and
dynamic environment E. The environment here includes
how O1 is being used and the specific dynamic objects it is
interacting with. The environment is dynamic because if
O1 is persistent, it can be used in many ways and can
interact with many different objects over the course of its
lifetime, producing and undergoing changes of state within
the same system. In this paper, we abstract away from the
environment, though it should be remembered as being
implicitly always present.

An application’s context is fractal in nature, consisting of
conceptual abstractions of its world situated in domain
dependent relations to other worlds each of which has its
own constellation of logical models and interpretations.
Exchange of information in today’s execution environment
depends on an implicit sharing of context during execution.
Values are explicitly exchanged through a combination of
formal data standards, application program interface
specifications, interface control documents, and common
interface definition language specifications. Meaning is
implicitly projected onto the exchanged values. Meaningful

exchange of information is therefore limited to what can be
anticipated during software design and prescribed at build
time. Conceptual models of the mission space are compiled
away; context is not represented in the execution
environment. Today, rapid response to novel or
unpredictable situations is therefore limited to deployment
of a set of fixed but inefficient or even inappropriate
configurations of enterprise systems.

Our Hypothesis

Providing semantic interoperability in the
execution environment will greatly enhance the
speed of customized deployment and the
operational effectiveness of deployed systems.
This semantic interoperability will require a
formalization and implementation of contextual
mechanisms.

Emerging technology is making it possible to dynamically
discover and use network visible services. Modern
programming languages and middleware have long
permitted remote invocation of functions and services, but
it is now possible to dynamically embed remote objects
along with their methods. New systems will build on this
technology in order to significantly enhance flexible and
opportunistic exchange of information and capabilities. A
primary key to the success of this exchange is tracking and
mapping the domain specific models‘ design, making
explicit what has formerly been implicit.

Modes of Semantic Interoperation

In the following sections we list several modes of
interoperation considered in our investigation. Here we
emphasize the effects, not the mechanics. There are many
approaches to the end of semantic interoperability. Some
technical approaches focus on an interlingua, others on
underlying meta-models, still others on families of
translations in combination with a priori fixed points of
common agreement (standards), and some on either a
global ontology (which we will avoid here) or a set of
ontologies. The crucial issue that must be confronted,
however, is that there are many different models and many
different languages which express the semantics of would-
be interoperating systems. Can an object migrate from one
context, its source system having its own semantics, to
another context, a target system having a different
semantics, and be utilized? Can the semantics of two or
more systems be compared when their representation
languages and models are sometimes quite different? What
are the issues involved in interpretation and mapping
between interpretations when the context changes?

Semantic Interoperation via Conceptual Pivoting
This mode of interoperation could also be called the
alignment of terms problem where terms correspond to the

nouns and noun phrases of an English sentence; when we
know we are speaking about the same things, we have
come a long way in understanding foreign expressions.
Consider the following:

(1) an object representing concept x from domain
X travels to an application in domain Y
containing concept y

(2) concept x = concept y
(3) logical description x • logical description y

Assumptions:
(a) concepts are first class entities
(b) there is a universal equality test for concepts

that allows us to test concepts from different
domains to see if they are equal (better still
would be a conceptual proximity measure so
that we can tell if we are getting close)

(c) concepts are represented as objects with
faceted attributes

It will be very important for systems to delineate the
conditions under which two objects can be said to model
the same concept. Semantic interoperation in this mode is
fundamentally based on conceptual identification followed
by elucidation of essential attributes or essences of the
concept. The trouble is that from one domain to the next
what appears to be essential to the same concept is not
constant. This leads to a quandary over completeness of the
conceptual representation. If a concept is essentially
described by a set of attributions in one domain can it be
said to be the same concept if those attributions are not
translatable to attributions of the candidate concept in
another domain? Even if two concepts are linked by string-
equal terms, in general, no correlation can be assumed.
Term equality cannot furnish semantic information unless
individual terms are uniquely defined either in an indirect
standardization document which assumes human-supplied
semantics (and which typically is not machine-represented)
or within an online namespace or ontology (which is
machine-represented). A namespace here is taken to be just
an impoverished ontology: an ontology makes explicit not
only the entities of a domain, but their relationships and
constraints on those relationships.

Further refinements of the same concept notion apply to
the facets of roles, responsibilities, limitations,
expectations, potential and intended uses of concepts
modeled as objects, attributes and methods.

Semantic Interoperability via Method Adoption
Once we have achieved conceptual unification and have
mapped the foreign attributes to local attributes that our
application understands, we may venture to interpret and
use foreign methods. Mapping the terms of a foreign
method to types in a local application will assist in the
interpretation of foreign methods by comparison of method
names and signatures. An entire spectrum of interpretation
mechanisms is possible starting with syntactical level
mappings of object attribute and method names to local
attribute and methods and going on to deeper analysis of

logical models. Implementing alternative interpretation
techniques in accord with conceptual model scopes is a
reasonable approach. Some terminological mappings may
be factored into a sequence of commonly used translations
between frequently interoperating models; these factors
may in turn be stored and recalled for partial composition
of more extensive, less frequently used translations.

Semantic Interoperation via Object Substitution
In this mode we are using a foreign object in lieu of an
object from our own domain to accomplish some purpose.
As an example, we are adapting a Navy model object
(submarine) to an evacuation task not in the Navy model.
The supposition is that in this rescue operation the expected
evacuation vessel would be a ferryboat existing in the
Commercial Port model. Prior to the submarine object
arriving in the new Commercial Port model, the old context
includes the object instance Military_Sub and its class
hierarchy (and state models, constraints, etc.) After
arriving, the new context is the following:

New Context = Old Context + CoastalFerryShip

This new context might be partially expressed by
interpreting Military_Sub as filling the same role in a larger
plan that is typically filled by the object instance
CoastalFerryShip. More generally, the object class of
which CoastalFerryShip is an object instance (in this case
‘ship’ in the Commercial_Port_App model) could be
specified in the template. So, a general action template

<plan Identifier: Action(typei Rolei, typei+1 Rolei+1,
…, typei+n Rolei+n)>

is elaborated as:

Plan Y: evacuate (entity AffectedEntity, location
Source, location Target, vehicle
Instrument)

= evacuate (horse Horses, location
Chincoteague_Island, location
Virginia_coast, ship CoastalFerryShip)

where Horses, Chincoteague_Island, Virginia_coast,
CoastalFerryShip are specific instances. This will get
transformed to the new context:

Evacuate (horse Horses, location Chincoteague_Island,
location Virginia_coast, ship substitute
(Military_Sub,CoastalFerryShip))

Military_Sub will be substituted for CoastalFerryShip to
fill the Instrument role. This process is similar to the
employment of analogy: a linkage is established to a target
space from a source space, i.e., ‘X is Like Y’, with the
result that the source is interpreted in the conceptual space
of the target. This means that source X is substituted for Y,

and Y’s attributes methods, states are coerced
(reinterpreted) to apply to X.

Formalizing Context2

We think that a context needs to be structured as we have
done in (1) because it must refer minimally to paired
semantic frames of reference and the mappings between
them. In the following discussion, we briefly describe the
components of a context and sketch some steps towards a
formalization.

First, we treat the object model of a system as an
idealized “theory” of that system. The theory is
characterized as idealized because usually an object model
of a system is not formally well-defined, neither complete
(which is expected), nor consistent. We abstract away from
actuality here, and posit idealized theories, i.e., what an
object model would be if it were well-formed and coherent.
Usually an object model is less specified, rather than more;
hence, we consider it the base theory of the system. Note
that we could analyze our object model in terms of
concepts more directly, perhaps along the lines of lattice-
theoretic formal concept analysis (Davey and Priestley
1991, pp. 221-236) in which a concept is an ordered pair of
<its extension, its intension> within a context defined as a
triple of <objects, attributes, has-relation>. But we believe
that the language-theory-model approach is clearer.

A theory is a set of assertions in a first-order language L
(which is a set of symbols S and inference rules for
generating well-formed formulas from the symbols) and an
interpretation of those assertions with respect to a model. L
thus has a set of formal models M’⊆ M associated with it
and an interpretation (assignment) function I by which
objects in M' are assigned to the symbols of L. Care must
be taken not to conflate the two uses of ‘object’ mentioned
here. On the one hand, an ‘object’ is a construct in an
object-oriented programming language or system; on the
other hand, a formal ‘object’ is a construct in a formal
model in formal semantics. We will specify the first kind of
object as a ‘distributed object’ or within ‘the object model
of a system’.

M' represents the domain (of the distributed object
model). Its formal objects are meant to represent the real-
world or, more accurately in our case, the information-
world objects of the distributed object system, i.e.,
symbolic correlates of submarines, coastal ferries, horses,
locations, times, the relations among these objects, their
attributes, states, methods, etc. The mappings by I are
considered the interpretations of the symbols of L in M'. A
formula or sentenceϕ of L (sequences of symbols
permitted by the combinatoric rules of L) is said to be

2 We acknowledge a large debt to others who have tried to formalize
context: (McCarthy and Buvac 1997; Lenat 1998; Serafini and Ghidini
1997; Giunchiglia and Bouquet 1997, 1998; Giunchiglia and Ghidini
1998). Due to space requirements, however, we cannot discuss these
other approaches here.

satisfiable in M' , written as M' |= ϕ iff there is some
assignment ϕ i which is true in M'.

In order to connect this terminology to the notion of an
ontology, we follow (Guarino 1998) and define an ontology
to be a logical theory accounting for the intended meaning
of a formal vocabulary S in terms of an ontological
commitment to a particular intensional (modal)
conceptualization of the world, where a conceptualization
C is a structure <M'', W, R>, M'' is the model or domain,
and W is a set of relevant states of affairs of that domain
(i.e., possible worlds), and R is a set of conceptual relations
on < M'', W> such that each ρn of R is a total function
ρn:WÈ2M’n from W into the set of all n-ary relations on M''
(Guarino 1998). To this point, the only difference then
between our M', which represents the particular formal
model of the system object model, and an ontology is that
the ontology is specifically meant to refer to an intensional
conceptualization, i.e., it holds over a set of possible
worlds, in which class-level assertions such as Man(X) can
have many extensions or instances. In our view, this
simply means that a specific system object model could
participate in a larger ontology which spans other object
models. However, by our current definition, a system
object model represents a specific domain theory, which
only holds in one world, but which could participate in a
larger ontology, spanning other domain theories. All of this
is just to say that, by our definition so far, an individual
object model is not intensional. But, contrarily, we could
promote an individual system object to an intensional
interpretation, by which it then becomes equivalent to an
ontology (and that perhaps is not so far-fetched, since such
object models of systems, though independently
constructed, do participate in the background, common,
human interpretation of the world).

The problem arises when one wants to compare system
object models (to gauge first and then create mappings
between) which either do not participate in the same
ontology (recall that we assume there is no global
ontology), under the first view, nor are the same ontology,
under the second view. It seems that by assuming there is
no global ontology, then either we must assume a pair-
spanning (local, intersective) ontology [Ontology
(Object_Model1

∨ Object Model2)], or two ontologies
[Ontology(Object Model1), Ontology(Object Model2)]. If
we take the latter tack and intensionally analyze individual
system object models, then we are forced to consider not
only accessibility relations between possible worlds
(required for a single ontology), but accessibility relations
between two universes of possible worlds, to determine the
mappings between system object models. To talk about (let
alone, determine) accessibility relations between two
universes of possible worlds, one needs a language or a
meta-language. Otherwise, the formal objects in the two
universes are incommensurable. So (1.E) defines a set of
mappings between the interpretations of objects O1 and O2

as the accessibility relations Ri defined in a language L3,

having models ��M3 ⊆ M1 , M 2 each of which is

implicitly subscripted by different worlds. Note that we
would like an intersection-language, but initially may have
to settle for a union-language.

The individual objects O1 and O2 are listed separately as
components of the context because we recognize that the
object from the sending system may have internal state not
ascertainable by inspection solely of it original object
model (even if state and/or process models exist, they may
not be extensive or directly correlated with specific object
instances), so a behavioral description of the object will
tend to be incomplete. A fuller specification of the
pragmatics of the source system (and the target), its
intended use or the work it is meant to perform, will
ultimately need to be incorporated into the interpretation.
We have suggested a task/workflow structure shared by
would-be semantically interoperating systems as a step in
this direction, fully understanding this implies a
rudimentary common language, which we seek to avoid.
However, pragmatic commonality may be necessary.
Concerning the O2 object, we have characterized it as
virtual, viewing it as a hypothetical or variable object
(perhaps partially specified), that object of the target
system which would most closely approximate
semantically the O1 object. This is of course what the
contextual resolution is about: to find some way to coerce
the O1 object into the O2 object, practicably perhaps by way
of some intermediate interpretation arrived at by a
unification (constraint solving) process.

We think that ultimately a more general formalization of
context (directly applicable to the context of distributed
object systems) can be constructed in the category theory-
influenced Information Flow theory of (Barwise and
Seligman 1997), a framework more general than possible
worlds, allowing also impossible worlds. But this is a
prospect for the future.

Acknowledgements

Portions of this work were performed as part of a technical
investigation for the Information Systems Office of the
Defense Advanced Research Projects Agency (DARPA).
We’d like to thank Dr. Todd Carrico of DARPA for his
support and technical suggestions, and John Anderson and
Ann Jones for their encouragement.

References

Barwise, Jon; Seligman, Jerry. 1997. Information Flow:
The Logic of Distributed Systems. Cambridge University,
Press, Cambridge, UK.

Davey, B.A.; Priestley, H.A. 1991. Introduction to Lattices
and Order. Cambridge University Press, Cambridge,
UK.

Giunchiglia, Fausto; Bouquet, Paolo. 1997. Introduction to
Contextual Reasoning: An Artificial Intelligence

Perspective. Istituto per la Ricerca Scientifica e
Tecnologica (IRST), Trento, Italy, Technical report
9705-19, May, 1997.

Giunchiglia, Fausto; Bouquet, Paolo. 1998. A Context-
Based Framework for Mental Representation. Istituto per
la Ricerca Scientifica e Tecnologica (IRST), Trento,
Italy, Technical report 9807-02, July, 1998.

Giunchiglia, Fausto; Ghidini, Chiara. 1998. Local Models
Semantics, or Contextual Reasoning = Locality +
Compatibility. Principles of Knowledge Representation
and Reasoning (KR'98), Proceedings of the Sixth
International Conference, Trento, Italy, June 2-5, 1998,
Anthony Cohn, Lenhart Schubert, Stuart Shapiro, eds.,
pp. 282-289.

Guarino, N, ed. 1998. Formal Ontology in Information
Systems. Amsterdam.: IOS Press. Proceedings of the
First International Conference (FOIS’98), June 6-8,
Trent, Italy.

Kashyap, V.; Sheth, A. 1996. Schematic and Semantic
Similarities between Database Objects: A Context-based
Approach. VLDB Journal 5 (4), 1996.

Kashyap, V.; Sheth, A. 1997. Semantic Heterogeneity in
Global Information Systems: The Role of Metadata,
Context and Ontologies. In M. Papzoglou, and G.
Schlageter, (Eds.), Boston: Kluwer Academic Press,
1997.

Lenat, Doug. 1998. The Dimensions of Context-Space.
Cycorp, Austin, TX, Technical Report, October 28, 1998.

McCarthy, J.; Buvac, Sasa. 1997. Formalizing Context
(Expanded Notes). In Computing Natural Langauge, A.
Aliseda, R. van Glabbeek, & D. Westerståhl, eds.,
Stanford University. http://www-formal.stanford.edu.

Mena, E.; Kashyap, V.; Illarramendi, A.; Sheth, A. 1998.
Domain Specific Ontologies for Semantic Information
Brokering on the Global Information Infrastructure. In
Guarino, ed., 1998, pp. 269-283.

Meseguer, José. 1998. Formal Interoperability. In
Proceedings of Fifth International Symposium on
Artificial Intelligence and Mathematics, Fort Lauderdale,
Florida, January 4-6, 1998.

Ouksel, Aris M. 1999. Ontologies are not the Panacea for
Data Integration. To appear in Journal of Parallel and
Distributed Systems, 7, 1-29, 1999.

Ouksel, Aris M; Naiman, Channah. 1994. Coordinating
Context Building in Heterogeneous Information. Journal
of Intelligent Information Systems 3, 1, 151-183, 1994.

Serafini, Luciano; Ghidini, Chiara. 1997. Context Based
Semantics for Information Integration. Istituto per la
Ricerca Scientifica e Tecnologica (IRST), Trento, Italy,
Technical report 9709-01, September, 1997.

Sheth, Amit; Ouksel, Aris, eds. 1999. SIGMOD special
issue on Semantic Interoperability. March, 1999.

Smith, Ken; Obrst, Leo. 1999. Unpacking the Semantics
of Source and Usage To Perform Semantic
Reconciliation. In Sheth and Aris Ouksel, eds., 1999

Subrahmanian, V.S. 1994. Amalgamating Knowledge
Bases. ACM Transactions on Database Systems, 19, 2,
pp. 291--331, 1994.

