
Alfred: The Robot Waiter Who Remembers You

Bruce A. Maxwell, Lisa A. Meeden, Nii Addo, Laura Brown, Paul Dickson,
Jane Ng, Seth Olshfski, Eli Silk, Jordan Wales

Swarthmore College
500 College Ave.

Swarthmore, PA 19081
maxwell @ swarthmore.edu, meeden @cs.swarthmore.edu

Abstract

Alfred the robot won first place in the Hors d’Oeuvres
Anyone? event and also received an award for the best
integrated effort at the 1999 American Association of
Artificial Intelligence robot competition. The three
unique features that Alfred displayed were: the ability
to nudge his way through a crowd to cover a large serv-
ing area, a strong personality--that of a proper British
butler, and the ability to recognize people he had served
before. This paper describes the integrated navigation,
natural language processing, and vision system that
enabled these capabilities.

1 Introduction and task definition
The American Association of Artificial Intelli-

gence (AAAI) holds a national robot competition
their annual conference. This competition draws
schools from around the country, and the event is
judged by researchers and academics in the fields of
artificial intelligence and robotics. This year’s competi-
tions included the Hors D’oeuvres Anyone? event
which required robots to serve hors d’oeuvres to con-
ference attendees during the main conference recep-
tion. The primary objective of this event was to have
the robots unambiguously demonstrate interaction with
the spectators. To evaluate the event, the judges looked
at not only how the robots did during the final round at
the reception, but also interacted with the robots during
a preliminary round. This initial round gives the judges
a chance to systematically test the full capabilities of
each entrant in a more controlled setting.

In 1999, this event was held at the Orlando Con-
vention Center. The area where the robots were
required to serve was extremely large--approximately
45m x 45m, and the ceilings were 15-20m high. There
was no sound dampening material on the walls, ceiling,
or floor. The illumination for the event consisted of
directional lights shining down on the floor, that alter-
nated between "cool" and "warm" colors every 5m. All
of these factors made the evening event extremely chal-
lenging for vision sensing and speech interaction.

Alfred the robot was designed and constructed
during a 10 week period prior to the competition by the
authors, all of whom were either faculty or students at
Swarthmore College. Two students worked primarily

on the speech interaction, three on the visual sensing,
and two on navigation and integration. Complete inte-
gration of the parts took four weeks to accomplish
Prior to the competition we had one "live" test run
which gave us a benchmark and allowed us to focus
our efforts on particular areas highlighted by the test.
One of the major lessons of this experience was the
need to begin integration even earlier in order to have a
base platform from which to work.

The remainder of this paper outlines Alfred’s tech-
nical details. Section 2 highlights the physical design,
section 3 the navigation and decision-making algo-
rithms, section 4 the speech interaction, and section 5
the vision system. Section 6 presents an overall discus-
sion and future directions of research and development.

2 Physical design
The heart of Alfred’s physical design was a

Nomad Super Scout II Mobile Robot, manufactured by
Nomadics, Inc. The base configuration comes with a
233 MHz Pentium II processor, built-in sound, and a
Captivator video frame grabber. The computer runs
Linux--Red Hat 6.0 distribution--and links to the
robot’s microcontroller through the serial port.

On top of the base robot we built a penguin-shaped
structure out of plywood, screen, and black & white
felt. A shelf inside the penguin held the amplified
speakers, microphone power supply, and the interface
box for the nudging device. Alfred appears in Figure 1.

The sensors attached to Alfred included a Costar
CCD color camera with an 8mm lens, a Shure
MX418S supercardioid (highly uni-directional) goose-
neck microphone, and a rigid aluminum bumper with 5
contact switches for sensing feet. We installed the
bumper on the front of the robot at a height of 4cm off
the ground and interfaced the contact switches to the
computer through the parallel port. Note that the
bumper also kept the robot from pitching forward as
there is no support wheel in front of the robot.

The other modification we made was to add a fan
to the top of the Scout base to lower the internal tem-
perature. This proved to be essential to running the
robot under the load we gave it.

From: AAAI Technical Report WS-99-15. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

Figure I .Alfred the Robot (left), and Alfred serving hors d’oeuvres at the 1999
AAAI Conference Reception (right)

3 High-level control and navigation

It was our task to develop a software architecture that,
based upon sensor data gathered from its environment,
would respond in an intelligent manner. The goal was to
create an autonomous system that would serve hors d’oeu-
vres while covering a large area of the room, and seeking
out and interacting with people.

The robot had to bc able to differentiate people from
obstacles, offer food to people it encountered, cover a wide
area, detect when more food was needed, and navigate to
the refill station. To make the robot very interactive with the
people it met, we dedicated part of our effort to speaking
and speech recognition. Based on the situation in which the
robot found itself, we wanted it to make appropriate com-
mentary and engage people in some form of conversation.
We extended the robot-human interaction to include nudg-
ing people out of the way when they blocked the robot’s
desired path.

When choosing the architecture for Alfred’s behavior,
there were several possible approaches. A common tech-
nique in mobile robotics is to develop a subsumption archi-
tecture where a set of task-achieving behavior modules are
constructed and layered so that higher priority behaviors
subsume control of lower priority behaviors by suppressing
their outputs [2]. Traditionally, each behavior module in a
subsumption architecture is a finite state machine (FSM).
The subsumption style of architecture is quite robust and
reacts quickly to changes in the environment. However,
development must be staged, starting from the simplest

behaviors and gradually adding more complex behaviors.
Due to the short time frame we had to prepare, we

chose to construct a single, high-level FSM instead. This
was also the technique used by the 1998 contest winner,
Rusty the B.E.A.R. from the University of North Dakota
[6]. A FSM lends itself well to the situation of controlled
interaction for which we were developing the robot

By integrating the components of speech, vision, and
navigation through the FSM, we were able to accomplish
our goal of a basic serving behavior. Upon startup, the robot
moves away from its refill station toward a guidance point
set for it in advance. Upon reaching this point, the robot
attempts to detect people in its field of view. When it finds
them, it moves toward them and engages them in conversa-
tion. If it has seen them before and recognizes them, the
robot acknowledges this. New people are given nicknames
that the robot uses later when speaking to them again. It
asks them if they would like an hors d’oeuvre, and demands
proper decorum in their reply. If necessary, the robot will
avoid, ignore, or nudge people in order to get outside a spe-
cific area it has been in for a long time. When the robot has
served a predetermined number of people, it navigates back
to the refill station by looking for a landmark, asking direc-
tions, and using dead reckoning. After refilling, it moves
back onto the floor to continue serving at the next unvisited
guidance point.

3.1 Algorithms & theory

Navigation and most localization of the robot is accom-

(

(

Start Move_Engage Serve

If at a guidance pomt If hand in tray _serves
exceeded

Hand Wait

Sense

Vision [Fork])

If target
point

If too long in
one area

Else if serve is
complete

If quit

given

Move_ignore Refill Quit

Figure 2 .The overall finite state machine for the robot. The primary action pattern is highlighted.

plished using wheel encoders. Obstacle detection is accom-
plished by sonar and people are detected and recognized
visually. As the robot navigates through a crowd, the FSM
directs its general path toward a ’guidance point’. There are
three types of guidance points - general, intermediate, and
imperative. The general guidance points form a path around
a room. They are set for the robot prior to initialization by a
person and depend upon the serving environment. Interme-
diate guidance points are dynamically calculated during the
processes of the FSM. They are used to direct the robot
toward a certain point from which it can resume its course
toward the general guidance points. When traveling to non-
imperative guidance points, the robot will stop to engage
people it detects along the way. Imperative guidance points
are points to which the robot moves while ignoring people
it meets along the way, and avoiding them or nudging if
necessary. These guidance points allow the robot to move
somewhere even when it is hemmed in by people that it
would usually stop to serve. The robot avoids inanimate
objects by testing if the thing directly in front of the robot
displays visual human characteristics.

The FSM keeps track of the robot’s position on a map
stored in memory. When checking to ensure that the robot
covers a certain area, the bounding box of the path covered
on the map is calculated. The pixel size of the map is deter-
mined by a predefined ’resolution’ value which indicates
the size in inches of a pixel on each side. This value can be
changed in the program code so that maps can be highly
detailed if necessary.

A diagram of the overall FSM is given in Figure 2. The
robot begins in state Start, from which the vision fork is ini-
tiated. Vision processes are run independently, with com-
mands being passed to Vision from the FSM via a shared
memory structure.

From state Start, the FSM goes into state
Move_Engage, in which the robot moves away from the

refill station, but will stop and serve any people encountered
along the way (or hands that are detected in the serving
tray). If the robot reaches its general guidance point, the
FSM will go into state Sense, which searches for people to
serve and then goes into state Move_Engage to move in the
direction of a possible person with an intermediate guid-
ance point.

Every three minutes, the FSM checks to ensure that the
robot is moving outside a certain predetermined area. If that
area has not been exceeded, the FSM goes into state
Move_Ignore to navigate toward a dynamically-determined
imperative guidance point that takes the robot outside its
previous area. Upon reaching this point, the robot re-enters
state Sense.

After a serve, if the FSM detects that the maximum
number of serves have been exceeded, it goes into state
Refill which uses state Move_Ignore to navigate back to the
refill station without engaging people. At the station, the
FSM goes into state Wait, from which the robot can shut
down if such a command is issued. Otherwise, when the
tray has been refilled, the FSM goes into state
Move_Engage to move away from the refill station, and the
cycle repeats as before.

3.2 Experiments & results

To test the integrated functioning of all elements within
the FSM, we put the robot into several situations involving
varying numbers of people with whom the robot would
have to interact. Early in the testing we found that vision
was the slowest process, so we coordinated speech to over-
lap while vision was running, camouflaging the delay. Note
that a part of this delay was due to the fact that in most of
the test situations we were logging images to disk to keep
track of the accuracy of the vision processes.

We first tested the robot under indirect natural lighting

in a large room containing 7 people spread throughout. The
robot was able to navigate to its guidance points and engage
people along the way. These tests did not include a situation
where the robot was completely surrounded by a group of
people. Also, there wasn’t any background noise to confuse
the robot’s speech recognition. The robot achieved 70%
accuracy in person recognition, 90% accuracy in person
detection, and 75-85% accuracy in speech recognition
which varied from person to person.

The robot was also tested in an incandescently-lit room
with about 50 people. Again, the room was very quiet, and
the people gave the robot space so it could move with ease.
This test too was quite successful.

The conditions of the competition were quite different.
The lighting was more bluish, which dulled many of the
colors picked up by the camera, and varied from place to
place across the competition area. In the first round of the
competition, where only the judges and a few onlookers
were involved, the robot worked almost flawlessly.
Although the robot was presented with a larger number of
people, they were all attentive to it and there was relatively
little background noise. The robot was given plenty of room
to move, which allowed it to navigate freely.

In the second round of the competition, during the
AAAI conference reception, it was much more difficult for
the robot to be successful. The robot was often hemmed in
by jostling people, causing it to rotate in circles searching
for a way out. The nudging algorithm turned out to be too
nice, not sustaining its nudging long enough to get the robot
out of the circle. As noted below, the worst of the robot’s
problems, however was background noise, which greatly
inhibited the speech recognition and conversation aspects of
the interaction.

In most of the trial runs, navigation encountered signif-
icant errors in dead reckoning, caused by wheel skids while
nudging and occasionally bumping objects. Obstacle avoid-
ance was still quite good; there was only one collision with
an inanimate object. The errors in dead reckoning, however,
were offset by the robot’s ability to find the refill station
landmark, go to it, and then reset its world coordinate sys-
tem before heading out again. This way it was able to cor-
rect its dead reckoning errors every 10-15 minutes.

The greatest problem revealed in the methodology we
employed was that of speed of interaction. Many people
walked quickly past the robot and took an hors d’oeuvre
without stopping. This triggered the speech interaction, but
by the time the robot spoke, people were already long gone.
Thus, the robot would wait for an answer from a person
who was no longer present or willing to speak to it.

as

4 Speech interaction

Alfred’s speech system was developed primarily to act
the interface between human and machine. It was

through speech that all the various human interactions were
carried out. We decided to augment this interaction by mak-
ing it more lifelike. As such the entire speech system served
to build Alfred’s "British butler" personality. These goals
were all achieved using IBM’s beta version of the ViaVoice
software development kit (SDK) for Linux [5], and stan-
dard audio playback software that comes with Redhat
release version 6.0.

4.1 Speech recognition system

ViaVoice for Linux is available for public download
from IBM’s website [5]. We had the choice of using IBM’s
speech kit or the Center for Spoken Language Understand-
ing (CSLU) speech toolkit developed at the Oregon Gradu-
ate Institute of Science & Technology (OGI). ViaVoice was
chosen because of its simplicity to implement and high-
level interface that focused more on the abstract features of
speech recognition. Unlike CSLU, ViaVoice did not require
the programmer to specify any low-level preprocessing
techniques of the audio file before recognition was per-
formed; the ViaVoice engine performed all this preprocess-
ing. Another factor that contributed to our choice of
ViaVoice was the ease of development of the grammar file.
In speech recognition an utterance is a stream of speech that
represents a command. A grammar file is a set of words and
phrases governed by rules that define all the utterances that
are to be recognized at run-time. In ViaVoice there was no
need to make additional inputs of pronunciations, since
there was a built in dictionary of pronunciations. On the
other hand, CSLU required this additional input. The major
drawback of ViaVoice was that it relied greatly on the qual-
ity of the spoken utterance, and therefore the environment
needed to be reasonably quiet to achieve high recognition
rates. This was in part due to the fact that all of the prepro-
cessing was performed by the engine and therefore we were
unable to modify the filters to suit our environment. Fur-
thermore the ViaVoice input came directly from the micro-
phone and not an audio file. We obtained help in
understanding the ViaVoice SDK from accompanied docu-
mentation and the developers at IBM.

4.2 Speech interaction method

All of the speech interactions were pre-defined and
based on scripts that we wrote. Each of these scripts was
associated with a stand-alone speech program, and it con-
tributed to the development of Alfred’s personality. The
stand-alone programs had a specified finite state grammar
(FSG) file, which contained the words and the phrases to
recognized by the ViaVoice recognition engine. These FSG
files were the compiled output of Backus-Naur Form (BNF)
files. These BNF files are simple, but structured text files,
written in a speech recognition control language (SRCL and
pronounced "circle"). The Speech Recognition API Com-

<<root>> = <affirmative_l> I <negative> I <vernacular> I <properYes> I
<properNo> I <affirmative_2>.
<affirmative_l> = yes: 1 I yeah: 1 I ~yes i really would like a tasty
snack": i.
<affirmative_2> = ~thank you very much": 6 ["why thank you": 6.
<negative> = no: 2.
<vernacular> = okay: 3 I sure: 3 I "why not": 3 I "i guess so": 3 I "of
course": 3 I cope: 3.
<properYes> = ~yes please": 4 I ~but of course": 4 I certainly: 4 I "of
course": 4 I ~yes" ~please": 4.
<properNo> = ~no thank you": 5 I "I’m fine thank you": 5 I ~I’ll pass": 5 I
~I’ll pass thanks": 5.

Figure 3 .An example of a BNF file.This file

mittee and Enterprise Computer Telephony Forum jointly
developed SRCL. The general form of a SRCL grammar
file consists of production rules in the form of (1)

< rule> = words or "phrase" (1)

The left side of the production rule is synonymous to a
variable name and the right side specifies the individual
words or phrases (given in quotes) that are to be recognized.
An example taken from one of Alfred’s BNF files is given
in Figure 3. This example annotates each recognized word
and phrase with an integer, so that our speech programs
could more easily parse them. More information on SRCL
grammars can be found in the ViaVoice SDK documenta-
tion.

An FSG file was written for each of Alfred’s primary
interactions including the "serving interaction," the "search
for the refill-station interaction" and the "at the refill-station
interaction". Each FSG file had many variations of
responses to questions like "Would you like an hors d’oeu-
vre?" and "Where is the refill station?" We also developed a
generic FSG file to interpret yes/no type responses. The
associated program for this FSG file, served to confirm out-
put from the vision system. No explicitly defined speech
algorithms were used in developing these programs. How-
ever, each speech interaction tree was based on production
systems, with if-then-else and case statements specifying
what response was made based on a recognized utterance.

Work by Clifford Nass proposes that people tended to
respond psychologically to computer personalities in the
same way that they respond to human personalities [7], we
decided to make recorded human responses for Alfred as
opposed to using a text-to-speech synthesizer. Thereby we
hoped to achieve a more convincing "human personality" in
Alfred. To add to Alfred’s anthropomorphic nature, a mini-
mum of five audio files for each response was made and one
was selected randomly at runtime of the speech program.
Consequently no two runs of the same speech program
were alike, since different audio files were played back at

was the grammar file for the serving interaction.

runtime.

4.3 Experiments & results

Tests of the speech interaction were quite good in the
laboratory, achieving approximately an 85% recognition
rate. This number takes into consideration the fact that all
the speech programs were designed to make three attempts
at recognition per question asked, given that the first
attempt failed. However, this was not the case at the AAAI
reception where the final round of the hors d’oeuvres com-
petition took place. Recognition rates dropped significantly
to about 35% due to the very loud background noise in the
conference hall, in spite of the unidirectional microphone
used. Another factor that may have contributed to this drop
was Alfred’s onboard sound system. The built-in audio sys-
tem, developed by ESS Technologies, was perceptibly low
in quality compared to the 64-bit Creative Labs sound card
used in the laboratory.

Our decision to use recorded human responses proved
successful, and Alfred was referred to by his given name
and not treated like a machine. In fact, some guests pro-
ceeded to talk casually to him as if he were a real person.
Consequently, they talked to him in full sentences instead of
the short phrases or single words which Alfred was
designed to understand.

5 Visual sensing

5.1 Detecting conference VIPs

With a single color camera, Alfred used blob-detection
to identify conference VIP’s by detecting colored ribbons
on their badges. For example, note the ribbon hanging
below the badge of the person in the center of Figure 1. The
color blob detection process searched over an image and
compared single pixels with the target color, so calibration
for specific lighting conditions was necessary.

Figure 4 Images from the final round of the competition.The left and center images were successful
badge detections, while the right-most image was a successful landmark detection.

5.1.1 Relevant work Blob detection is a standard task in
vision and robotics. In a project similar to ours, a NASA
mobile robot that strives to recognize faces, Wong et. al.
[12] used just color information to detect blobs. The blob
detection simplified the search for people by requiring peo-
ple in the testing environment to wear a sweatshirt of a spe-
cific color. The robot used a chromaticity comparison
technique to detect the color of the sweatshirt.

Chromaticity is dependent on color and not intensity.
For our ribbon detection, instead of using chromaticity we
used RGB color bounds. Part of the reason for this was that
the specific range of target "colors" for detection were a
non-linear mix of intensity and brightness, since some color
bands had greater variation than others. Furthermore, the
RGB color space worked well enough for this task, and thus
we avoided the extra computation by not using a different
color space.

5.1.2 Algorithms & theory The blob detection function
takes as input the pixels of an image, and the RGB color
bounds of the blob it is searching for. First a loop is run
through the pixels, counting the number of pixels which fall
within the color bounds in each column and summing the
results into bins. A window of specified width is then
scanned across the bins, finding where the most target pix-
els are at within a localized region. If the result is above a
given threshold, then the function returns a 1 and the left-
most column location of the blob, otherwise, 0 is returned.
This function is called when there is a person directly in
front of the robot. The image is, therefore, already entirely
that of the person’s torso. This method is significantly faster
than scanning a box across the image, because each pixel is
only processed once.

The RGB color bounds were determined by using a lin-
ear search algorithm. The program needed seven parame-
ters for simple blob detection, the low range and the high
range of each color band of the target color, as well as the
cutoff threshold. The linear search algorithm searches for
the specified number of iterations over all of the parameters
one at a time for the best solution, as specified by an evalu-

ation function. The evaluation function takes as arguments
the number of parameters and the value of the parameters
and returns a value that should increase as the solution
improves. A training set of twenty images containing both
positive and negative images is taken under the lighting
conditions of the test site and run through the evaluation
function. Since the RGB values of the target color may vary
under different lighting situations, a calibration using the
linear search function should be run before detection is
needed in a new location.

5.1.3 Experiments & results One of the biggest hurdles
of computer vision with color is its dependence on illumi-
nation. As expected, the blob detection processes had to be
calibrated at the operation site. The pink ribbon detection
was extremely accurate after appropriate calibration, with
no false positives, and it found all visible ribbons. However
other ribbon colors, such as white, were not consistently
detected. Figure 4 shows examples images of successful
badge detections. Note that in Figure 4(b) the badge
barely visible in the lower right of the image, but the system
was still able to detect it because of the large vertical extent.

5.2 Recognizing landmarks

When Alfred ran out of food on its tray, it used vision
along with confirmation from the handler to recognize a
distinctive black and white landmark placed above its initial
starting point to guide it back to the refill station

5.2.1 Relevant work The landmark detection method we
used was designed by D. Scharstein and A. Briggs [9] at
Middlebury College. They developed a robust algorithm
that recognizes self-similar intensity patterns that works
under a wide range of viewing and lighting conditions in
near-real time.

5.2.2 Algorithms & theory Self-similar intensity patterns
are based on self-similar functions, the graph of these func-
tions are identical to themselves scaled by a constant p in
the horizontal direction. A property of self-similar functions

is that they are also self-similar at a scale of pk, meaning
that the self-similar property is invariant to viewing dis-
tance.

This method operates extremely reliably on single
scanlines without any preprocessing and runs in near-real
time. Since the method uses single scanlines, it successfully
recognizes the landmark even when part of the pattern is
being occluded.

We used a pre-compiled program obtained from Mid-
dlebury College which takes as input any PGM image, and
if a self-similar landmark is found, returns the pixel loca-
tions of the two Xs marking the vertical height of the right-
most strip of the landmark. After some experiments, as
described below, we were able to convert the pixel locations
to a bearing and approximate distance to the refill station.
We used knowledge of the camera’s field of view to calcu-
late bearing and an empirically-calculated equation to find
the distance based on the verticalheight of the detected
landmark. The distance equation was derived by taking pic-
tures of the landmark at known distances and fitting a func-
tion to the data, knowing that the vertical height is inversely
proportional to distance.

5.2.3 Experiments & results The landmark recognition
worked remarkably well. In analyzing the capabilities of
the self-similar pattern recognition program, we determined
that if we used the 8.5" x 11" pattern provided, reliable
results could be obtained from up to about 10 feet away
using 320x240 images. To use this method for refill station
recognition, we needed to customize it so it recognized the
landmark at least 40 feet away. Since the detection of the
landmark is done by number of pixels per scanline, we dou-
bled the size of the landmark and captured 640x480 gray-
scale images for this purpose and increased the detectable
range to about 50 feet.

During the competition, the landmark detection
worked so well that, although sometimes the landmark was
partially blocked by a head or a hand in the conference, it
still returned a reliable bearing. The approximate distance
returned, however, was not as reliable since a few occluded
pixels can mean a few feet of miscalculation. To compen-
sate for this, during the competition Alfred asked whoever
was nearby if it was at the refill station. It the reply was neg-
ative, the robot would repeat the task of looking for the
landmark. Figure 4 shows an example image from a suc-
cessful landmark detection during the final competition.

5.3 Locating people

As Alfred’s primary task was to serve people, he had to
have a robust, fast, and accurate person detection algorithm.
In addition, to make the interaction more interesting we
developed a short-term recognition algorithm based on peo-
ple’s clothes. The person detection combined two indepen-

dent methods: one used movement detection, the other used
skin-region detection combined with eye template match-
ing. The combination of these two methods provided more
robust and accurate results than either detection method by
itself.

5.3.1 Relevant work The human locator based on move-
ment detection was modeled after the vision system used in
Rusty the B.E.A.R., the 1998 hors d’oeuvres serving robot
from the University of North Dakota [6]. We considered a
neural network-based detector [8], but the movement detec-
tor was chosen for its speed and because it does not require
an extensive search through an image. In addition, the
movement detector is simpler since there is no explicit
training needed for this type of system.

The person detection based on skin detection combined
work on prefiltering images [3], and fuzzy pattern matching
[13]. The fuzzy pattern detection was used as a fast method
of filtering for skin color. These filtered images where then
used for template matching similar to that described by
Chan and Lewis [3].

5.3.2 Algorithms and theory The person locator based
on motion used two different modes: general detection, and
close-person detection. For general person detection, Alfred
searched the entire image for concentrated movement and
returned an approximate distance and heading for the
movement. Three 320x240 color images were captured in
quick succession. For each image, a 3x3 Sobel operator
[10] was applied to the pixel values in order to identify edge
pixels. Consecutive images were then subtracted to form
two difference images that represented edges present in the
second of the two images but not in the first [4]. See Figure
5 for an example of the captured and processed images
involved in the movement detection system.

Then, three passes were made through each of the dif-
ference images to determine whether there existed localized
movement and to identify at what distance and heading this
movement occurred. In order to improve speed, Alfred cal-
culated table values for each column of the difference
images so that repeated calculations were eliminated. Each
pass corresponded to an approximate distance away from
the robot by running appropriate size boxes over the bottom
of the image that looked for different concentrations of
movement pixels. The large box corresponded to a distance
approximately 4 feet away; the medium size box to a dis-
tance approximately 8 feet away; and the small box approx-
imately 13 feet away. To prevent the large box from
mistakenly identifying a far person for a close person, the
large and medium size boxes were broken into horizontal
regions such that each were required to satisfy a certain
threshold. Finally, if a human was detected in one of the
boxes, a heading was calculated based on the column num-
ber in the center of the search box. Specifically, we deter-

Difference of
edge images

Original Edge Images

Figure 5 .Person Locator -- Successive captured images (left), calculated edge images (middle), and
difference image (right).

mined experimentally that the lens had a field of view
approximately equal to 42.74 degrees. Therefore, the fol-
lowing equation determined the angle from the center of the
field of view to the detected person.

heading = (columns / 2 - column number)
(FOV / columns) (2)

The resulting heading is in the same units as the FOV.
For Alfred’s physical setup, we used 320 as the number of
columns, and 42.74° as the FOV. Figure 6 shows a person
detected at each of the three distances and the search boxes
that were used in the detection.

The second mode--close person detection--was acti-
vated after detecting an obstacle which might be a human to
be served. The close-person detector captured two succes-
sive 240x320 images, performed edge calculations, and cre-
ated a single difference image all in the same manner as in
the first phase. In this phase, however, Alfred searched only
the center half of the image to see if enough movement pix-
els were present to distinguish its forward obstacle as a per-
son and not as a static object. Alfred returned a true value
only if the forward obstacle displayed significant motion.

The person detection algorithm based on color worked
in two phases: filtering and template matching. The filtering
pass used a trained fuzzy histogram specifying the set Skin
to filter the pixel values into likely and unlikely face loca-
tions. The template pass consisted of one or more eye tem-
plates scanned over the regions of the image selected in the
prefiltering stage.

To create the fuzzy histogram, we took a series of pic-
tures of people in the area where Alfred was to serve, and
then roughly edited them to replace all non-skin color areas
of the picture with black. The program then went through

each picture, using all non-black pixels to generate the
fuzzy-histogram. For all non-black pixels the image color
the training program normalized them by using equation
(3),

Ci
ci - (3)

N

where Ci ~ { R, G, B} are the three color compo-

nents found in the original 320x240 color images, and

ci E { r, g, b} are the three normalized colors. The pro-

gram then used the r and g values (b values were too noisy)
to index into a 32x32 histogram and increment the appro-
priate cell. This same procedure was followed for the entire
test set of images. The program then located the final histo-
gram’s largest value, and divided each of the cells in the
histogram by that value, scaling the histogram values to the
range [0, 1]. We can consider the resulting histogram to be a
fuzzy membership set for pixels belonging to the fuzzy set
Skin [131.

Once the Skin set is trained, we can use it to filter a new
image for skin tones. The computer accomplished this by
normalizing the color of each pixel using equation (3) and
then indexing into the appropriate cell of the Skin histogram
to transform the image into skin tone membership values. It
then reduced the new image by a factor of four in each axis
to speed up skin block detection. Using an appropriately
sized block, it located all potential face regions by compar-
ing the average skin membership value against a threshold.

If the average was greater than the threshold, the pro-
gram considered it a possible face and began the second

8

Figure 6 .Distance Finder - Close size search box approximately 1.3m away (left), medium size search box
~2.5m away (middle), and far size search box ~4m away (right).

phase of detection, template matching. The template was
created by cropping a test image down to a block the size of
a pair of eyes and then shrinking them by a factor of four in
each axis so that they would match the shrunk image. By
running the template across the top half of the hypothesized
head, the program calculated the sum of the square of the
differences of the pixel values in the image and template. If
this value was less then a preset threshold the area was con-
sidered to be a person, and the program returned the hori-
zontal location of the person in the image.

To increase the accuracy of the algorithm, we used two
different head sized blocks, and two corresponding eye
templates. Using two different sized templates helped us
ensure that people at different distances from the camera
could be found reliably. Note that in this implementation
the algorithm stopped once it found a likely candidate,
rather than searching for all possible candidates, in order to
reduce computation time. Since Alfred only needed one tar-
get to head towards, this decision worked well.

To combine these two independent algorithms we used
the following rule: if only one of the two person-detection
methods found a person, the robot would follow that result,
else if both of the two methods found a person, then the
robot would use the face-detection method as it tended to
give a more accurate heading. As the two methods are com-
plementary--the face detection will work when a person is
standing still, while the motion detection will work if the
person’s face is not detectable--this combination provided
better performance than either method by itself.

5.3.3 Experiments and results During the final round of
the competition, Alfred logged images for a portion of the
time serving in the conference hall. The movement-based
person locator logged a total of 15 images, correctly identi-
fying a person at a proper distance and heading 12 times;
correctly identifying a person at an improper distance and
heading 1 time; incorrectly identifying a person 1 time
when no person existed in the image; and incorrectly identi-
fying that no person was present 1 time. The result was a
success rate of 80%. The close person identifier logged 31
total images, correctly identifying the forward obstacle as a

person 22 times and incorrectly identifying it as a person 9
times. Thus, the success rate for the close-human detector
was approximately 71%.

As regards the histogram-based detection, in the Swar-
thmore Engineering building where the algorithm was ini-
tially tested, it performed successfully over 90% of the
time. Upon arriving at the robotics competition, however,
the system experienced several difficulties. First, the creme-
colored walls were similar enough to skin tone to appear in
the probability histogram. This problem was compounded
by the lights in the convention center which cast shadows
on the walls that could fool the eye template at certain dis-
tances. Also, the convention center lighting used light bulbs
with two different spectrums that alternated in their cover-
age of the room. The wide variance between the spectrums
of the different types of light would throw off the person
detection unless the histogram was trained with a large data
set. We took over 50 training images in a variety of loca-
tions around the convention center in order to provide a
robust training set for the fuzzy histogram. When we logged
images in the final round of judging, the robot detected four
different people using the histogram-based person detection
algorithm. Of these four, three were correct detections,
while the fourth was a wall, for a success rate of 75%.

5.4 Recognizing people

Color and texture histogram matching was chosen for
person recognition, using the standard histogram matching
criteria described in [11]. Alfred’s recognition system
focused on the color and texture of clothing, as the physical
placement of the camera allowed Alfred’s field of view to
see only the torso portion of a person once the person was
conversing with the robot. We decided to use both color and
texture to increase the size of the search space since we had
to deal with arbitrary colors and textures, unlike the work
described in [12] where people of interest wore specific,
differentiable colors.

5.4.1 Algorithms & theory Alfred attempted recognition
whenever he entered the Serve behavior of the FSM and
subsequently detected a close person. Alfred captured a sin-

Figure 7 .Person Recognition - Original image (far left), calculated texture image (left), texture band corre-
sponding to edge orientation (middle), texture band corresponding to edge magnitude (right),

and texture band corresponding to edge density (far right).

gle 240x320 image and cropped the image to include only
the middle third so that extraneous colors corresponding to
the environment surrounding the person of interest were not
included in the image used for processing. A texture image
was created from the RGB image based on three different
properties of calculated edges in the color image. The red
band of the texture image corresponded to edge orientation,
in which orientations from 0 to 180 degrees were assigned
values from 0 to 255 accordingly. Similarly, the green band
of the texture image corresponded to the amount of con-
trast, which is characterized by edge magnitudes. Last, the
blue band corresponded to coarseness, which is defined by
edge density, or the number of surrounding edge pixels in a
5x5 area. Together, they create an image with RGB values
that can be manipulated using histogram matching in the
same manner as the original color image. Example texture
images are shown in Figure 7.

The three-dimensional histograms are compared by
adding to a running total for each comparison. Each axis,
red, green, and blue are divided into 8 buckets, so that there
are 512 buckets in each histogram. Every pixel in the RGB
image is put into a bucket corresponding to the amount of
red, green and blue it contains. A histogram comparison
consists of comparing each of the buckets to the corre-
sponding bucket in the other histogram and adding the
lower of the two values to the total. The higher the total
value, the closer the match.

The comparison took place by dividing both the origi-
nal color image and the calculated texture image into three
equal horizontal regions to distinguish different areas of the
torso. In total, each person is defined by six histograms
which are stored in a dynamically-created database to
which Alfred adds throughout the time he is serving. When-
ever a person is served, Alfred goes through the same pro-
cess of capturing their image, creating the six histograms,
and then sequentially comparing the histograms to all those
currently in the database. Alfred returns the best match and
a level of certainty as to whether he believes that he has
served that person before. Three levels were used: 0 meant

no best match was found, 1 meant an unsure match was
found, and 2 meant a confident match was found.

5.4.2 Experiments & results A test run for the recogni-
tion system conducted before the preliminary round of the
competition yielded the following results on 7 subjects,
with a total of 20 test pictures taken; Alfred determined the
correct best match 13 times; an incorrect best match 2
times; correctly found no good match 1 time; and incor-
rectly found no best match 4 times. Thus, the success rate
for the recognition system was 70%. It should be noted that
in this test the subjects were all aware of when the Alfred
was capturing test images. This allowed Alfred to take
accurate image representations of the subjects, which was
not always easy to accomplish in the dynamic environment
of the competition’s final round.

6 Future directions

6.1 Navigation and integration

Although the Finite State Machine worked well, in the
future a less-rigid model would be better. A subsumption
architecture would enable the robot to exhibit a much more
dynamic set of behaviors that could respond more fluidly to
events (such as being trapped in a group of people).
Although this approach will probably require more devel-
opment time, we believe it will be worth the effort.

6.2 Speech and personality

There are several modifications to the speech and per-
sonality system that we want to implement prior to next
year’s competition. First, we intend to implement some
method of noise cancellation perhaps by using an adaptive
noise cancellation (ANC) filter [1]. Adaptive filters allow
only the desired signal to be processed and are constantly
self-updating to account for environmental changes. Two
algorithms that can be used to implement adaptive filters
are least means squares (LMS), which is robust and easy

10

implement, and the recursive least squares (RLS), which
faster but its convergence is not reliable. Two microphones
working simultaneously are used in ANC; one is unidirec-
tional while the other is omni-directional. The noise input is
from the omni-directional microphone and this signal is
passed to the adaptive filter. The unidirectional microphone
would then be used to record the subject’s utterances and an
adaptive noise cancellation is performed on it with the
adaptive filter. The error signal or noise is thus removed.

A second modification that we intend to implement
next year is to enable the speech processing system to adapt
to a situation. If there is a lot of background noise, for
example, Alfred might listen less and just make one-sided
conversation.

Finally we also intend to implement some auditory
speaker-recognition features to supplement the visual per-
son recognition output from the vision system. A crude
implementation of this would be to have each guest say a
particular phrase the first time we meet them, and extract
unique features from their speech waveform that would be
stored as their voice template. When vision reports later that
a person has been recognized we would confirm this by ask-
ing the person to repeat the same phrase again, to carry out
the template recognition.

6.3 Vision system

The high-level vision processing was relatively accu-
rate, but was often not fast enough to be effective in the rap-
idly-changing environment experienced in a crowded
exhibition hall. A person detected at one time may move to
a completely different location by the time that Alfred pro-
cesses the image information and navigates to the calcu-
lated destination. Similarly, the timing involved in
capturing images to be used in the recognition system was
vital in order to be accurately assessing only those colors
and textures associated with the person, and not those asso-
ciated with the background of the exhibition hall. There-
fore, a more useful system would have the ability to track
people in real time so that only relevant information is pro-
cessed and updated dynamically along with the changing
behavior of the humans to be served. Overall, the system
was very reliable and performed well in smaller, more con-
trolled environments. In order to make the system more
robust, a method for continually updating the information
and for properly segmenting the image to include only rele-
vant information must be added.

With respect to the blob detection, the color based bin
counter method is a fast and reliable method of blob detec-
tion in a homogeneous illumination environment. The RGB
bound is suitable for bright colors saturated in one of the
color bands, but if detection of "mixed" colors is needed, an
approach using histogram matching would be more appro-
priate. The use of self-similar landmarks turned out to be an

excellent choice, and future work may want to incorporate
the use of bar codes to provide more specific navigational
information [9].

Finally, the fuzzy histogram-based method of face
detection turned out to be a good choice. Future work in
this area will be to combine this prefilter with active track-
ing techniques and better structural matching techniques
than a simple template.

6.4 New capabilities

Based on our competition experience and our experi-
ence with Alfred in a variety of situations, there are at least
three new capabilities that we believe a truly successful
waiter robot needs to possess, and which will be the main
focus of our work for the 2000 competition.

The first of these is the ability to track a person that it
trying to serve from at least 4-5 meters away. This ability is
necessary in order to avoid the situation where the robot
heads in a direction, only to find that there is no one there
when it arrives. It would also enable the robot to demon-
strate dynamic adaptability to its environment.

The second new ability is that the robot needs to be
able to adapt to the sensor noise levels in its environment,
particularly with regard to speech. As noted above, a robot
waiter needs to know both when it can be understood and
when it can understand others. Only then can it derive an
appropriate interaction for a given situation.

Finally, a robot waiter needs to display more biomi-
metic behavior--mimicing human reactions physically--
than Alfred could. Small characteristics such as eyes that
track the person being served, the ability to raise a tray up
and down, or the ability to turn its head in response to stim-
uli would make the robot’s interaction more natural and
endow it with more perceived intelligence. Some of these
capabilities appeared in the early stages at the 1999 compe-
tition, but bringing them together into a single, robust robot
structure is the challenge of the coming year.

References

[1] S. T. Alexander, Adaptive Signal Processing: Theory
and Applications, New York: Springer-Verlag, 1986.

[2] R. Brooks, "A Robust-Layered Control System for a
Mobile Robot", IEEE Journal of Robotics and Auto-
mation, vol. RA-2, no. 1, March 1986.

[3] S. C. Y. Chan and P. H. Lewis, "A Pre-filter Enabling
Fast Frontal Face Detection", in Visual Information
and Information Systems, D. Huijsmans and A. Smeui-
ders (ed.), Springer-Verlag, Berlin, pp. 777--784, June
1999.

[4] E.R. Davies. Machine Vision: Theory, Algorithms, and
Practicalities. 2nd Ed. Academic Press: London, 1997.

[5] IBM ViaVoice SDK for Linux, http://www.soft-
ware.ibm.com/is/voicetype/dev_linux.htmi

11

[6] B. Maxwell, S. Anderson, D. Gomez-Ibanez, E. Gor-
don, B. Reese, M. Lafary, T. Thompson, M. Trosen,
and A. Tomson, "Using Vision to Guide an Hors
d’Oeuvres Serving Robot", IEEE Workshop on Percep-
tion for Mobile Agents, June 1999.

[7] B. Reeves, C. Nass, The Media Equation: How People
Treat Computers, Television, and New Media Like Real
People and Places, Cambridge Univ. Press, June 1999.

[8] H.A. Rowley, S. Baluja, and T. Kanade, "Neural Net-
work-Based Face Detection", IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 20, no.
1, January 1998.

[9] D. Scharstein and A. Briggs, "Fast Recognition of Self-
Similar Landmarks", IEEE Workshop on Perception
for Mobile Agents, June 1999.

[10]M. Sonka, V. Hlavac, and R. Boyle, Image Processing,
Analysis, and Machine Vision. 2nd Ed., PWS Publish-
ing. Pacific Grove, CA, 1999.

[11]M. J. Swain and D. H. Ballard, "Color Indexing", Int’l
Journal of Computer Vision, vol. 7, no. 1, pp. 11-32,
1991.

[12]C. Wong, D. Kortenkamp, and M. Speich, "A Mobile
Robot That Recognizes People," in IEEE International
Conference on Tools with Artificial intelligence, April,
1995.

[13]H. Wu, Q. Chen, and M. Yachida, "Face Detection
From Color Images Using a Fuzzy Pattern Matching
Method", IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 21, no. 6, June 1999.

12

