
The XRCL Project:
The University of Arkansas’ Entry into the

AAAI 1999 Mobile Robot Competition
Douglas S. Blank, Jared H. Hudson, Brian C. Mashburn, and Eric A. Roberts

University of Arkansas
Department of Computer Science and Computer Engineering

Engineering Hall Room 313
Fayetteville, Arkansas 72701

{dblank, j hhudso, bmashbu, erobert s}©comp, uark. edu

Abstract

This paper describes a new, open sources robot ar-
chitecture initiative called the Extensible Robot
Control Language (XRCL). This system is de-
signed to provide a modern robot-programming
interface which is adaptable and easy to learn. We
describe a fuzzy logic control system built on this
framework, and examine the system at work in
two tasks at the AAAI 1999 Mobile Robot Com-
petition.

Introduction
In the last few years we have seen the advent of a new
market: sophisticated, relatively low-cost, commercial
robots. Many smaller research groups that don’t have
the expertise, facilities, or budgets to build their own
robots can enter the field of robotics by purchasing com-
mercially built ones. As a result, there are now more
laboratories capable of robotics research than there
were just a few years ago.

However, a problem has arisen--each vendor has de-
veloped its own software architecture, and no two sys-
tems work with one another. This has created a robot-
ics Tower of Babel.

Many vendors claim that it would be impossible for
the situation to be any other way. They say that in ad-
dition to the obvious incompatibilities involved in con-
trolling very different kinds of hardware, no single archi-
tecture could accomodate the needs of all researchers.
For example, one researcher might need a formal plan-
ning system. Another might need a learning system.
The development of a robot architecture, the vendors
argue, is exactly what "doing research in robotics" is
all about.

We, however, believe that there is much to be gained
by there being some means for researchers to cooper-
ate across platforms. Instead of creating an architec-
ture which incorporates a researcher’s specific control
paradigm (such as neural networks or fuzzy logic), one
could build an infrastructure from which these "archi-
tectures" could hang. To this end, we propose an open-

Copyright © 1999, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

sources Extensible Robot Control Language (XRCL),
and discuss a specific implementation for it.

Extensible Robot Control Language

Our goal of creating a control language for robots imme-
diately brought to mind XML, the Extensible Markup
Language (Bray, Paoli, & Sperberg-McQueen 1998).
XML is a description language that allows the repre-
sentation of structure by the use of novel tags. XML
is sure to be the successor of the Hypertext Markup
Language (HTML), the current language of the World
Wide Web. In addition to representing a hierarchy of
structure, one may also represent attributes to the XML
structural elements by including attribute = value pairs
inside the tag, as shown in Figure 1.

<controller>
<robot type="B21R">elektro</robot>

</controller>

Figure 1: Sample XML document. In this example,
a controller is defined which is composed of a robot
named elektro, which is of type "B21R".

We chose XML as a starting place for the XRCL (pro-
nounced ’zircle’) project for three main reasons as fol-
lows:

¯ it has emerged as a standard method of representing
structure

¯ it provides many support tools (e.g., parsers, editors)

¯ it has become popular and well-known to program-
mers and non-programmers alike

Having identified a method of representing basic
structure, we then examined the issue of representing
control (i.e., program code). The Web has settled
a document organization that allows code (in the form
of Java or Javascript) to be interspersed with HTML’s
tags. We decided to follow this standard. For our cur-
rent implementation, we picked C++ to be our pro-
gramming language; however, it would be easy to in-
corporate other languages, such as Java or Lisp. An
example XRCL document can be seen in Figure 2.

19

From: AAAI Technical Report WS-99-15. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

<controller>
<robot type="B21R">elektro</robot>
<behavior name="Goto">

<arg default_value="O.O"
type="double">my_x</arg>

<arg default_value="O. 0"
type="double">my_y</arg>

<arg default_value="O.15"
type="double">my_close</arg>

<update>
static int done = O;
if (! done)

xcSay("Here I go!");
done = l;

}
Fuzzy euclidean(O.O, 1.0);
// degrees on left:
Fuzzy left(5, 20);
// degrees on right:
Fuzzy right(-5, -20);
double phi = xcAngle(my_x, my_y);
double dist = xcDistance(my_x, my_y);
Fuzzy too_left = right >> phi;
Fuzzy too_right = left >> phi;
Fuzzy near_goal = euclidean << dist;

// The fuzzy rules:

IF too_left THEN Turn -.30;
IF too_right THEN Turn .30;
IF ! (too_left II too right)

THEN Speed xcSLOW*I.1;
IF (near goal II too_left

II too_right)
THEN Speed xcSTOP;

TurnEffect(!near_goal);
SpeedEffect(1.0);
// within my_close cm
if (dist < my_close)

xcPrint("\n[I’m there!]");
xcSay("I am now at the

specified location.");
xcReturn();

}
</update>

</behavior>
</controller>

Figure 2: Example XRCL robot controller. This exam-
ple shows a behavior-based program designed to allow
a robot to go to a specific coordinate.

To test XRCL as an infrastructure upon which
to hang architectures, we implemented a fuzzy logic,
behavior-based control system based on work by (Saf-
fiotti, Ruspini, & Konolige 1993) and (Konolige 1999).

A Behavior-based, Fuzzy Logic Controller

Although there is much work being done in behavior-
based robotics, researchers have used the term in various
ways. Currently this research falls into two main camps:
vertical behavior-based, and horizontal behavior-based.
The vertical behavior-based camp is represented by, and
in fact defined by, (Brooks 1985). In systems of this
type, behaviors are typically independent black box-
es that are arranged into a hierarchy. Each element,
or component, receives inputs, does some simple pro-
cessing, and provides an output. Arranged in a proper
manner, this hierarchy of independent elements can give
rise to a fluid and flexible controller.

The horizontal behavior-based camp is also com-
posed of independent components; however, this re-
search aligns the elements at the same level, rather than
in a hierarchy. The focus of such control systems is to
blend all of components’ outputs so that the controller
acts as a single coherent, centralized system.

We have chosen to use the horizontal behavior-based
paradigm, modelling our system after the fuzzy logic
control architecture Saphira (Konolige 1999). We chose
this variation for two main reasons:

¯ the control logic can be succinctly represented by IF-
THEN syntax

¯ the resulting robot behavior is very often a nice
blending of conflicting rules

In XRCL, we represent fuzzy rules in the the behav-
ior sections of a controller. These behaviors are small
nuggets of control code written to accomplish specific
tasks, and are designed to be used in conjunction with
other (possibly competing) behaviors.

Each behavior is composed of general C++ code, and
a set of fuzzy rules. Each fuzzy rule takes the form IF
[/uzzyvalue] THEN [affecter] [amount]. [/uzzyvalue] is a
fuzzy real-valued truth value in the range 0 to 1. Cur-
rently, we have two controls: speed and turn. [amount]
is the magnitude we wish this rule to effect the affecter,
if the rule is true. Using fuzzy logic, the less true the
rule is, the less it will have an effect.

Behaviors execute simultaneously (being implement-
ed via native threads).1 Each behavior sends a request-
ed action to the underlying fuzzy logic system. The
fuzzy logic system then computes each behavior’s ef-
fect on its associated motor, and the robot adjusts its
movement accordingly.

At any one time, any number of behaviors may be
active in the system, with each trying to control the
effectors. Figure 3 shows a graphical depiction of three

1Currently, we have XI%CL and the fuzzy logic controller
running on a dual-processor PC running Linux. We have
used pthreads to implement the parMlel components.

2O

Figure 3: A graphical view of competing behaviors in
the X Windows System. This window shows the ac-
tive behaviors and their desired effects. The top two
horizontal bars reflect the WallToSide behaviors’ speed
and turn effect, respectively from top to bottom. The
remaining bars reflect two other competing behaviors’
computed fuzzy desires for rotational and translational
movements.

behaviors competing to control the turn and speed of a
robot. The actually movement made at each time step
is actually a blending of all of the behaviors’ desires.

In our fuzzy controller system, behaviors have the
ability to get sensor readings, activate and deactivate
other behaviors, call other behaviors as functions with
parameters, and communicate with other behaviors
through a built-in message passing system.

Although we have used XRCL to implement a fuzzy
logic controller, XRCL is, of course, not tied to just
this mode of operation. Other paradigms could easily
be expressed in the system. For the AAAI 1999 Mobile
Robot Competition, we also built two other subsystems:
a blob object system, and a neural network object sys-
tem. These are briefly described below.

Blob object system

The blob object system was created to provide an easy-
to-access interface to video data. A blob is a two-
dimensional array of black and white pixels produced
via a set of filters through which we run the robot’s
live video data. The white section of a blob indicates
areas which we are interested, and black indicates back-
ground. A filter can be as simple as an exact color
matching filter, or as complex as a non-linear neurally-
trained face detector. Figure 4 shows the interface for
creating a color matching filter in XRCL.

Once a filter has been created, one can access the
associated blob anywhere in XRCL by referring to spe-
cific blob fields. For example, if one has a set of ill-

Figure 4: A bird in the hand. The top images show the
live view from a robot’s left and right cameras. The
bottom images show the associated blobs after running
the image through a set of blue duck filters. Crosses in
the bottom images mark the computed centers of mass
of the blobs.

ters which detects blue ducks, then one can develop
a fuzzy logic rule based on BlueduckFilter-Evidence or
BlueduckFilter- CenterO]Mass.

Neural network object system
As an additional test of XRCL’s flexibility, we imple-
mented a back-propagation-based neural network ob-
ject system (Rumelhart, Hinton, & Williams 1986).
This provides an interface to a powerful learning system
(Blank 1999). Although we only used this system in the
AAAI competition for speech recognition, it could ~lso
be used as a filter for the blob system, or as data for
fuzzy logic rules.

XRCL GUI Interface
To visualize and evaluate controllers in XRCL, we need-
ed a graphical display. To that end, we developed a
interface with multiple display modes, including text-
ual, ncurses, and X Windows System. Figure 5 shows a
simulated robot and representations of its sensors run-
ning in the X Windows System mode.

The graphical user interfaces also provide access to
simulated robots, which alleviates the need for all work
to be performed on actual robotics hardware.

The Competition

We decided to test XRCL by having it compete in two
of the AAAI 1999 Mobile Robot Competition tasks: the
hors d’oeuvres and the scavenger hunt competitions.

The hors d’oeuvres competition was designed to al-
low real people (AI researchers and their families) to in-
teract with state-of-the-practice robotic waiters in the

21

Figure 5: The X Windows System interface has a 3D
graphics view of the robot that displays readings from
sensors, including sonar, laser and tactile. The 3D
graphics are created using our own rendering system
based the Qt widget set.

Figure 6: Elektro the robot. Elektro is a Real World
Interface, Inc. B21 robot. It has sonar, laser, infrared,
and tactile sensors, as well as a high-performance stere-
o vision system. Here it is shown without its candy
dispenser, which sits directly behind the cameras.

wild. The competitions were not held in any special
area, but rather in places where people were able (in
fact, encouraged) to wander. This marked a radical
departure in the competition’s design from previous
years where contests were confined to specific robot-
only areas. This year’s goals were:

¯ to serve food to a general group of people with no
special knowledge on methods of interaction

¯ to refill food tray when necessary

¯ to cover a large area

¯ to not hurt anyone too badly2

This last item was actually a controversial, yet neces-
sary, addition to this year’s competition. In years past,
a robot could get completely surrounded by people, and
had no recourse but to stay in its trapped spot. This of-
ten prevented a robot from refilling its tray as it could
never get out of the crowd of people. This year, the
judges added this "bump clause", which allowed a robot
to gently nudge its way back to the service station.

The second event we competed in was the Scavenger
hunt competition, which was also held in open spaces.
The robots’ goals were to find as many of a set of ob-
jects as possible in a short amount of time. For exam-
ple, many toys and balls where spread throughout the
conference center and all of the robots were sent out to
find and identify them.

2These are no doubt the "rules of robotics" Asimov
would have given, were he a caterer.

Elektro
For the competition, we used a B21 robot from Real
World Interface, Inc., named Elektro (see Figure 6).
Elektro is equipped with 4 main sensor modalities:
sonar, infrared, laser, and tactile. It also has a stereo
vision system that is comprised of dual high-resolution
cameras, mounted on a 180-degree pan and a 45 degree
tilt unit. This pan-tilt unit is mounted to a pedestal on
the top of the robot. Images are gathered through two
Matrox Meteor PCI frame grabbers.

Elektro’s "brain" is an on-board, standard PC: a dual
400MHz Pentium II computer system with 128M RAM,
9G Hard drive space, and 8 port serial card. The com-
puter also has standard peripherals, such as a sound
card and speakers. In addition, we utilized an HCll-
based HandyBoard micro-controller (Martin 1999), at-
tached via a serial cable, which controlled small motors
and lights.

The Plans

In devising a plan for serving hors d’oeuvres, we decided
to focus on the interaction between human and robot.
Given the open nature of the competition, this gave a
us a huge niche to explore. To exploit fully all modes of
interaction between humans and Elektro, we decided on
a plan to dispense M~M candies based on a proposed
neural network-based voice recognition system. After
some initial discussion, we switched from M~M’s to
Rcese’s Pieces as the latter come in only three colors.

Because of the sequential nature of our task, we cre-
ated several behaviors to control the movements of the
robot. A state machine was used to load behaviors in
and out of the XRCL fuzzy logic system. In this way, we

22

would have only the necessary behaviors running and
competing for any particular state. We then scripted
a set of states to implement the following sequence of
operations.

Upon startup, Elektro would search for a person to
whom it could deliver candy. This was accomplished us-
ing behaviors based on sonar and laser sensors to find
legs. The robot would then switch to an approach be-
havior, stopping in front of the (suspected) person. The
robot would then change to a "ServePerson" behavior.
Upon introducing himself, Elektro would ask which of
the three colors of candy the person would like. A neu-
ral network speech recognition system recorded the in-
put from the microphone, propagated the preprocessed
data through its simulated neurons, and produced a
best-guess of the spoken color.

The perceived choice activated signals sent via a seri-
al connection to a HandyBoard micro-controller which
controlled the dispensing hardware. Depending on the
perceived color of candy requested, a series of motor
controls would grab candy from the appropriate bin of
candy affixed to the top of Elektro, and drop them down
a tube leading to a cup hanging from the front of the
robot.

The night before the competition, we also added the
ability for Elektro to automatically update the neural
network’s weights used in the speech recognizer. The
operation worked as fllows. Once the candy was deliv-
ered, Elektro would ask the person if the correct can-
dy color was given. If Elektro was correct, the person
was requested to press a large blue button on Elektro’s
front. If the correct color was not identified, the person
was to do nothing. Pressing the button would cause the
weights to be adjusted using the last voice input as the
learning sample. In this manner, Elektro was capable
of adapting its voice recognition ability to the specific
acoustics in the environment during the competition.

Once the entire interaction between robot and hu-
man was complete, Elektro would thank the person,
swap behaviors, and began the sequence over again by
looking for legs in another part of the room.

Elektro would be relatively aggressive in its attempt-
s to travel a fair distance from its current position.
This was done to prevent getting trapped by a circle of
people, as mentioned above. Over time, Elektro was ca-
pable of wandering around a large portion of the room.

The Reese’s Pieces dispenser was built to deliver
small quantities of candy at a time. The dispenser was
built with a variety of common materials (i.e., PVC
pipe and wood) and could provide feedback to the robot
when it was low on a particular color of candy.

The dispenser was composed of two motor/gearbox
assemblies, two discs with appropriately sized delivery
holes, three tube containers for storing the candy, three
photocells, two potentiometers, one housing box, one
HandyBoard with serial board, and one delivery tube.

The motor/gearbox assemblies were mounted inside
the housing with their drive-shafts mounted vertically.
The discs were placed on the drive shaft so that they

would turn like a record on a an old-fashioned record
player. A potentiometer was mounted above the cen-
ter of the disc and connected such that when the disc
turned, the knob of the potentiometer would also turn.
The variable resistance of the potentiometer would be
fed into the HandyBoard to provide feedback on the po-
sition of the disc with respect to the pickup and delivery
holes.

Containers were mounted on the edge of the disc so
that when the hole in the disc would go under the tube,
a small amount of candy would fall into the hole. As
the disc continued to turn, the hole in the disc would
line up with a hole in the bottom of the housing and
the candy would fall into the delivery tube and out to
the cup on the front of the robot.

Using photocells, we measured the light level at the
bottom of the containers when empty. If enough light
entered the container, the dispenser would notify XRCL
that the amount of a particular color of candy was run-
ning low. We could then remove this color choice from
the color options and notify the robot handler that it
needed refilling.

The scavenger hunt competition required far less spe-
cific design, but still required that several behaviors be
written in XRCL to control the robot. The actions re-
quired to solve the problem were two-fold. First, the
robot was to move about the playing field in search
of scavenger hunt objects. Secondly, the robot was to
identify these items according to shape and color.

Approximately a dozen objects were photographed
prior to the competition. Simple color-matching blob
filters of these objects were then created and stored to
files. During the competition, when a filter produced a
large blob, Elektro would identify the object as the ob-
ject of the filter. Some color manipulations were done
to enhanced Elektro’s ability to correctly identify a col-
or in the changing lighting conditions of the conference
hall.

Results
During the competition, we noticed that many of the
other teams had used commercial voice recognition sys-
tems, such as IBM’s ViaVoice. The night before the
competition, we were struggling with getting our sys-
tem to learn and considered switching. However, lat-
er that night we finally got our neural network-based
speech recognition system to correctly perceive our spo-
ken color choices, and we decided to go with it.

The neural network used was a simple recurrent net-
work, or SRN (Elman 1990). For each word spoken,
normalized the auditory data into 1500 floating-point
values between 0 and 1. We then fed those 1500 val-
ues into a SRN, 25 values at a time. This created a
sequence of length 60. Although we didn’t have much
time to train it, we decided to let it train during the
competition via reinforcement learning. We believed
that it might start out performing poorly, but as the
competition wore on, it would actually perform better.
Although we didn’t keep statistics on its performance

during the competition, the judges found it to indeed
perform poorly early in the competition, and better as
the night wore on.

Although we experienced communication problems
between our host computer and Elektro, our solution
for the scavenger hunt competition yielded a 3rd place
finish. The judges awarded our team a technical inno-
vation award for our adaptive voice recognition system
in the hors d’oeuvres competition.

Summary
The 1999 AAAI Mobile Robot Competition provided
an excellent testbed with which to try out our imple-
mentation of an Extendible Robot Control Language
(XRCL). Although we wrote the entire system in the
three months prior to the competition, we were able to
successfully apply it to two tasks: the hors d’oeuvres,
and scavenger hunt competitions.

The competition provided a unique challenge for us to
test our general architecture in the wild. Although the
experience was quite exhausting, it was a great learning
experience for all involved. We look forward to future
competitions.

Acknowledgements
The authors wish to thank the members of the Arti-
ficial Intelligence and Robotics Laboratory, especially
Chris Craig, Genet Cramlet, Nick Farrer," Jim Gage,
Dylan House, and Vikki Kowalski for their help on this
project.

References
Blank, D. 1999. Con-x Users’ Manual, on-line at
http : // dangermouse, uark. edu/cx/.
Bray, T.; Paoli, J.; and Sperberg-McQueen, C. 1998.
Extensible Markup Language (XML) 1.0 on-line
http : //www. w3. org/ TR /1998/R E C- xml- 19980210.
Brooks, R. A. 1985. A layered intelligent control sys-
tem for a mobile robot. In Third International Sym-
posium of Robotics Research, 1-8.
Elman, J. 1990. Finding structure in time. Connection
Science 14:179-212.
Hofstadter, D., and the Fluid Analogies Research
Group. 1995. Fluid concepts and creative analogies.
New York, NY: Basic Books.
Konolige, K. 1999. Saphira Users’ Manual.

Martin, F. 1999. The HandyBoard User’s Manual.

Rumelhart, D.; Hinton, G.; and Williams, R. 1986.
Learning internal representations by error propaga-
tion. In McClellend, J., and Rumelhart, D., eds., Par-
allel Distributed Processing: Explorations in the mi-
erostructure of cognition. Bradford Books/MIT Press.
Saffiotti, A.; Ruspini, E.; and Konolige, K. 1993.
Blending reactivity and goal-directedness in a fuzzy
controller. In Second IEEE International Conference
on Fuzzy Systems, 134-39.

